Guidelines for the Diagnosis and Management of Asthma

Expert Panel Report 2

NATIONAL INSTITUTES OF HEALTH
NATIONAL HEART, LUNG, AND BLOOD INSTITUTE
Guidelines for the Diagnosis and Management of Asthma
SECOND EXPERT PANEL ON THE MANAGEMENT OF ASTHMA

*Shirley Murphy, M.D., Chair
Professor and Chair
Department of Pediatrics
University of New Mexico
School of Medicine
Albuquerque, New Mexico

Eugene R. Bleecker, M.D.
Professor of Medicine
School of Medicine
University of Maryland
Baltimore, Maryland

*Homer Boushey, M.D.
Chief, Asthma Clinical Research Center
Department of Medicine
University of California at San Francisco
San Francisco, California

*A. Sonia Buist, M.D.
Professor of Medicine and Physiology
Head, Pulmonary and Critical Care Division
Oregon Health Sciences University
Portland, Oregon

*William Busse, M.D.
Professor of Medicine
University of Wisconsin
Madison, Wisconsin

Noreen M. Clark, Ph.D.
Professor and Dean
University of Michigan School of Public Health
Ann Arbor, Michigan

Howard Eigen, M.D.
Director
Section of Pulmonology and Intensive Care
Department of Pediatrics
Riley Hospital for Children
Indianapolis, Indiana

Jean G. Ford, M.D.
Chief, Division of Pulmonary Medicine
Harlem Hospital Center

*Susan Janson, D.N.Sc., R.N.
Professor
Department of Community Health
San Francisco, California

*H. William Kelly, Pharm.D.
Professor of Pharmacy and Pediatrics
University of New Mexico
Albuquerque, New Mexico

Robert F. Lemanske, Jr., M.D.
Professor of Medicine and Pediatrics
University of Wisconsin
Madison, Wisconsin

Carolyn C. Lopez, M.D.
Chief, Department of Family Practice
Associate Professor of Family Medicine
University of Arizona Medical Center
Tucson, Arizona

*Harold S. Nelson, M.D.
Senior Staff Physician
National Jewish Medical and Research Center
Denver, Colorado

Richard Nowak, M.D., M.B.A.
Vice Chairman
Department of Emergency Medicine
Henry Ford Hospital
Detroit, Michigan

*Executive Committee Member

Thomas A.E. Platts-Mills, M.D., Ph.D.
Director
UVA Asthma and Allergy Disease Center
Charlottesville, Virginia

Gail G. Shapiro, M.D.
Clinical Professor of Pediatrics
University of Washington
School of Medicine
Seattle, Washington

Stuart Stoloff, M.D.
Clinical Associate Professor of Family Medicine
University of Nevada
Reno, Nevada

Kevin Weiss, M.D., M.P.H.
Director
Center for Health Services Research
Rush Primary Care Institute
Chicago, Illinois

FEDERAL LIAISON REPRESENTATIVES

Clive Brown, M.B.B.S., M.P.H.
Epidemiologist
Air Pollution and Respiratory Health Branch
Centers for Disease Control and Prevention
 Atlanta, Georgia

Peter J. Gergen, M.D.
(formerly with the National Institute of Allergy and Infectious Diseases)
Medical Officer
Center for Primary Care Research Agency for Health Care Policy and Research
Bethesda, Maryland

Edward L. Petsonk, M.D.
Clinical Section Chief
Clinical Investigations Branch
Division of Respiratory Disease Studies
National Institute for Occupational Safety and Health
Morgantown, West Virginia

* Executive Committee Member
ACKNOWLEDGMENTS

The Expert Panel acknowledges the following consultants for their review of an early draft of the report: David Evans, Ph.D.; James Fish, M.D.; Mark Liu, M.D.; Guillermo Mendoza, M.D.; Gary Rachelefsky, M.D.; Albert Sheffer, M.D.; Stanley Szefler, M.D.; and Pamela Wood, M.D.

NATIONAL HEART, LUNG, AND BLOOD INSTITUTE STAFF

Ted Buxton, M.P.H.
Special Expert
National Asthma Education and Prevention Program

Robinson Fulwood, M.S.P.H.
Coordinator
National Asthma Education and Prevention Program

Michele Hindi-Alexander, Ph.D.
Health Scientist Administrator
Division of Lung Diseases

Suzanne S. Hurd, Ph.D.
Director
Division of Lung Diseases

Virginia S. Taggart, M.P.H.
Health Scientist Administrator
Division of Lung Diseases

R.O.W. SCIENCES, INC., SUPPORT STAFF

Ruth Clark
Cathy Hageman
Lisa Marcellino
Maria New
Donna Selig
Keith Stanger
Donna Tharpe
Sonia Van Putten
Eileen Zeller, M.P.H.
NATIONAL ASTHMA EDUCATION AND PREVENTION PROGRAM
COORDINATING COMMITTEE

Claude Lenfant, M.D., Chair
National Heart, Lung, and Blood Institute

Lynn A. Bosco, M.D., M.P.H.
Agency for Health Care Policy and Research

Nancy J. Sander
Allergy and Asthma Network/Mothers of Asthmatics, Inc.

Albert L. Sheffer, M.D.
American Academy of Allergy, Asthma, and Immunology

Gary S. Rachelefsky, M.D.
American Academy of Pediatrics

Barbara Senske Heier, PA-C
American Academy of Physician Assistants

Thomas J. Kallstrom, R.R.T.
American Association for Respiratory Care

Eloise Branche, R.N., C.O.H.N.-S.
American Association of Occupational Health Nurses

Allan T. Luskin, M.D.
American College of Allergy, Asthma, and Immunology

Robert A. Barbee, M.D., F.C.C.P.
American College of Chest Physicians

Richard M. Nowak, M.D., M.B.A., F.A.C.E.P.
American College of Emergency Physicians

Noreen M. Clark, Ph.D.
American Lung Association

Paul V. Williams, M.D.
American Medical Association

Barbara M. Santamaria, R.N., M.P.H., C.F.N.P.
American Nurses Association, Inc.

Dennis M. Williams, Pharm.D.
American Pharmaceutical Association

Pamela J. Luna, M.Ed., Dr.P.H.
American Public Health Association

American School Health Association

Leslie Hendele, Pharm.D.
American Society of Health-System Pharmacists

A. Sonia Buist, M.D.
American Thoracic Society

Barbara L. Hager, M.P.H., C.H.E.S.
Association of State and Territorial Directors of Health Promotion and Public Health Education

Mary E. Worstell, M.P.H.
Asthma and Allergy Foundation of America

Mary Vernon, M.D., M.P.H.
Centers for Disease Control and Prevention

Vivian Haines, R.N., M.A., S.N.P.
National Association of School Nurses

Susan B. Clark, R.N., M.N.
National Black Nurses Association, Inc.

Ruth A. Etzel, M.D., Ph.D.
National Center for Environmental Health

Kathryn Silbersiepe, M.D., M.S.
National Center for Health Statistics

Ruth I. Quartey, M.A., R.R.T.
NHLBI Ad Hoc Committee on Minority Populations

Gregory R. Wagner, M.D.
National Institute for Occupational Safety and Health

Lawrence J. Prograis, Jr., M.D.
National Institute of Allergy and Infectious Diseases

Sheila A. Newton, Ph.D.
National Institute of Environmental Health Sciences

Michael Lenoir, M.D.
National Medical Association

L. Kay Bartholomew, Ed.D., M.P.H.
Society for Public Health Education

Kimberly Green Goldsborough, M.S.
U.S. Environmental Protection Agency

John K. Jenkins, M.D.
U.S. Food and Drug Administration

Olivia Carter-Pokras, Ph.D.
U.S. Public Health Service
NATIONAL ASTHMA EDUCATION AND PREVENTION PROGRAM
SCIENCE BASE COMMITTEE

Albert L. Sheffer, M.D., Chair
Brigham and Women's Hospital
Boston, Massachusetts

A. Sonia Buist, M.D.
Oregon Health Sciences University
Portland, Oregon

William Busse, M.D.
University of Wisconsin
Madison, Wisconsin

Noreen M. Clark, Ph.D.
University of Michigan
Ann Arbor, Michigan

Shirley Murphy, M.D.
University of New Mexico
Albuquerque, New Mexico

Harold S. Nelson, M.D.
National Jewish Medical and Research Center
Denver, Colorado

Kevin Weiss, M.D., M.P.H.
Rush Primary Care Institute
Chicago, Illinois

INTERNATIONAL SCIENCE BASE COMMITTEE

Romain Pauwels, M.D., Ph.D., Chair
University Hospital
Ghent, Belgium

Jean Bousquet, M.D., Ph.D.
Hopital Arnaud de Villeneuve
Montpellier, France

Timothy J. H. Clark, M.D.
National Heart and Lung Institute
London, England

Leonardo M. Fabbri, M.D.
University of Ferrara
Ferrara, Italy

Stephen T. Holgate, M.D., D.Sc.
Southampton General Hospital
Southampton, England

Martyn R. Partridge, M.D.
Whipps Cross Hospital
London, England

Søren Pedersen, M.D.
Kolding Hospital
Kolding, Denmark

Ann J. Woolcock, A.O., M.D., F.R.A.C.P.
Royal Prince Alfred Hospital
Camperdown, New South Wales, Australia
PREFACE

In 1991, under the auspices of the National Asthma Education and Prevention Program (NAEPP), the first Expert Panel on the Management of Asthma published Expert Panel Report: Guidelines for the Diagnosis and Management of Asthma. This landmark report redefined commonly held beliefs about asthma care, thus setting the stage for nationwide improvements in the clinical management of asthma and stimulating a variety of novel research. An enormous amount of work has been done since the release of the report to deepen our understanding of the pathogenesis of asthma and increase our knowledge about effective approaches to asthma diagnosis, monitoring, pharmacologic and environmental management, and patient education. Accordingly, the decision was made to update and revise the 1991 report to identify progress made over the last 6 years.

Expert Panel Report 2: Guidelines for the Diagnosis and Management of Asthma (EPR-2) is the culmination of more than 3 years of preparatory analysis, meetings, and writing and review cycles involving many individuals, not the least of whom were the members of the second Expert Panel. Under the able leadership of Dr. Shirley Murphy, Panel chair, the second Expert Panel diligently met its charge of producing an accurate, up-to-date source of information for clinicians on asthma diagnosis and management. Panel members conducted their work not only with skill and a depth of clinical and academic knowledge, but also with a commitment to quality and an impressive spirit of collaboration. The National Heart, Lung, and Blood Institute and the organizations that comprise the NAEPP Coordinating Committee sincerely appreciate the work of Dr. Murphy, the Expert Panel, and all others who participated in the preparation of this report.

The task before us is to explore innovative methods to broadly disseminate and encourage implementation of these updated asthma care recommendations. The first steps will be to adapt the EPR-2 into formats that meet the needs of various health professionals and then to disseminate these materials. However, these national-level efforts will have an impact on asthma care only if they occur in concert with local activities to encourage use of EPR-2 materials. Ultimately, broad change in clinical practice depends on the influence of local physicians and other health professionals who not only provide state-of-the-art care to their patients, but also communicate to their peers the importance of doing the same. We are optimistic that over the next several years, the joint efforts of the NAEPP, its Coordinating Committee member organizations, and committed professionals at the local level will result in extensive implementation of the recommendations in the EPR-2. We ask for the assistance of every reader in reaching our ultimate goal: improving asthma care and the quality of life for every patient with asthma and their families.

Publications from the National Asthma Education and Prevention Program can be ordered through the National Heart, Lung, and Blood Institute Information Center, P.O. Box 30105, Bethesda, MD 20824-0105. Publications are also available through the Internet at http://www.nhlbi.nih.gov/nhlbi/nhlbi.htm.

Claude Lenfant, M.D., Director
National Heart, Lung, and Blood Institute
Chair, National Asthma Education and Prevention Program Coordinating Committee
Asthma is a chronic inflammatory disease of the airways. In the United States, asthma affects 14 million to 15 million persons. It is the most common chronic disease of childhood, affecting an estimated 4.8 million children (Adams and Marano 1995; Centers for Disease Control and Prevention 1995). People with asthma collectively have more than 100 million days of restricted activity and 470,000 hospitalizations annually. More than 5,000 people die of asthma annually. Asthma hospitalization rates have been highest among blacks and children, while death rates for asthma were consistently highest among blacks aged 15 to 24 years (Centers for Disease Control and Prevention 1996). These rates have increased or remained stable over the past decade. This report describes the appropriate use of the available therapies in the management of asthma.

To help health care professionals bridge the gap between current knowledge and practice, the National Heart, Lung, and Blood Institute's National Asthma Education and Prevention Program (NAEPP) has convened two Expert Panels to prepare guidelines for the diagnosis and management of asthma. The NAEPP Coordinating Committee, under the leadership of Claude Lenfant, M.D., director of the NHLBI, convened the first Expert Panel in 1989. The charge to this Panel was to develop a report that would provide a general approach to diagnosing and managing asthma based on current science. The Expert Panel Report: Guidelines for the Diagnosis and Management of Asthma (NAEPP 1991) was published in 1991, and the recommendations for the treatment of asthma were organized around four components of effective asthma management:

- Use of objective measures of lung function to assess the severity of asthma and to monitor the course of therapy
- Environmental control measures to avoid or eliminate factors that precipitate asthma symptoms or exacerbations
- Comprehensive pharmacologic therapy for long-term management designed to reverse and prevent the airway inflammation characteristic of asthma as well as pharmacologic therapy to manage asthma exacerbations
- Patient education that fosters a partnership among the patient, his or her family, and clinicians

The principles addressed within these four components of asthma management served as the starting point for the development of two additional reports prepared by asthma experts from many countries in cooperation with the NHLBI: the International Consensus Report on Diagnosis and Management of Asthma (NHLBI 1992) and the Global Initiative for Asthma (NHLBI/WHO 1995). The Expert Panel Report 2: Guidelines for the Diagnosis and Management of Asthma (EPR-2) is the latest report from the National Asthma Education and Prevention Program and updates the 1991 Expert Panel Report. The second Expert Panel critically reviewed and built upon the reports listed above.

This report presents basic recommendations for the diagnosis and management of asthma that will help clinicians and patients make appropriate decisions about asthma care. Of course, the clinician and patient need to develop individual treatment plans that are tailored to the specific needs and circumstances of the patient. The NAEPP, and all who participated in the development of this latest report, hope that the patient with asthma will be the beneficiary of the recommendations in this document. This report is not an official regulatory document of any Government agency.
METHODS USED TO DEVELOP THIS REPORT

The NAEPP Coordinating Committee established a Science Base Committee of U.S. asthma experts who began work in early 1994 to monitor the scientific literature and advise the Coordinating Committee when an update of the 1991 Expert Panel Report: Guidelines for the Diagnosis and Management of Asthma was needed. The Science Base Committee, along with international members of the Global Initiative for Asthma, examined all the relevant literature on asthma in human subjects published in English between 1991 and mid-1995, obtained through a series of MEDLINE database searches. More than 5,000 abstracts were reviewed. In 1995, the Science Base Committee recommended to the NAEPP Coordinating Committee that sufficient new information had been published since 1991 to convene a panel of experts to update the first Expert Panel Report.

The second Expert Panel is a multidisciplinary group of clinicians and scientists with expertise in asthma management. The Panel includes health professionals in the areas of general medicine, family practice, pediatrics, emergency medicine, allergy, pulmonary medicine, nursing, pharmacy, and health education. Among the Panel members are individuals who served on either the Science Base Committee or the 1991 Expert Panel. Other members were chosen based on names submitted by NAEPP Coordinating Committee member organizations. Several Expert Panel members are themselves members of the Coordinating Committee. Representatives from several Federal agencies also have participated.

The charge to the Panel was to prepare recommendations for use by clinicians working in diverse healthcare settings that address the practical decisionmaking issues in the diagnosis and management of asthma. The Panel also was requested to develop specific aids to facilitate implementation of the recommendations.

Panel members were asked to base their recommendations on their review of the scientific literature and to cite studies that support the recommendations. When a clear recommendation could not be extracted from the studies (e.g., studies were not available, were conflicting, or were equivocal), the Panel was asked to label the recommendation as “based on the opinion of the Expert Panel,” “recommended by the Expert Panel,” or similar terminology. When a whole section was “based on the opinion of the Expert Panel,” this was indicated at the beginning of the section (e.g., see component 1-Initial Assessment and Diagnosis).

This report was prepared in a systematic and iterative process. In addition to the Science Base Committee review of the scientific literature, the Panel conducted in-depth reviews of the literature in selected areas it considered controversial. In interpreting the literature, the Panel considered the nature and quality of the study designs and analyses. Given the complexities of several issues, the Panel chose not to use the strict evidence ranking system used in the guidelines development procedures of the U.S. Preventive Services Task Force. However, this procedure was applied in the area of peak flow monitoring. The Panel submitted their interpretation of the literature and related recommendations for multiple reviews by their fellow Expert Panel members and outside reviewers.

The development of EPR-2 was directed by an Executive Committee; each member of the Executive Committee headed a subcommittee assigned to prepare a specific chapter. Each member of the Panel was assigned to one of the subcommittees. The subcommittees were responsible for reviewing the pertinent literature and drafting the recommendations with the supporting evidence for the full Panel to review. Once the subcommittee reports were prepared, the full Panel critically reviewed the evidence and rationale for each recommendation, discussed revisions, and reached final agreement on each recommendation. A vote was taken to confirm the consensus of the Panel. The final report was approved by the NAEPP Coordinating Committee via mail. Box 1 summarizes the draft, review, and consensus-building process.

The development of this report was entirely funded by the National Heart, Lung, and Blood Institute, National Institutes of Health. Panel members and reviewers participated as volunteers and were compensated only for travel expenses related to the two Expert Panel meetings and the Executive Committee meetings.
The goal of the Expert Panel Report 2: Guidelines for the Diagnosis and Management of Asthma is to serve as a comprehensive guide to diagnosing and managing asthma. Implementation of EPR-2 recommendations is likely to increase some costs of asthma care by increasing the number of primary care visits for asthma and the use of asthma medications, environmental control products and services, and equipment (e.g., spacer/holding chamber devices). However, asthma diagnosis and management are expected to improve, which should reduce the numbers of lost school and work days, hospitalizations and emergency department visits, and deaths due to asthma. A net reduction in total health care costs should result. The NAEPP encourages research to evaluate the impact of implementing the recommendations in this report.

OVERVIEW OF THE REPORT

Each section of EPR-2 begins with a list of “Key Points” and “Differences From 1991 Expert Panel Report.” A brief overview of each section is provided below.

Pathogenesis and Definition

In the 1991 Expert Panel Report, the role of inflammation in the pathogenesis of asthma was emphasized although the scientific evidence for the involvement of inflammation in asthma was just emerging. Now in 1997, although the role of inflammation is still evolving as a concept, a much firmer scientific basis exists to indicate that asthma results from complex interactions among inflammatory cells, mediators, and the cells and tissues resident in the airways.

Thus, asthma is now defined as a chronic inflammatory disorder of the airways in which many cells and cellular elements play a role, in particular, mast cells, eosinophils, T lymphocytes, neutrophils, and epithelial cells. In susceptible individuals, this inflammation causes recurrent episodes of wheezing, breathlessness, chest tightness, and cough, particularly at night and in the early morning. These episodes are usually associated with widespread but variable airflow obstruction that is often reversible either spontaneously or with treatment. The inflammation also causes an associated increase in the existing bronchial hyperresponsiveness to a variety of stimuli.

COMPONENT 1: Measures of Assessment and Monitoring

Initial Assessment and Diagnosis of Asthma

Making the correct diagnosis of asthma is extremely important. Clinical judgment is required because signs and symptoms vary widely from patient to patient as well as within each patient over time. To establish the diagnosis of asthma, the clinician must determine that:

- Episodic symptoms of airflow obstruction are present.
- Airflow obstruction is at least partially reversible.
- Alternative diagnoses are excluded.

This section differs from the 1991 Expert Panel Report in several ways. Asthma severity classifications have been changed from mild, moderate, and severe to mild intermittent, mild persistent, moderate persistent, and severe persistent to more accurately reflect the clinical manifestations of
asthma. The Panel emphasizes that patients at any level of severity can have mild, moderate, or severe exacerbations. In addition, information on wheezing in infancy and vocal cord dysfunction has been expanded in the differential diagnosis section in component 1. Situations that may warrant referral to an asthma specialist have been refined with input from specialty and primary care physicians.

Periodic Assessment and Monitoring

To establish whether the goals of asthma therapy have been achieved, ongoing monitoring and periodic assessment are needed. The goals of asthma therapy are to:

- Prevent chronic and troublesome symptoms
- Maintain (near) "normal" pulmonary function
- Maintain normal activity levels (including exercise and other physical activity)
- Prevent recurrent exacerbations of asthma and minimize the need for emergency department visits or hospitalizations
- Provide optimal pharmacotherapy with minimal or no adverse effects
- Meet patients' and families' expectations of and satisfaction with asthma care

Several types of monitoring are recommended: signs and symptoms, pulmonary function, quality of life/functional status, history of asthma exacerbations, pharmacotherapy, and patient-provider communication and patient satisfaction.

The Panel recommends that patients, especially those with moderate-to-severe persistent asthma or a history of severe exacerbations, be given a written action plan based on signs and symptoms and/or peak expiratory flow. As in the 1991 report, daily peak flow monitoring is recommended for patients with moderate-to-severe persistent asthma. In addition, the Panel states that any patient who develops severe exacerbations may benefit from peak flow monitoring. A complete review of the literature on peak flow monitoring was conducted, evidence tables were prepared, and the results of this analysis are summarized in the report.

Component 2: Control of Factors Contributing to Asthma Severity

Exposure of sensitive patients to inhalant allergens has been shown to increase airway inflammation, airway hyperresponsiveness, asthma symptoms, need for medication, and death due to asthma. Substantially reducing exposures significantly reduces these outcomes. Environmental tobacco smoke is a major precipitant of asthma symptoms in children, increases symptoms and the need for medications, and reduces lung function in adults. Increased air pollution levels of respirable particulates, ozone, SO2, and NO2 have been reported to precipitate asthma symptoms and increase emergency department visits and hospitalizations for asthma. Other factors that can contribute to asthma severity include rhinitis and sinusitis, gastroesophageal reflux, some medications, and viral respiratory infections. EPR-2 discusses environmental control and other measures to reduce the effects of these factors.

Component 3: Pharmacologic Therapy

EPR-2 offers an extensive discussion of the pharmacologic management of patients at all levels of asthma severity. It is noted that asthma pharmacotherapy should be instituted in conjunction with environmental control measures that reduce exposure to factors known to increase the patient's asthma symptoms.

As in the 1991 report, a stepwise approach to pharmacologic therapy is recommended, with the type and amount of medication dictated by asthma severity. EPR-2 continues to emphasize that persistent asthma requires daily long-term therapy in addition to appropriate medications to manage asthma exacerbations. To clarify this concept, the EPR-2 now categorizes medications into two general classes: long-term control medications to achieve and maintain control of persistent asthma and quick-relief medications to treat symptoms and exacerbations.

Observations into the basic mechanisms of asthma have had a tremendous influence on therapy. Because inflammation is considered an early and persistent component of asthma, therapy for persistent asthma must be directed toward long-term...
suppression of the inflammation. Thus, EPR-2 continues to emphasize that the most effective medications for long-term control are those shown to have anti-inflammatory effects. For example, early intervention with inhaled corticosteroids can improve asthma control and normalize lung function, and preliminary studies suggest that it may prevent irreversible airway injury.

An important addition to EPR-2 is a discussion of the management of asthma in infants and young children that incorporates recent studies on wheezing in early childhood. Another addition is discussions of long-term-control medications that have become available since 1991—long-acting inhaled beta2-agonists, nedocromil, zafirlukast, and zileuton.

Recommendations for managing asthma exacerbations are similar to those in the 1991 Expert Panel Report. However, the treatment recommendations are now on a much firmer scientific basis because of the number of studies addressing the treatment of asthma exacerbations in children and adults in the past 6 years.

COMPONENT 4: Education for a Partnership in Asthma Care

As in the 1991 Expert Panel Report, education for an active partnership with patients remains the cornerstone of asthma management and should be carried out by health care providers delivering asthma care. Education should start at the time of asthma diagnosis and be integrated into every step of clinical asthma care. Asthma self-management education should be tailored to the needs of each patient, maintaining a sensitivity to cultural beliefs and practices. New emphasis is placed on evaluating outcomes in terms of patient perceptions of improvement, especially quality of life and the ability to engage in usual activities. Health care providers need to systematically teach and frequently review with patients how to manage and control their asthma. Patients also should be provided with and taught to use a written daily self-management plan and an action plan for exacerbations. It is especially important to give a written action plan to patients with moderate-to-severe persistent asthma or a history of severe exacerbations. Appropriate patients should also receive a daily asthma diary. Adherence should be encouraged by promoting open communication; individualizing, reviewing, and adjusting plans as needed; emphasizing goals and outcomes; and encouraging family involvement.

In summary, the 1997 Expert Panel Report 2: Guidelines for the Diagnosis and Management of Asthma reflects the experience of the past 6 years as well as the increasing scientific base of published articles on asthma. The Expert Panel hopes this new report will assist the clinician in forming a valuable partnership with patients to achieve excellent asthma control and outcomes.

REFERENCES

KEY POINTS

- Asthma, whatever the severity, is a chronic inflammatory disorder of the airways. This has implications for the diagnosis, management, and potential prevention of the disease.

- The immunohistopathologic features of asthma include:
 - Denudation of airway epithelium
 - Collagen deposition beneath basement membrane
 - Edema
 - Mast cell activation
 - Inflammatory cell infiltration
 - Neutrophils (especially in sudden-onset, fatal asthma exacerbations)
 - Eosinophils
 - Lymphocytes (TH2-like cells)

- Airway inflammation contributes to airway hyperresponsiveness, airflow limitation, respiratory symptoms, and disease chronicity.

- Airway inflammation also contributes to several forms of airflow limitation, including acute bronchoconstriction, airway edema, mucus plug formation, and airway wall remodeling. These features lead to bronchial obstruction.

- Atopy, the genetic predisposition for the development of an IgE-mediated response to common aeroallergens, is the strongest identifiable predisposing factor for developing asthma.

DIFFERENCES FROM 1991 EXPERT PANEL REPORT

- The critical role of inflammation in asthma has been further substantiated by research. It is recognized that asthma results from complex interactions among inflammatory cells, mediators, and other cells and tissues resident in the airway.

- Evidence indicates that subbasement membrane fibrosis may occur in some patients and that these changes contribute to persistent abnormalities in lung function. The importance of airway remodeling and the development of persistent airflow limitation need further exploration and may have significant implications for the treatment of asthma.
The clinician, physiologist, immunologist, and pathologist all may have different perspectives on asthma based on their individual viewpoints and experience. The merging of these different perspectives into an acceptable definition of asthma has begun to occur and is important for more specific and effective treatment of this disease and for investigation into its pathogenesis. Furthermore, even though this disorder affects virtually the entire spectrum of life, asthma has certain age-specific characteristics and differential diagnosis issues that need to be considered in both its treatment and its etiology.

Based on current knowledge, a working definition of asthma is: Asthma is a chronic inflammatory disorder of the airways in which many cells and cellular elements play a role, in particular, mast cells, eosinophils, T lymphocytes, macrophages, neutrophils, and epithelial cells. In susceptible individuals, this inflammation causes recurrent episodes of wheezing, breathlessness, chest tightness, and coughing, particularly at night or in the early morning. These episodes are usually associated with widespread but variable airflow obstruction that is often reversible either spontaneously or with treatment. The inflammation also causes an associated increase in the existing bronchial hyperresponsiveness to a variety of stimuli (NHLBI 1995). Moreover, recent evidence indicates that subbasement membrane fibrosis may occur in some patients with asthma and that these changes contribute to persistent abnormalities in lung function (Roche 1991).

This working definition and its expanded recognition of key features of asthma have been derived from studying how airway changes in asthma relate to various factors associated with the development of allergic inflammation (e.g., allergens, respiratory viruses, and some occupational exposures, as illustrated in figure 1). From this approach has come a more comprehensive understanding of asthma pathogenesis, the development of persistent airway inflammation, and the profound implications these issues have for the diagnosis, treatment, and potential prevention of asthma.

AIRWAY PATHOLOGY AND ASTHMA

Until recently, information on airway pathology in asthma has come largely from post-mortem examination (Dunnill 1960), which shows that both large and small airways often contain plugs composed of mucus, serum proteins, inflammatory cells, and cellular debris. Viewed microscopically, airways are infiltrated with eosinophils and mononuclear cells, and there is vasodilation and evidence of microvascular leakage and epithelial disruption. The airway smooth muscle is often hypertrophied, which is characterized by new vessel formation, increased numbers of epithelial goblet cells, and deposition of interstitial collagens beneath the epithelium. These features of airway wall remodeling further underscore the importance of chronic, recurrent inflammation in asthma and its effects on the airway. Moreover, these morphologic changes may not be completely reversible. Consequently, research is currently focused on determining whether these changes can be prevented or modified by early diagnosis, avoidance of factors that contribute to asthma severity, and pharmacologic therapy directed at suppressing airway inflammation.

Establishing the relationship between the pathologic changes and the clinical features of asthma has been difficult. Fiberoptic bronchoscopy with lavage and biopsy provide new insight into mechanisms of airway disease and features that link altered lung function to a specific type of mucosal inflammation (Laitinen et al. 1985; Beasley et al. 1989; Jeffery et al. 1989). From such studies, evidence has emerged that mast cells, eosinophils, epithelial cells, macrophages, and activated T cells are key features of the inflammatory process of asthma (Djukanovic et al. 1990), as illustrated in figure 2. These cells can influence airway function through secretion of preformed and newly synthe-
sized mediators that act either directly on the airway or indirectly through neural mechanisms (Emanuel and Howarth 1995). Furthermore, with the use of cellular and molecular biological techniques, subpopulations of T lymphocytes (TH2) have been identified as important cells that may regulate allergic inflammation in the airway through the release of selective cytokines and also establish disease chronicity (Robinson et al. 1992). In addition, constituent cells of the airway, including fibroblasts, endothelial cells, and epithelial cells, also contribute to this process by releasing cytokines and chemokines.

The above factors may be important in both initiating and maintaining the level of airway inflammation (Robinson et al. 1993). It is hypothesized that airway inflammation can be acute, subacute, and chronic. The acute inflammatory response is represented by the early recruitment of cells to the airway. In the subacute phase, recruited and resident cells are activated to cause a more persistent pattern of inflammation. Chronic inflammation is characterized by a persistent level of cell damage and an ongoing repair process, changes that may cause permanent abnormalities in the airway.

Finally, it is recognized that specific adhesion proteins, found in the vascular tissue, lung matrix, and bronchial epithelium, may be critical in directing and anchoring cells in the airway, thus causing the inflammatory changes noted (Albelda 1991). From these studies of the histological features associated with asthma has come evidence of an association between airway inflammation and markers of airway disease severity and an indication that this process is multicellular, redundant, and self-amplifying.

Cell-derived mediators can influence airway smooth muscle tone, modulate vascular permeability, activate neurons, stimulate mucus secretion, and produce characteristic structural changes in the airway (Horwitz and Busse 1995). These mediators can target ciliated airway epithelium to cause injury or disruption. As a consequence, epithelial cells and myofibroblasts—present beneath the epithelium—proliferate and begin to deposit interstitial collagens in the lamina reticularis of the basement membrane. This may explain apparent basement membrane thickening and the irreversible airway changes that may occur in some asthma patients (Roche 1991). Other changes, including hypertrophy and hyperplasia of airway smooth muscle, increases in goblet cell number, enlargement of submucous glands, and remodeling of the airway connective tissue, are
components of asthma that need to be recognized in both its pathogenesis and treatment. This inflammatory process is redundant in its ability to alter airway physiology and architecture.

Child-Onset Asthma

Asthma often begins in childhood, and when it does, it is frequently found in association with atopy, which is the genetic susceptibility to produce IgE directed toward common environmental allergens, including house-dust mites, animal proteins, and fungi (Larsen 1992). With the production of IgE antibodies, mast cells and possibly other airway cells (e.g., lymphocytes) are sensitized and become activated when they encounter specific antigens. Although atopy has been found in 30 to 50 percent of the general population, it is frequently found in the absence of asthma. Nevertheless, atopy is one of the strongest predisposing factors in the development of asthma (Sporik et al. 1990). Furthermore, among infants and young children who have wheezing with viral infections, allergy or family history of allergy is the factor that is most strongly associated with continuing asthma through childhood (Martinez et al. 1995).

Adult-Onset Asthma

Although asthma begins most frequently in childhood and adolescence, it can develop at anytime in life. Adult-onset asthma can occur in a variety of situations. In adult-onset asthma, allergens may continue to play an important role. However, in some adults who develop asthma, IgE antibodies to allergens or a family history of asthma are not detected. These individuals often have coexisting sinusitis, nasal polyps, and sensitivity to aspirin or related nonsteroidal anti-inflammatory drugs. The mechanisms of nonallergic, or intrinsic, asthma are less well established, although the inflammatory process is similar (but not identical) to that seen in atopic asthma (Walker et al. 1992).

Occupational exposure to workplace materials (animal products; biological enzymes; plastic resin; wood dusts, particularly cedar; and metals) (see component 2) can cause airway inflammation, bronchial hyperresponsiveness, and clinical signs of asthma (Chan-Yeung and Malo 1994; Fabbri et al. 1994). Identification of the causative agent and its removal from the workplace can reduce symptoms; however, some individuals will have persistent asthma even though exposure to the causative agent is eliminated. The mechanisms of this form of asthma are not clearly established.

RELATIONSHIP OF AIRWAY INFLAMMATION AND LUNG FUNCTION

Airway Hyperresponsiveness

An important feature of asthma is an exaggerated bronchoconstrictor response to a wide variety of stimuli. The propensity for airways to narrow too easily and too much is a major, but not necessarily unique, feature of asthma. Airway hyperresponsiveness leads to clinical symptoms of wheezing and dyspnea after exposure to allergens, environmental irritants, viral infections, cold air, or exercise. Research indicates that airway hyperresponsiveness is important in the pathogenesis of asthma and that the level of airway responsiveness usually correlates with the clinical severity of asthma.

Airway hyperresponsiveness can be measured by inhalation challenge testing with methacholine or histamine, as well as after exposure to such nonpharmacologic stimuli as hyperventilation with cold dry air, inhalation of hypotonic or hypertonic aerosols, or after exercise (O’Connor et al. 1989). In addition, variability between morning and evening peak expiratory flow (PEF) appears to reflect airway hyperresponsiveness and may serve as a measure of airway hyperresponsiveness, asthma instability, or asthma severity.

The factors contributing to airway inflammation in asthma are multiple and involve a variety of different inflammatory cells (as illustrated in figure 2) (Busse et al. 1993). It is also apparent that asthma is not caused by either a single cell or a single inflammatory mediator but rather results from complex interactions among inflammatory cells, mediators, and other cells and tissues resident in airways. An initial trigger in asthma may be the release of inflammatory mediators from bronchial mast cells, macrophages, T lymphocytes, and epithelial cells. These substances direct the migration and activation of other inflammatory cells, such as eosinophils and neutrophils, to the airway where they cause injury, such as alterations in epithelial integrity, abnormalities in autonomic neural control of airway tone, mucus hypersecretion, change in mucociliary function, and increased airway smooth muscle responsiveness.
The importance of the airway inflammatory response to airway hyperresponsiveness is substantiated by several observations. First, airway markers of inflammation correlate with bronchial hyperresponsiveness. Second, treatment of asthma and modification of airway inflammatory markers not only reduce symptoms but also diminish airway responsiveness. However, the relationship between airway inflammation and airway responsiveness is complex. Some investigations have shown that although anti-inflammatory therapy reduced airway hyperresponsiveness, it did not eradicate it. A small study found that control of airway inflammation did not control bronchial hyperresponsiveness (Lundgren et al. 1988). Thus, factors in addition to inflammation may contribute to airway hyperresponsiveness.

Airflow Obstruction

Airflow limitation in asthma is recurrent and caused by a variety of changes in the airway. These include:

- Acute bronchoconstriction. Allergen-induced acute bronchoconstriction results from an IgE-dependent release of mediators from the mast cell that include histamine, tryptase, leukotrienes, and prostaglandins (Marshall and Bienenstock 1994), which directly contract airway smooth muscle. Aspirin and other nonsteroidal anti-inflammatory drugs (see component 2) can also cause acute airflow obstruction in some patients, and evidence indicates that this non-IgE-dependent response also involves mediator release from airway cells (Fischer et al. 1994). In addition, other stimuli, including exercise, cold air, and irritants, can cause acute airflow obstruction. The mechanisms regulating the airway response to these factors are less well defined, but the intensity of the response appears related to underlying airway inflammation (Busse et al. 1993). There is emerging evidence that stress can play a role in precipitating asthma exacerbations. The mechanisms involved have yet to be established and may include enhanced generation of proinflammatory cytokines (Friedman et al. 1994).

- Airway edema. Airway wall edema, even without smooth muscle contraction or bronchoconstriction, limits airflow in asthma. Increased microvascular permeability and leakage caused by released mediators also contribute to mucosal thickening and swelling of the airway. As a consequence, swelling of the airway wall causes the airway to become more rigid and interferes with airflow.

- Chronic mucus plug formation. In severe intractable asthma, airflow limitation is often persistent. In part, this change may arise as a consequence of mucus secretion and the formation of inspissated mucus plugs.

- Airway remodeling. In some patients with asthma, airflow limitation may be only partially reversible. The etiology of this component is not as well studied as other features of asthma but may relate to structural changes in the airway matrix that may accompany longstanding and severe airway inflammation. There is evidence that a histological feature of asthma in some patients is an alteration in the amount and composition of the extracellular matrix in the airway wall (Djukanovic et al. 1990; Laitinen and Laitinen 1994). As a consequence of these changes, airway obstruction may be persistent and not responsive to treatment. Regulation of this repair and remodeling process is not well established, but both the process of repair and its regulation are likely to be key events in explaining the persistent nature of the disease and limitations to a therapeutic response. Although yet to be fully explored, the importance of airway remodeling and the development of persistent airflow limitation suggest a rationale for early intervention with anti-inflammatory therapy.

RELEVANCE OF CHRONIC AIRWAY INFLAMMATION TO ASTHMA THERAPY

Although inflammation can be used to describe a variety of conditions in various diseases, the inflammatory response in asthma has special features that include eosinophil infiltration, mast cell degranulation, interstitial airway wall injury, and lymphocyte activation. Furthermore, there is evidence that a TH2 lymphocyte cytokine profile (i.e., IL-4 and IL-5) is instrumental in initiating and sustaining the inflammatory process (James and Kay 1995; Ricci et al. 1993) (see figure 2). These observations also have become important in directing treatment in asthma. It is hypothesized that inflammation is an early and persistent component of asthma. As a consequence, therapy to suppress the inflammation must be long term. Furthermore, preliminary evidence suggests that early intervention with anti-inflam-
Pathogenesis and Definition

REFERENCES

Observations into the basic mechanisms of asthma have had tremendous impact and influence on therapy. Studies have shown that improvements in asthma control achieved with high doses of inhaled corticosteroids are associated with improvement in markers of airway inflammation (Laitinen et al. 1992; Djukanovic et al. 1992). These observations indicate that a strong link may exist between features of airway inflammation, bronchial hyperresponsiveness, and asthma symptoms and severity. Furthermore, insight into the mechanisms of asthma with airway inflammation and bronchial wall repair has become a driving factor in designing logical, and hopefully effective, treatment paradigms.

Another area that needs clarification is the classification of compounds as anti-inflammatory in nature. Because many factors contribute to the inflammatory response in asthma, many drugs may fit this category. At present, corticosteroids are the anti-inflammatory compounds that have been demonstrated to modify histopathological features of asthma (Barnes 1995). It may be necessary to evaluate each new compound for the specificity of its “anti-inflammatory” action and determine from appropriate observations whether the compound is indeed anti-inflammatory and what consequences this has on the clinical features of the disease.

COMPONENT 1:
MEASURES OF ASSESSMENT AND MONITORING

Initial Assessment and Diagnosis of Asthma

KEY POINTS

- To establish a diagnosis of asthma, the clinician should determine that:
 - Episodic symptoms of airflow obstruction are present.
 - Airflow obstruction is at least partially reversible.
 - Alternative diagnoses are excluded.

- Recommended mechanisms to establish the diagnosis are:
 - Detailed medical history
 - Physical exam focusing on the upper respiratory tract, chest, and skin
 - Spirometry to demonstrate reversibility

- Additional studies may be considered to:
 - Evaluate alternative diagnoses
 - Identify precipitating factors
 - Assess severity
 - Investigate potential complications

- Recommendations are presented for referral for consultation or care to a specialist in asthma care.

DIFFERENCES FROM 1991 EXPERT PANEL REPORT

- Severity classifications were changed from mild, moderate, and severe to mild intermittent, mild persistent, moderate persistent, and severe persistent.

- Examples of questions to use for diagnosis and initial assessment of asthma were added.

- Information on wheezing in infancy and vocal cord dysfunction was expanded in the differential diagnosis section.

- Criteria for referral were refined with input from specialty and primary care physicians.

- More specific recommendations for measuring peak expiratory flow (PEF) diurnal variation are made.
The guidelines to help establish a diagnosis of asthma presented in this component are based on the opinion of the Expert Panel.

The clinician trying to establish a diagnosis of asthma should determine that:

- Episodic symptoms of airflow obstruction are present.
- Airflow obstruction is at least partially reversible.
- Alternative diagnoses are excluded.

A careful medical history, physical examination, pulmonary function tests, and additional tests will provide the information needed to ensure a correct diagnosis of asthma (see box 1). Each of these methods of assessment is described in this section.

Clinical judgment is needed in conducting the assessment for asthma. Patients with asthma are heterogeneous and present signs and symptoms that vary widely from patient to patient as well as within each patient over time.

Box 1. Key Indicators for Considering a Diagnosis of Asthma

Consider asthma and performing spirometry if any of these indicators are present.* These indicators are not diagnostic by themselves, but the presence of multiple key indicators increases the probability of a diagnosis of asthma. Spirometry is needed to establish a diagnosis of asthma.

- Wheezing—high-pitched whistling sounds when breathing out—especially in children. (Lack of wheezing and a normal chest examination do not exclude asthma.)
- History of any of the following:
 - Cough, worse particularly at night
 - Recurrent wheeze
 - Recurrent difficulty in breathing
 - Recurrent chest tightness
- Reversible airflow limitation and diurnal variation as measured by using a peak flow meter, for example:
 - Peak expiratory flow (PEF) varies 20 percent or more from PEF measurement on arising in the morning (before taking an inhaled short-acting beta2-agonist) to PEF measurement in the early afternoon (after taking an inhaled short-acting beta2-agonist).
- Symptoms occur or worsen in the presence of:
 - Exercise
 - Viral infection
 - Animals with fur or feathers
 - House-dust mites (in mattresses, pillows, upholstered furniture, carpets)
 - Mold
 - Smoke (tobacco, wood)
 - Pollen
 - Changes in weather
 - Strong emotional expression (laughing or crying hard)
 - Airborne chemicals or dusts
 - Menses
- Symptoms occur or worsen at night, awakening the patient.

*Eczema, hay fever, or a family history of asthma or atopic diseases are often associated with asthma, but they are not key indicators.
MEDICAL HISTORY

A detailed medical history of the new patient known or thought to have asthma should address the items listed in figure 1-1. The medical history can help:

- Identify symptoms likely to be due to asthma. See figure 1-2 for sample questions.
- Support the likelihood of asthma (e.g., patterns of symptoms, family history of asthma or allergies).
- Assess the severity of asthma (e.g., symptom frequency and severity, exercise tolerance, hospitalizations, current medications). See figure 1-3 for a description of the levels of asthma severity.
- Identify possible precipitating factors (e.g., viral respiratory infections; exposure at home, work, day care, or school to inhalant allergens or irritants such as tobacco smoke). See component 2, Control of Factors Contributing to Asthma Severity, for more details.

PHYSICAL EXAMINATION

The upper respiratory tract, chest, and skin are the focus of the physical examination for asthma. Physical findings that increase the probability of asthma include:

- Hyperexpansion of the thorax, especially in children; use of accessory muscles; appearance of hunched shoulders; and chest deformity.
- Sounds of wheezing during normal breathing, or a prolonged phase of forced exhalation (typical of airflow obstruction). Wheezing during forced exhalation is not a reliable indicator of airflow limitation. In mild intermittent asthma, or between exacerbations, wheezing may be absent.
- Increased nasal secretion, mucosal swelling, and nasal polyps.
- A topic dermatitis/eczema or any other manifestation of an allergic skin condition.

PULMONARY FUNCTION TESTING (SPIROMETRY)

Spirometry measurements (FEV₁, FVC, FEV₁/FVC) before and after the patient inhales a short-acting bronchodilator should be undertaken for patients in whom the diagnosis of asthma is being considered (Bye et al. 1992; Li and O’Connell 1996). This helps determine whether there is airflow obstruction and whether it is reversible over the short term (see box 2 for further information). Spirometry is generally valuable in children over age 4; however, some children cannot conduct the maneuver adequately until after age 7.

Spirometry typically measures the maximal volume of air forcibly exhaled from the point of maximal inhalation (forced vital capacity, FVC) and the volume of air exhaled during the first second of the FVC (forced expiratory volume in 1 second, FEV₁). Airflow obstruction is indicated by reduced FEV₁ and FEV₁/FVC values relative to reference or predicted values. Significant reversibility is indicated by an increase of ≥12 percent and 200 mL in FEV₁ after inhaling a short-acting bronchodilator (American Thoracic Society 1991) (see figure 1-4 for example of a spirometric curve for this test). A 2- to 3-week trial of oral corticosteroid therapy may be required to demonstrate reversibility. The spirometry measures that establish reversibility may not indicate the patient’s best lung function.

Abnormalities of lung function are categorized as restrictive and obstructive defects. A reduced ratio of FEV₁/FVC (i.e., < 65 percent) indicates obstruction to the flow of air from the lungs, whereas a reduced FVC with a normal FEV₁/FVC ratio suggests a restrictive pattern. The severity of abnormality of spirometric measurements is evaluated by comparison of the patient’s results with reference values based on age, height, sex, and race (American Thoracic Society 1991).

Although asthma is typically associated with an obstructive impairment that is reversible, neither this finding nor any other single test or measure is adequate to diagnose asthma. Many diseases are associated with this pattern of abnormality. The patient’s pattern of symptoms (along with other information from the patient’s medical history) and exclusion of other possible diagnoses also are needed to establish a diagnosis of asthma. In severe cases, the FVC may also be reduced, due to trapping of air in the lungs.
FIGURE 1-1. SUGGESTED ITEMS FOR MEDICAL HISTORY*

A detailed medical history of the new patient who is known or thought to have asthma should address the following items:

1. **Symptoms**
 - Cough
 - Wheezing
 - Shortness of breath
 - Chest tightness
 - Sputum production

2. **Pattern of symptoms**
 - Perennial, seasonal, or both
 - Continual, episodic, or both
 - Onset, duration, frequency (number of days or nights, per week or month)
 - Diurnal variations, especially nocturnal and on awakening in early morning

3. **Precipitating and/or aggravating factors**
 - Viral respiratory infections
 - Environmental allergens, indoor (e.g., mold, house-dust mite, cockroach, animal dander or secretory products) and outdoor (e.g., pollen)
 - Exercise
 - Occupational chemicals or allergens
 - Environmental change (e.g., moving to new home; going on vacation; and/or alterations in workplace, work processes, or materials used)
 - Irritants (e.g., tobacco smoke, strong odors, air pollutants, occupational chemicals, dusts and particulates, vapors, gases, and aerosols)
 - Emotional expressions (e.g., fear, anger, frustration, hard crying or laughing)
 - Drugs (e.g., aspirin; beta-blockers, including eye drops; nonsteroidal anti-inflammatory drugs; others)
 - Food, food additives, and preservatives (e.g., sulfites)
 - Changes in weather, exposure to cold air
 - Endocrine factors (e.g., menses, pregnancy, thyroid disease)

4. **Development of disease and treatment**
 - Age of onset and diagnosis
 - History of early-life injury to airways (e.g., bronchopulmonary dysplasia, pneumonia, parental smoking)
 - Progress of disease (better or worse)
 - Present management and response, including plans for managing exacerbations
 - Need for oral corticosteroids and frequency of use
 - Comorbid conditions

5. **Family history**
 - History of asthma, allergy, sinusitis, rhinitis, or nasal polyps in close relatives

6. **Social history**
 - Characteristics of home including age, location, cooling and heating system, wood-burning stove, humidifier, carpeting over concrete, presence of molds or mildew, characteristics of rooms where patient spends time (e.g., bedroom and living room with attention to bedding, floor covering, stuffed furniture)
 - Smoking (patient and others in home or day care)
 - Day care, workplace, and school characteristics that may interfere with adherence
 - Social factors that interfere with adherence, such as substance abuse
 - Social support/social networks
 - Level of education completed
 - Employment (if employed, characteristics of work environment)

7. **Profile of typical exacerbation**
 - Usual prodromal signs and symptoms
 - Usual patterns and management (what works?)

8. **Impact of asthma on patient and family**
 - Episodes of unscheduled care (emergency department, urgent care, hospitalization)
 - Life-threatening exacerbations (e.g., intubation, intensive care unit admission)
 - Number of days missed from school/work
 - Limitation of activity, especially sports and strenuous work
 - History of nocturnal awakening
 - Effect on growth, development, behavior, school or work performance, and lifestyle
 - Impact on family routines, activities, or dynamics
 - Economic impact

9. **Assessment of patient’s and family’s perceptions of disease**
 - Patient, parental, and spouse’s or partner’s knowledge of asthma and belief in the chronicity of asthma and in the efficacy of treatment
 - Patient perception and beliefs regarding use and long-term effects of medications
 - Ability of patient and parents, spouse, or partner to cope with disease
 - Level of family support and patient’s and parents’, spouse’s, or partner’s capacity to recognize severity of an exacerbation
 - Economic resources
 - Sociocultural beliefs

*This list does not represent a standardized assessment or diagnostic instrument. The validity and reliability of this list have not been assessed.
Office-based physicians who care for asthma patients should have access to spirometry, which is useful in both diagnosis and periodic monitoring. Spirometry should be performed using equipment and techniques that meet standards developed by the American Thoracic Society (1995). Correct technique, calibration methods, and maintenance of equipment are necessary to achieve consistently accurate test results. Maximal patient effort in performing the test is required to avoid important errors in diagnosis and management.

Training courses in the performance of spirometry that are approved by the National Institute for Occupational Safety and Health are available (800-35NIOSH). When office spirometry shows severe abnormalities, or if questions arise regarding test accuracy or interpretation, the Expert Panel recommends further assessment in a specialized pulmonary function laboratory.

ADDITIONAL STUDIES

Even though additional studies are not routine, they may be considered. No one test or set of tests is appropriate for every patient. However, the following procedures may be useful when considering alternative diagnoses, identifying precipitating factors, assessing severity, and investigating potential complications:

- A dditional pulmonary function studies (e.g., lung volumes and inspiratory and expiratory flow volume loops) may be indicated, especially if there are questions about coexisting chronic obstructive pulmonary disease, a restrictive defect, or possible central airway obstruction. A diffusing capacity test is helpful in differentiating between asthma and emphysema in patients at risk for both illnesses, such as smokers and older patients.

- A ssessment of diurnal variation in peak expiratory flow over 1 to 2 weeks is recommended when patients have asthma symptoms but normal spirometry (Enright et al. 1994). PEF is generally lowest on
Figure 1-3. Classification of Asthma Severity

Clinical Features Before Treatment*

<table>
<thead>
<tr>
<th>Symptom Category</th>
<th>Symptom Description</th>
<th>Nighttime Symptoms</th>
<th>Lung Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>STEP 4</td>
<td>Severe</td>
<td></td>
<td>STEP 4</td>
</tr>
<tr>
<td></td>
<td>■ Continual symptoms</td>
<td>Frequent</td>
<td>■ FEV<sub>1</sub> or PEF ≤ 60% predicted</td>
</tr>
<tr>
<td></td>
<td>■ Limited physical activity</td>
<td></td>
<td>■ PEF variability > 30%</td>
</tr>
<tr>
<td></td>
<td>■ Frequent exacerbations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STEP 3</td>
<td>Moderate</td>
<td>> 1 time a week</td>
<td>STEP 3</td>
</tr>
<tr>
<td></td>
<td>■ Daily symptoms</td>
<td></td>
<td>■ FEV<sub>1</sub> or PEF > 60% -< 80% predicted</td>
</tr>
<tr>
<td></td>
<td>■ Daily use of inhaled short-acting beta<sub>2</sub>-agonist</td>
<td></td>
<td>■ PEF variability > 30%</td>
</tr>
<tr>
<td></td>
<td>■ Exacerbations affect activity</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>■ Exacerbations ≥ 2 times a week; may last days</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STEP 2</td>
<td>Mild</td>
<td>> 2 times a month</td>
<td>STEP 2</td>
</tr>
<tr>
<td></td>
<td>■ Symptoms > 2 times a week but < 1 time a day</td>
<td></td>
<td>■ FEV<sub>1</sub> or PEF ≥ 80% predicted</td>
</tr>
<tr>
<td></td>
<td>■ Exacerbations may affect activity</td>
<td></td>
<td>■ PEF variability 20-30%</td>
</tr>
<tr>
<td>STEP 1</td>
<td>Mild</td>
<td>≤ 2 times a month</td>
<td>STEP 1</td>
</tr>
<tr>
<td></td>
<td>■ Symptoms ≤ 2 times a week</td>
<td></td>
<td>■ FEV<sub>1</sub> or PEF ≥ 80% predicted</td>
</tr>
<tr>
<td></td>
<td>■ Asymptomatic and normal PEF between exacerbations</td>
<td></td>
<td>■ PEF variability < 20%</td>
</tr>
<tr>
<td></td>
<td>■ Exacerbations brief (from a few hours to a few days); intensity may vary</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* The presence of one of the features of severity is sufficient to place a patient in that category. An individual should be assigned to the most severe grade in which any feature occurs. The characteristics noted in this figure are general and may overlap because asthma is highly variable. Furthermore, an individual’s classification may change over time.

** Patients at any level of severity can have mild, moderate, or severe exacerbations. Some patients with intermittent asthma experience severe and life-threatening exacerbations separated by long periods of normal lung function and no symptoms.

Box 2. Importance of Spirometry in Asthma Diagnosis

Objective assessments of pulmonary function are necessary for the diagnosis of asthma because medical history and physical examination are not reliable means of excluding other diagnoses or of characterizing the status of lung impairment. Although physicians generally seem able to identify a lung abnormality as obstructive (Russell et al. 1986), they have a poor ability to assess the degree of airflow obstruction (Shim and Williams 1980) or to predict whether the obstruction is reversible (Russell et al. 1986).

For diagnostic purposes, spirometry is generally recommended over measurements by a peak flow meter in the clinician’s office because there is wide variability even in the best published peak expiratory flow reference values. Reference values need to be specific to each brand of peak flow meter, and such normative brand-specific values currently are not available for most brands. Peak flow meters are designed as monitoring, not as diagnostic, tools in the office (see component 1-Periodic Assessment and Monitoring). However, peak flow monitoring can establish peak flow variability and thus aid in the determination of asthma severity when patients have asthma symptoms and normal spirometry (see Additional Studies section, page 19).
first awakening and highest several hours before the midpoint of the waking day (e.g., between noon and 2 p.m.) (Quackenboss et al. 1991). Optimally, PEF should be measured close to those two times, before taking an inhaled short-acting beta2-agonist in the morning and after taking one in the afternoon. A 20 percent difference between morning and afternoon measurements suggests asthma. Measuring PEF on waking and in the evening may be more practical and feasible, but values will tend to underestimate the actual diurnal variation.

- Bronchoprovocation with methacholine, histamine, or exercise challenge may be useful when asthma is suspected and spirometry is normal or near normal.

For safety reasons, bronchoprovocation testing should be carried out by a trained individual in an appropriate facility and is not generally recommended if the FEV1 is <65 percent predicted. A negative bronchoprovocation may be helpful to rule out asthma.

- Chest x ray may be needed to exclude other diagnoses.
- Allergy testing (see component 2).
- Evaluation of the nose for nasal polyps and sinuses for sinus disease.
- Evaluation for gastroesophageal reflux (Harding and Richter 1992) (see component 2).
The usefulness of measurements of biomarkers of inflammation (e.g., total and differential cell count and mediator assays) in sputum, blood, or urine as aids to the diagnosis of asthma is currently being evaluated in clinical research trials.

DIFFERENTIAL DIAGNOSIS OF ASTHMA

Recurrent episodes of cough and wheezing are almost always due to asthma in both children and adults. Underdiagnosis of asthma is a frequent problem, especially in children who wheeze when they have respiratory infections. These children are often labeled as having bronchitis, bronchiolitis, or pneumonia even though the signs and symptoms are most compatible with a diagnosis of asthma. However, the clinician needs to be aware of other causes of airway obstruction leading to wheezing (see figure 1-5).

There are two general patterns of wheezing in infancy: nonallergic and allergic. Nonallergic infants wheeze when they have an acute upper respiratory viral infection, but as their airways grow larger in the preschool years the wheezing disappears. Allergic infants also wheeze with viral infections, but they are more likely to have asthma that will continue throughout childhood. This group may have eczema, allergic rhinitis, or food allergy as other manifestations of allergy. Both groups may benefit from asthma treatment (see Infants and Young Children section, page 94, in component 3-Managing Asthma Long Term).

Vocal cord dysfunction often mimics asthma. Patients with vocal cord dysfunction can present with recurrent severe shortness of breath and wheezing. Vocal cord dysfunction may even cause alveolar hypoventilation, with increases in PCO2 that prompt urgent intubation and mechanical ventilation. Vocal cord dysfunction that mimics asthma is more common in young adults with psychological disorders. It should be suspected when physical examination reveals a monophonic wheeze heard loudest over the glottis. Further evaluation by flow-volume curve revealing inspiratory flow limitation strongly supports the diagnosis of vocal cord dysfunction. Definitive diagnosis—and exclusion of organic causes of vocal cord narrowing—requires direct visualization of the vocal cords. Treatment with speech therapy that teaches techniques for relaxed throat breathing is often effective (Newman et al. 1995; Bucca et al. 1995; Christopher et al. 1983).
GENERAL GUIDELINES FOR REFERRAL TO AN ASTHMA SPECIALIST

Criteria for the referral of an asthma patient have been developed (Spector and Nicklas 1995; Shuttari 1995). Based on the opinion of the Expert Panel, referral for consultation or care to a specialist in asthma care (usually, a fellowship-trained allergist or pulmonologist; occasionally, other physicians with expertise in asthma management developed through additional training and experience) is recommended when:

- Patient has had a life-threatening asthma exacerbation.

- Patient is not meeting the goals of asthma therapy (see component 1-Periodic Assessment and Monitoring) after 3 to 6 months of treatment. An earlier referral or consultation is appropriate if the physician concludes that the patient is unresponsive to therapy.

- Signs and symptoms are atypical or there are problems in differential diagnosis.

- Other conditions complicate asthma or its diagnosis (e.g., sinusitis, nasal polyps, aspergillosis, severe rhinitis, vocal cord dysfunction, gastroesophageal reflux, chronic obstructive pulmonary disease).

- Additional diagnostic testing is indicated (e.g., allergy skin testing, rhinoscopy, complete pulmonary function studies, provocative challenge, bronchoscopy).

- Patient requires additional education and guidance on complications of therapy, problems with adherence, or allergen avoidance.

- Patient is being considered for immunotherapy.

- Patient has severe persistent asthma, requiring step 4 care (referral may be considered for patients requiring step 3 care; see component 3-Managing Asthma Long Term).

- Patient requires continuous oral corticosteroid therapy or high-dose inhaled corticosteroids or has required more than two bursts of oral corticosteroids in 1 year.

- Patient is under age 3 and requires step 3 or 4 care (see component 3-Managing Asthma Long Term). When patient is under age 3 and requires step 2 care or initiation of daily long-term therapy, referral should be considered.

- Patient requires confirmation of a history that suggests that an occupational or environmental inhalant or ingested substance is provoking or contributing to asthma. Depending on the complexities of diagnosis, treatment, or the intervention required in the work environment, it may be appropriate in some cases for the specialist to manage the patient over a period of time or comanage with the primary care provider.

In addition, patients with significant psychiatric, psychosocial, or family problems that interfere with their asthma therapy may need referral to an appropriate mental health professional for counseling or treatment. These characteristics have been shown to interfere with patient’s ability to adhere to treatment (Strunk 1987; Strunk et al. 1985)

REFERENCES

Component 1: Measures of Assessment and Monitoring

Periodic Assessment and Monitoring: Essential for Asthma Management

KEY POINTS

- The goals of therapy are to:
 - Prevent chronic and troublesome symptoms (e.g., coughing or breathlessness in the night, in the early morning, or after exertion)
 - Maintain (near) "normal" pulmonary function
 - Maintain normal activity levels (including exercise and other physical activity)
 - Prevent recurrent exacerbations of asthma and minimize the need for emergency department visits or hospitalizations
 - Provide optimal pharmacotherapy with least amount of adverse effects
 - Meet patients’ and families’ expectations of and satisfaction with asthma care

- Periodic assessments and ongoing monitoring of asthma are recommended to determine if the goals of therapy are being met. Measurements of the following are recommended:
 - Signs and symptoms of asthma
 - Pulmonary function
 - Quality of life/functional status
 - History of asthma exacerbations
 - Pharmacotherapy
 - Patient-provider communication and patient satisfaction

- Clinician assessment and patient self-assessment are the primary methods for monitoring asthma. Population-based assessment is beginning to be used by managed care organizations.

- Spirometry tests are recommended (1) at the time of initial assessment, (2) after treatment is initiated and symptoms and PEF have stabilized, and (3) at least every 1 to 2 years.

- Patients should be given a written action plan based on signs and symptoms and/or PEF; this is especially important for patients with moderate-to-severe persistent asthma or a history of severe exacerbations.

- Patients should be trained to recognize symptom patterns indicating inadequate asthma control and the need for additional therapy.

- Recommendations on how and when to do peak flow monitoring are presented.

DIFFERENCES FROM 1991 EXPERT PANEL REPORT

- The new report includes an additional goal of therapy (meet patients’ and families’ expectations of and satisfaction with asthma care) that was not listed in the 1991 report.

- Periodic assessment of six domains of patient health that correspond with the goals of asthma therapy are now recommended, including signs and symptoms, pulmonary function, quality of life, history of exacerbations, pharmacotherapy, and patient-provider communication and patient satisfaction.

- The following changes affecting peak flow monitoring have been made:
 - The recommendation for peak flow monitoring was changed from twice daily to morning. If the morning reading is less than 80 percent of personal best PEF, more frequent peak flow monitoring may be desired.
GOALS OF THERAPY

The purpose of periodic assessment and ongoing monitoring is to determine whether the goals of asthma therapy are being achieved. The goals of therapy are as follows:

- Prevent chronic and troublesome symptoms (e.g., coughing or breathlessness in the night, in the early morning, or after exertion)
- Maintain (near) “normal” pulmonary function
- Maintain normal activity levels (including exercise and other physical activity)
- Prevent recurrent exacerbations of asthma and minimize the need for emergency department visits or hospitalizations
- Provide optimal pharmacotherapy with minimal or no adverse effects
- Meet patients’ and families’ expectations of and satisfaction with asthma care

ASSESSMENT MEASURES

The Expert Panel recommends ongoing monitoring in the six areas listed below to determine whether the goals of therapy are being met. The assessment measures for monitoring these six areas are described in this section and are recommended based on the opinion of the Expert Panel.

- Monitoring signs and symptoms of asthma
- Monitoring pulmonary function
 - Spirometry
 - Peak flow monitoring
- Monitoring quality of life/functional status
- Monitoring history of asthma exacerbations
- Monitoring pharmacotherapy
- Monitoring patient-provider communication and patient satisfaction

Monitoring Signs and Symptoms of Asthma

Every patient with asthma should be taught to recognize symptom patterns that indicate inadequate asthma control (see Patient Self-Assessment section, page 38, and component 4). Symptom monitoring should be used as a means to determine the need for intervention, including additional medication, in the context of an action plan (see figure 4-5).

Symptoms and clinical signs of asthma should be assessed at each health care visit through physical examination and appropriate questions. This is crucial to optimal asthma care. A description of the important elements of an asthma-related physical examination can be found in component 1-Initial Assessment and Diagnosis, which also discusses the variability in the types of symptoms associated with asthma.

Detailed patient recall of symptoms decreases over time; therefore, the Expert Panel recommends that any detailed symptoms history be based on a short (2 to 4 weeks) recall period. For example, the clinician may choose to assess over a 2-week, 3-week, or 4-week recall period. Symptom assessment for periods longer than 4 weeks should reflect more global symptom assessment, such as inquiring whether the patient’s asthma has been better or worse since the last visit and inquiring whether the patient has encountered any particular difficulties during specific seasons or events. Figure 1-6 provides an example of a set of questions that can be used to characterize both global (long-term recall) and recent (short-term recall) asthma symptoms.

In addition, any assessment of the patient’s symptom history should include at least three key symptom expressions:

- Daytime asthma symptoms (including wheezing, cough, chest tightness, or shortness of breath)
Monitoring Signs and Symptoms

<table>
<thead>
<tr>
<th>Global assessment</th>
<th>“Has your asthma been better or worse since your last visit?”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recent assessment</td>
<td>“In the past 2 weeks, how many days have you:</td>
</tr>
<tr>
<td></td>
<td>▪ Had problems with coughing, wheezing, shortness of breath, or chest tightness during the day?"</td>
</tr>
<tr>
<td></td>
<td>▪ Awakened at night from sleep because of coughing or other asthma symptoms?"</td>
</tr>
<tr>
<td></td>
<td>▪ Awakened in the morning with asthma symptoms that did not improve within 15 minutes of inhaling a short-acting inhaled beta₂-agonist?"</td>
</tr>
<tr>
<td></td>
<td>▪ Had symptoms while exercising or playing?"</td>
</tr>
</tbody>
</table>

Monitoring Pulmonary Function

Lung Function

“W hat is the highest and lowest your peak flow has been since your last visit?”

“W hat is your peak flow since your last visit (80 percent of personal best)?”

“W hat did you do when this occurred?”

Peak Flow Monitoring Technique

“P lease show me how you measure your peak flow.”

“W hen do you usually measure your peak flow?”

Monitoring Quality of Life/Functional Status

“S ince your last visit, how many days has your asthma caused you to:
- Miss work or school?”
- Reduce your activities?”
- (For caregivers) Change your activity because of your child’s asthma?”

“S ince your last visit, have you had any unscheduled or emergency department visits or hospital stays?”

Monitoring Exacerbation History

“S ince your last visit, have you had any episodes/times when your asthma symptoms were a lot worse than usual?”

If yes - “W hat do you think caused the symptoms to get worse?”

If yes - “W hat did you do to control the symptoms?”

“H ave there been any changes in your home or work environment (e.g., new smokers or pets)?”

Monitoring Pharmacotherapy

Medications

“W hat medications are you taking?”

“H ow often do you take each medication?”

“H ow much do you take each time?”

“H ave you missed or stopped taking any regular doses of your medications for any reason?”

“H ave you had trouble filling your prescriptions (e.g., for financial reasons, not on formulary)?”

“H ow many puffs of your short-acting inhaled beta₂-agonist (quick-relief medicine) do you use per day?”

“H ow many [name short-acting inhaled beta₂-agonist] inhalers [or pumps] have you been through in the past month?”

“H ave you tried any other medicines or remedies?”

Side Effects

▪ Shakiness, nervousness, bad taste, sore throat, cough, upset stomach

Inhaler Technique

“P lease show me how you use your inhaler.”

Monitoring Patient-Provider Communication and Patient Satisfaction

“W hat questions have you had about your asthma daily self-management plan and action plan?”

“W hat problems have you had following your daily self-management plan? Your action plan?”

“H as anything prevented you from getting the treatment you need for your asthma from me or anyone else?”

“H ave the costs of your asthma treatment interfered with your ability to get asthma care?”

“H ow satisfied are you with your asthma care?”

“H ow can we improve your asthma care?”

“L et’s review some important information:”

▪ “W hen should you increase your medications? W hich medication(s)?”

▪ “W hen should you call me [your doctor or nurse practitioner]? D o you know the after-hours phone number?”

▪ “If you can’t reach me, what emergency department would you go to?”

* These questions are examples and do not represent a standardized assessment instrument. The validity and reliability of these questions have not been assessed.
Nocturnal awakening as a result of asthma symptoms

Asthma symptoms early in the morning that are not improved 15 minutes after inhaling a short-acting beta₂-agonist

Moni toring Pulmonary Function

In addition to assessing symptoms, it is also important to periodically assess pulmonary function. The main methods are spirometry and peak flow monitoring.

Regular monitoring of pulmonary function is particularly important for asthma patients who do not perceive their symptoms until airflow obstruction is severe. Currently, there is no readily available method of detecting the “poor perceivers.” The literature reports that patients who had a near-fatal asthma exacerbation, as well as older patients, are more likely to have poor perception of airflow obstruction (Kikuchi et al. 1994; Connolly et al. 1992).

Spirometry

The Expert Panel recommends that spirometry tests be done (1) at the time of initial assessment; (2) after treatment is initiated and symptoms and peak expiratory flow (PEF) have stabilized, to document attainment of (near) "normal" airway function; and (3) at least every 1 to 2 years to assess the maintenance of airway function.

Spirometry may be indicated more often than every 1 to 2 years, depending on the clinical severity and response to management. Spirometry with measurement of the FEV₁ is also useful:

- As a periodic (e.g., yearly) check on the accuracy of the peak flow meter (Miles et al. 1995)
- When more precision is desired in measuring lung function (e.g., when evaluating response to bronchodilator or nonspecific airway responsiveness or when assessing response to a “step down” in pharmacotherapy)
- When PEF results are unreliable (e.g., in some very young or elderly patients or when neuromuscular or orthopedic problems are present) and the physician needs the quality checks that are available only with spirometry (Hankinson and Wagner 1993).

For routine monitoring at most outpatient visits, measurement of PEF with a peak flow meter is generally a sufficient assessment of pulmonary function, particularly in mild intermittent, mild persistent, and moderate persistent asthma.

Peak Flow Monitoring

Peak expiratory flow provides a simple, quantitative, and reproducible measure of the existence and severity of airflow obstruction. PEF can be measured with inexpensive and portable peak flow meters. It must be stressed that peak flow meters are designed as tools for ongoing monitoring, not diagnosis. Because the measurement of PEF is dependent on effort and technique, patients need instructions, demonstrations, and frequent reviews of technique (see figure 1-7, the patient handout How To Use Your Peak Flow Meter).

Peak flow monitoring can be used for short-term monitoring, managing exacerbations, and daily long-term monitoring. When used in these ways, the patient’s measured personal best is the most appropriate reference value. Four studies (Woolcock et al. 1988; Ignacio-Garcia and Gonzalez-Santos 1995; Lahdensuo et al. 1996; Beasley et al. 1989) have found that comprehensive asthma self-management programs, in which peak flow monitoring was a component, achieved significant improvements in health outcomes. Thus far, the few studies that have isolated a comparison of peak flow and symptom monitoring have not been sufficient to assess the relative contributions of each to asthma management (see box 1, Peak Flow Monitoring Literature Review). The literature does suggest which patients may benefit most from peak flow monitoring. The Expert Panel concludes, on the basis of this literature and the Panel’s opinion, that:

- Patients with moderate-to-severe persistent asthma should learn how to monitor their PEF and have a peak flow meter at home.

- Peak flow monitoring during exacerbations of asthma is recommended for patients with moderate-to-severe persistent asthma to:
 - Determine severity of the exacerbation
 - Guide therapeutic decisions (see component 3-Managing Exacerbations and figure 4-5) in the home, clinician’s office, or emergency department
How To Use Your Peak Flow Meter

A peak flow meter is a device that measures how well air moves out of your lungs. During an asthma episode, the airways of the lungs usually begin to narrow slowly. The peak flow meter may tell you if there is narrowing in the airways hours—sometimes even days—before you have any asthma symptoms.

By taking your medicine(s) early (before symptoms), you may be able to stop the episode quickly and avoid a severe asthma episode. Peak flow meters are used to check your asthma the way that blood pressure cuffs are used to check high blood pressure.

The peak flow meter also can be used to help you and your doctor:

- Learn what makes your asthma worse
- Decide if your treatment plan is working well
- Decide when to add or stop medicine
- Decide when to seek emergency care

A peak flow meter is most helpful for patients who must take asthma medicine daily. Patients age 5 and older are usually able to use a peak flow meter. Ask your doctor or nurse to show you how to use a peak flow meter.

How To Use Your Peak Flow Meter

- Do the following five steps with your peak flow meter:
 1. Move the indicator to the bottom of the numbered scale.
 2. Stand up.
 3. Take a deep breath, filling your lungs completely.
 4. Place the mouthpiece in your mouth and close your lips around it. Do not put your tongue inside the hole.
 5. Blow out as hard and fast as you can in a single blow.

- Write down the number you get. But if you cough or make a mistake, don’t write down the number. Do it over again.

- Repeat steps 1 through 5 two more times and write down the best of the three blows in your asthma diary.

Find Your Personal Best Peak Flow Number

Your personal best peak flow number is the highest peak flow number you can achieve over a 2- to 3-week period when your asthma is under good control. Good control is when you feel good and do not have any asthma symptoms.

Each patient's asthma is different, and your best peak flow may be higher or lower than the peak flow of someone of your same height, weight, and sex. This means that it is important for you to find your own personal best peak flow number. Your treatment plan needs to be based on your own personal best peak flow number.

To find out your personal best peak flow number, take peak flow readings:

- At least twice a day for 2 to 3 weeks.
- When you wake up and between noon and 2:00 p.m.
- Before and after you take your short-acting inhaled beta2-agonist for quick relief, if you take this medicine.
- As instructed by your doctor.
The Peak Flow Zone System

Once you know your personal best peak flow number, your doctor will give you the numbers that tell you what to do. The peak flow numbers are put into zones that are set up like a traffic light. This will help you know what to do when your peak flow number changes. For example:

Green Zone (more than ___ L/min [80 percent of your personal best number]) signals good control. No asthma symptoms are present. Take your medicines as usual.

Yellow Zone (between ___ L/min and ___ L/min [50 to less than 80 percent of your personal best number]) signals caution. You must take a short-acting inhaled beta2-agonist right away. Also, your asthma may not be under good day-to-day control. Ask your doctor if you need to change or increase your daily medicines.

Red Zone (below ___ L/min [50 percent of your personal best number]) signals a medical alert. You must take a short-acting inhaled beta2-agonist (quick-relief medicine) right away. Call your doctor or emergency room and ask what to do, or go directly to the hospital emergency room.

Record your personal best peak flow number and peak flow zones in your asthma diary.

Use the Diary To Keep Track of Your Peak Flow

Measure your peak flow when you wake up, before taking medicine. Write down your peak flow number in the diary every day, or as instructed by your doctor.

Actions To Take When Peak Flow Numbers Change

- PEF goes between ___ L/min and ___ L/min (50 to less than 80 percent of personal best, yellow zone).
 ACTION: Take a short-acting inhaled beta2-agonist (quick-relief medicine) as prescribed by your doctor.

- PEF increases 20 percent or more when measured before and after taking a short-acting inhaled beta2-agonist (quick-relief medicine).
 ACTION: Talk to your doctor about adding more medicine to control your asthma better (for example, an anti-inflammatory medication).

Seven intervention studies on the use of daily peak flow monitoring for asthma management were identified, six through a MEDLINE search from 1980 to 1995 and reviews of reference lists and one from the 1996 literature.

Three randomized controlled trials (Woolcock et al. 1988, N = 24; Ignacio-Garcia and Gonzalez-Santos 1995, N = 70; Lahdensuo et al. 1996, N = 115) and an uncontrolled pretest/posttest study (Beasley et al. 1989, N = 36) tested comprehensive asthma interventions that included self-management medication plans, medications, education, and peak flow monitoring. These studies reported significant improvements in lung function, symptoms, and medication use after 6 months (Beasley et al. 1989; Ignacio-Garcia and Gonzalez-Santos 1995) and 18 months (Woolcock et al. 1988). However, these studies could not determine the relative importance of peak flow monitoring to the effectiveness of the comprehensive asthma intervention.

Three randomized controlled trials compared the use of daily peak flow monitoring with symptom monitoring (Charlton et al. 1990, N = 115 adults and children) or usual care (Grampian Asthma Study 1994, N = 569 adults; Jones et al. 1995, N = 72 adults). These studies found no significant differences between the experimental and control groups in the outcomes measured: lung function, symptoms, quality of life, hospitalizations, medication use, and medical consultations. However, one of these studies involved patients with mild asthma (Jones et al. 1995), a population not expected to benefit as much from peak flow monitoring.

Almost all the peak flow monitoring studies available had study design and execution problems (e.g., selection bias, unequal control and experimental groups, small sample sizes, high loss to followup). More studies of daily long-term peak flow monitoring among patients with moderate and severe persistent asthma are urgently needed. Nonetheless, some issues suggested by the few studies available warrant consideration:

- Among patients with mild intermittent or mild persistent asthma, there appears to be no significant advantage of peak flow monitoring over usual care without peak flow monitoring (Jones et al. 1995).
- Patients with moderate-to-severe persistent asthma or unstable asthma are more likely to benefit from long-term daily peak flow monitoring. For example, the Grampian study authors conducted an observational study of 89 patients disqualified from the original study because their asthma was too severe and found that those who used peak flow meters took oral corticosteroids more often (action plan told patients to take oral corticosteroids at specific PEF levels) and had significantly fewer days of limited activity than those who did not use a peak flow meter.
- Short-term daily peak flow monitoring is helpful for assessing the severity of a patient's asthma and evaluating response to chronic maintenance therapy.
- Short-term peak flow monitoring is also helpful during exacerbations for assessing the severity of acute airflow obstruction and evaluating the patient's response to bronchodilator therapy. Janson-Bjerklie and Shnell (1988) found that patients used medications less frequently when they monitored PEF during symptomatic periods.
- Additional studies are needed to clarify the role of long-term daily peak flow monitoring in detecting early signs of deterioration, especially for patients with moderate-to-severe persistent asthma. Studies have found that 15 percent of asthma patients (Rubinfeld and Pain 1976), 24 to 27 percent of elderly patients (Connolly et al. 1992), and patients who had near-fatal asthma exacerbations (Kikuchi et al. 1994) could not perceive significant reductions in FEV₁ provoked by methacholine challenge. A recent study in a general community setting found that for 60 percent of patients, their PEF did not correlate with the perception of how well their asthma was controlled (i.e., patients felt their asthma was better than the PEF readings indicated) (Kendrick et al. 1993). However, symptom monitoring and peak flow monitoring were found to be equally effective in identifying exacerbations that were confirmed by FEV₁ measurements in a randomized controlled, crossover study (Malo et al. 1993). Although peak flow monitoring for children may be...
helpful, one study points out that the variability of individual PEF measurements between different brands of peak flow meters and in comparison to spirometry warrants caution about teaching how to use peak flow meters and interpret the measurements. Emphasis should be placed on observing differences between readings over time rather than on a single reading (Sly et al. 1994).

- Patient preferences regarding peak flow monitoring vary. One study found that most patients felt that peak flow monitoring was helpful (Jones et al. 1995), another found that most patients felt symptom monitoring was helpful (Garrett et al. 1994), and another study found that most patients felt that both forms of monitoring combined were helpful (D’Souza et al. 1994). In an observational study of children attending a community clinic, 70 percent of the parents of children using peak flow monitoring reported it to be very useful, especially for judging the severity of an exacerbation and the child’s response to inhaled short-acting beta₂-agonist (Lloyd and Ali 1992).

- Linking peak flow monitoring to specific asthma management plans and providing appropriate instruction and feedback to the patient will influence the effectiveness and perceived usefulness of peak flow monitoring.

Due to the limited number and quality of the studies on peak flow monitoring reported thus far, the Expert Panel believes that more research is urgently needed in this area. Recent studies do offer some guidance on which patients are most likely to benefit from daily peak flow monitoring; see text of the report for recommendations.

- Long-term daily peak flow monitoring is helpful in managing patients with moderate-to-severe persistent asthma to:
 - Detect early changes in disease status that require treatment
 - Evaluate responses to changes in therapy
 - Provide assessment of severity for patients with poor perception of airflow obstruction
 - Afford a quantitative measure of impairment

- If long-term daily peak flow monitoring is not used, a short-term (2 to 3 weeks) period of peak flow monitoring is recommended to:
 - Evaluate responses to changes in chronic maintenance therapy
 - Identify temporal relationship between changes in PEF and exposure to environmental or occupational irritants or allergens. It may be necessary to record PEF four or more times a day (Chan-Yeung 1995).
 - Establish the individual patient’s personal best PEF

- The Expert Panel does not recommend long-term daily peak flow monitoring for patients with mild intermittent or mild persistent asthma unless the patient/family and/or clinician find it useful in guiding therapeutic decisions. Any patient who develops severe exacerbations may benefit from peak flow monitoring.

Limitations of long-term peak flow monitoring include:

- Difficulty in maintaining adherence to monitoring (Reeder et al. 1990; Chmelik and Doughty 1994; Malo et al. 1993), often due to inconvenience, lack of required level of motivation, or lack of a specific treatment plan based on PEF

- Potential for incorrect readings related to poor technique, misinterpretation, or device failure
Whether peak flow monitoring, symptom monitoring, or a combination of approaches is used, the Expert Panel believes that self-monitoring is important to the effective self-management of asthma. The nature and intensity of self-monitoring should be individualized, based on such factors as asthma severity, patient’s ability to perceive airflow obstruction, availability of peak flow meters, and patient preferences.

It is the opinion of the Expert Panel that, regardless of the type of monitoring used, patients should be given a written action plan and be instructed to use it (see figure 4-5). The Panel believes it is especially important to give a written action plan to patients with moderate-to-severe persistent asthma and any patient with a history of severe exacerbations. The action plan will describe the actions patients should take based on their signs and symptoms and/or PEF. The clinician should periodically review the plan, revise it as necessary, and confirm that the patient knows what to do if his or her asthma gets worse.

Recommendations on How To Monitor Peak Flow. The Expert Panel recommends that patients who are using a peak flow meter be instructed on how to establish their personal best peak expiratory flow (figure 1-7) and use it as the basis of their action plan (figure 4-5). Meters used to measure PEF should meet American Thoracic Society recommendations for monitoring devices (American Thoracic Society 1995).

The patient’s personal best PEF can be estimated after a 2- to 3-week period in which the patient records PEF two to four times per day. The personal best value is usually achieved in the early afternoon measurement after maximal therapy has stabilized the patient (Quackenboss et al. 1991). A course of oral corticosteroids may be needed to establish the personal best PEF. The patient’s personal best value should be reassessed periodically to account for progression of disease in children and adults and for growth in children. Occasionally, a PEF value is recorded that is markedly higher than other values. This may be due to “spitting” (especially if the peak flow meter mouthpiece is small) or coughing into the peak flow meter, as well as other reasons that are not well understood. Therefore, caution should be used in establishing a personal best value when an outlying value is observed. Children with moderate-to-severe persistent asthma should repeat the short-term monitoring period every 6 months to establish changes in personal best PEF that occur with growth.

Patients requiring daily peak flow monitoring should measure their PEF on waking from sleep in the morning before taking a bronchodilator, if the patient uses a bronchodilator (Reddel et al. 1995; Morris et al. 1994). When the morning PEF is below 80 percent of the patient’s personal best, PEF should be measured more than once a day (again, before taking a bronchodilator). This recommendation is based not on scientific data, but on the logic of reducing delays in treatment. The additional measurements of PEF during the day will enable patients to detect if their asthma is continuing to worsen or is improving after taking medication. If their asthma is worsening, they will have the opportunity to quickly respond to this. In addition, periodically having patients take their PEF first thing in the morning and in the early afternoon for 1 to 2 weeks will assess airflow variability, which is an indicator of the current level of the patient’s asthma severity (see figure 1-3 and Additional Studies section, page 19).

It is the Expert Panel’s opinion that, in general, PEF below 80 percent of the patient’s personal best before bronchodilator inhalation indicates a need for additional medication. PEF below 50 percent indicates a severe asthma exacerbation (see component 3 for recommended treatment). These cutpoints of 80 and 50 percent of the personal best are somewhat arbitrary. The emphasis is not on a specific PEF value but, rather, on a patient’s change from personal best or from one reading to the next. Cutpoints should be tailored to individual patients’ needs and PEF patterns.

Cutpoints may be easier to use and remember when they are adapted to a traffic light system (see figure 4-5) (Lewis et al. 1984; Mendoza et al. 1988; Plaut 1995). In this system, for example, the green zone (80 to 100 percent of personal best) signals good control, the yellow zone (50 to less than 80 percent of personal best) signals caution, and the red zone (below 50 percent of personal best) signals a medical alert (see figure 1-7). Because the yellow zone includes a wide spectrum of asthma severity, clinicians may consider recommending different interventions for a high yellow zone (e.g., 65 to less than 80 percent of personal best) and a low yellow zone (e.g., 50 to less than 65 percent of personal best).
The Expert Panel recommends that patients use the same peak flow meter over time and bring their peak flow meter for use at every followup visit. Using the same brand of meter is recommended because different brands of meters can give significantly different values (Jackson 1995; Enright et al. 1995; H egewald et al. 1995; Sly et al. 1994; Miller et al. 1992) and because lung function varies across racial and ethnic populations. (See box 2, Differences in Peak Flow Across Racial and Ethnic Populations.) Thus, there is no universal normative standard for PEF. In addition, brand-specific normative values are not available for most peak flow meters.

Despite this variability across different brands of peak flow meters, measurements from the same meter and meters of the same brand are fairly consistent in measuring PEF (Jackson 1995; Enright et al. 1995; H egewald et al. 1995; Sly et al. 1994; Miller et al. 1992). Thus, once patients establish their personal best PEF on their own meter, they can obtain reliable and clinically meaningful readings of their PEF. However, at each visit, the patient’s peak flow meter should be inspected. At least once a year, or any time there is a question about the validity of peak flow meter readings, PEF values from the portable peak flow meter and from laboratory spirometry should be compared.

When patients replace their peak flow meter, it is prudent to have them reestablish their personal best PEF with the new meter, regardless of whether the replacement meter is the same brand as the original. Action plan cutpoints also may need to be modified. The durability and consistency over time of peak flow meters have not been adequately studied to provide guidance on when a peak flow meter needs to be replaced.

Monitoring Quality of Life/Functional Status

To determine whether the goals of asthma therapy are being met, it is crucial to examine how the disease expression and control are affecting the patient’s quality of life. Several dimensions of quality of life may be important to track, including physical function, role function, and mental health function. Several comprehensive survey instruments, such as the SF-36 (Stewart et al. 1988 for adult measure; Landgraf et al. 1996 for child measure), have been developed for general use for patient populations. In addition, a number of asthma-specific quality-of-life survey instruments have been developed (Creer et al. 1989; Hyland et al. 1991; J uniper et al. 1992; M arks et al. 1993; Richards and H emstreet 1994), several of which appear promising. However, certain concerns preclude the Expert Panel from recommending the general adoption of these instruments at this time, such as the lack of experience with the use of the instruments in clinical practice and the time involved in administering the surveys. The Expert Panel does recommend that at least several key areas of quality of life be periodically assessed for each person with asthma. These include:

- Any missed work or school due to asthma
- Any reduction in usual activities (either home/work/school or recreation/exercise)
- Any disturbances in sleep due to asthma
- Any change in caregiver activities due to a child’s asthma (for caregivers of children with asthma)
Figure 1-6 provides a set of questions that the Expert Panel recommends for use in characterizing quality-of-life concerns for persons with asthma (also see figure 4-2).

Monitoring History of Asthma Exacerbations

Exacerbations of asthma are characterized by periods of increased symptoms and reduced lung function, which may result in diminished ability to perform usual activities. Exacerbations may be brought on by exposures to irritants or sensitizers in the home, work, or general environment. Infections, certain medications, and a number of other medical conditions, as well as insufficient or ineffective therapy, also may trigger exacerbations (see component 2).

During periodic assessments, clinicians should question the patient and evaluate any records of patient self-monitoring (figures 1-8 and 1-9) to detect exacerbations, both self-treated and those treated by other health care providers. It is important to evaluate the frequency, severity, and causes of exacerbations. The patient should be asked about precipitating exposures and other factors. Specific inquiry into unscheduled visits to providers, telephone calls for assistance, and use of urgent or emergency care facilities may be helpful. Severity can be estimated by the increased need for oral corticosteroids. Control of asthma can be assessed by the increased need for short-acting beta2-agonist. Finally, any hospitalizations should be documented, including the facility, duration of stay, and any use of critical care or intubation. The clinician then can request summaries of all care received to facilitate continuity of care.

Monitoring Pharmacotherapy

To ensure the effectiveness of pharmacotherapy, it is essential that the drug regimen be based on a sound rationale and that it be monitored on an ongoing basis. Based on the opinion of the Expert Panel, the following factors should be monitored: patient adherence to the regimen, inhaler technique, level of usage of as-needed inhaled short-acting beta2-agonist, frequency of oral corticosteroid "burst" therapy, changes in dosage of inhaled anti-inflammatory or other long-term-control medications, and side effects of medications (see assessment questions in figure 1-6). It is also critical that the clinician determine that the patient is on the appropriate step of pharmacotherapy (see component 3-Managing Asthma Long Term) and has an up-to-date, written daily self-management plan and action plan (see figures 4-4 and 4-5).

Monitoring Patient-Provider Communication and Patient Satisfaction

Health care providers should routinely assess the effectiveness of patient/provider communication (see figure 1-6). Open and unrestricted communication among the clinician, the patient, and the family is essential to ensure successful self-management by the patient with asthma. Every effort should be made to encourage open discussion of concerns and expectation of therapy. See component 4 for specific strategies to enhance communication and patient adherence to the treatment plan.

Patient satisfaction with their asthma care and resolution of fears and concerns are important goals and will increase adherence to the treatment plan (Haynes et al. 1979; Meichenbaum and Turk 1987). Two aspects of patient satisfaction should be monitored: satisfaction with asthma control and satisfaction with the quality of care. See figures 1-6, 1-8, and 4-2 for examples of questions to use in monitoring patient satisfaction.

ASSESSMENT METHODS

Each of the key measures used in the periodic assessment of asthma (i.e., signs and symptoms, pulmonary function, quality of life, history of exacerbations, pharmacotherapy, and patient-provider communication and patient satisfaction) can be obtained by several methods. The principal methods include clinician assessment and patient (and/or parent or caregiver) self-assessment. In addition, population-based assessment of asthma care is being developed in the managed care field.

Clinician Assessment

Clinical assessment of asthma should be obtained via medical history and physical examination with appropriate pulmonary function testing. Optimal history assessment may be best achieved via a consistent set of questions (figure 1-6); physical examination for asthma is reviewed in component 1-Initial Assessment and Diagnosis. Patients with mild intermittent or mild persistent asthma that has been under control for at least 3 months should be seen by a clinician about every 6 months. This is a rough guideline based on the opinion of the Expert Panel.
FIGURE 1-8. SAMPLE* PATIENT SELF-ASSESSMENT SHEET FOR FOLLOWUP VISITS

Name:___ Date:__

How many days in the past week have you had chest tightness, cough, shortness of breath, or wheezing (whistling in your chest)?

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
</table>

How many nights in the past week have you had chest tightness, cough, shortness of breath, or wheezing (whistling in your chest)?

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
</table>

Do you perform peak flow readings at home?

<table>
<thead>
<tr>
<th></th>
<th>yes</th>
<th>no</th>
</tr>
</thead>
</table>

If yes, did you bring your peak flow chart?

<table>
<thead>
<tr>
<th></th>
<th>yes</th>
<th>no</th>
</tr>
</thead>
</table>

How many days in the past week has asthma restricted your physical activity?

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
</table>

Have you had any asthma attacks since your last visit?

<table>
<thead>
<tr>
<th></th>
<th>yes</th>
<th>no</th>
</tr>
</thead>
</table>

Have you had any unscheduled visits to a doctor, including to the emergency department, since your last visit?

<table>
<thead>
<tr>
<th></th>
<th>yes</th>
<th>no</th>
</tr>
</thead>
</table>

How many puffs of your short-acting inhaled beta2-agonist (quick-relief medicine) do you use per day?
Average number of puffs per day

How many of your short-acting inhaled beta2-agonist inhalers did you go through over the past month?
Number of inhalers in past month

What questions or concerns would you like to discuss with the doctor?

How well controlled is your asthma in your opinion?

<table>
<thead>
<tr>
<th></th>
<th>very well controlled</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>somewhat controlled</td>
</tr>
<tr>
<td></td>
<td>not well controlled</td>
</tr>
</tbody>
</table>

How satisfied are you with your asthma care?

<table>
<thead>
<tr>
<th></th>
<th>very satisfied</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>somewhat satisfied</td>
</tr>
<tr>
<td></td>
<td>not satisfied</td>
</tr>
</tbody>
</table>

* These questions are examples and do not represent a standardized assessment instrument. The validity and reliability of these questions have not been assessed.
FIGURE 1-9. PATIENT SELF-ASSESSMENT: EXAMPLE OF PATIENT DIARY

Date	Wheeze	Cough	Activity	Sleep	Quick Relief	Beta_2 - Agonist	Cromolyn/Nedocromil	Inhaled Steroids	Other – Inhaled	Oral Steroids	Theophylline	AM	PM	Other Times	Comments
------	--------	-------	----------	-------	--------------	------------------	---------------------	-------------------	----------------	---------------	--------------				
	None	0	Fine	0	None	None	None	None	None	None	None				
	Some	1	Medium	2	Severe	Continuous	Missed school or work or stayed indoors	Bad night, awake most of the time							

Adapted with permission from Plaut 1991.

This diary is provided as an example for clinicians.
The exact frequency of clinician visits is a matter of clinical judgment. **Patients with uncontrolled and/or severe persistent asthma and those needing additional supervision to help them follow their treatment plan need to be seen more often.**

Patient Self-Assessment

Self-assessment by the patient and/or family is important to determine from their perspective whether the asthma is well controlled. Two methods are recommended: a daily diary (see figure 1-9 for an example) and a periodic self-assessment form to be filled out by the patient and/or family member at the time of the followup visits to the clinician (figure 1-8).

- The daily diary should include the key factors to be monitored at home: symptoms and/or peak flow, medication use, and restricted activity.

- The periodic self-assessment sheet completed at office visits is intended to capture the patient’s and family’s impression of asthma control, self-management skills, and overall satisfaction with care.

Patients are less likely to see completion of diaries and forms as a burden if they receive feedback from the clinician that allows them to see value in self-monitoring. Monitoring with a daily diary will be most useful to patients whose asthma is not yet under control and who are trying new treatments. It is also useful for those who need help identifying environmental or occupational exposures that make their asthma worse.

Population-Based Assessment

Asthma care is of increasing interest in various health care settings. Important regulatory organizations for the industry (e.g., the National Committee on Quality Assurance) have included the care of persons with asthma as a key indicator of quality of managed care. In this context, periodic population-based assessment of asthma care has begun to emerge as an issue for patients and their clinical providers. This type of assessment often uses population experience, such as hospitalization or emergency department visit rates, to examine care within different clinical settings and among different providers. Complex standardized population surveys (including lengthy health status instruments) are being tested experimentally in the managed care setting.

REFERENCES

COMPONENT 2:
CONTROL OF FACTORS CONTRIBUTING TO ASTHMA SEVERITY

KEY POINTS

- Exposure of asthma patients to irritants or allergens to which they are sensitive has been shown to increase asthma symptoms and precipitate asthma exacerbations.

- For at least those patients with persistent asthma on daily medications, the clinician should:
 - Identify allergen exposures
 - Use the patient’s history to assess sensitivity to seasonal allergens
 - Use skin testing or in vitro testing to assess sensitivity to perennial indoor allergens
 - Assess the significance of positive tests in context of patient’s medical history

- Patients with asthma at any level of severity should avoid:
 - Exposure to allergens to which they are sensitive.
 - Exposure to environmental tobacco smoke.
 - Exertion when levels of air pollution are high.
 - Use of beta-blockers.
 - Sulfite-containing and other foods to which they are sensitive.

- Adult patients with severe persistent asthma, nasal polyps, or a history of sensitivity to aspirin or nonsteroidal anti-inflammatory drugs should be counseled regarding the risk of severe and even fatal exacerbations from using these drugs.

- Patients should be treated for rhinitis, sinusitis, and gastroesophageal reflux, if present.

- Patients with persistent asthma should be given an annual influenza vaccine.

DIFFERENCES FROM 1991 EXPERT PANEL REPORT

- Skin testing or in vitro testing is now specifically recommended for at least those patients with persistent asthma exposed to perennial indoor allergens.

- Adult patients with severe persistent asthma, nasal polyps, or a history of sensitivity to aspirin or nonsteroidal anti-inflammatory drugs are to be counseled regarding the risk of severe and even fatal exacerbations from using these drugs. In the 1991 report, all asthma patients were recommended to avoid aspirin.

- Routine use of chemicals to kill house-dust mites and denature the antigen is no longer recommended as a control measure.

- The discussion of tartrazine sensitivity in the 1991 version was deleted.

- Annual influenza vaccinations are now specifically recommended for patients with persistent asthma. The recommendation to consider pneumococcal vaccine was deleted.
For successful long-term asthma management, it is essential to identify and reduce exposures to relevant allergens and irritants and to control other factors that have been shown to increase asthma symptoms and/or precipitate asthma exacerbations. These factors fall into four categories: inhalant allergens, occupational exposures, nonallergic factors, and other factors. Ways to reduce the effects of these factors on asthma are discussed in this component.

- **Inhalant allergens:**
 - Animal allergens
 - House-dust mites
 - Cockroach allergens
 - Indoor fungi (molds)
 - Outdoor allergens

- **Occupational exposures**

- **Irritants:**
 - Tobacco smoke
 - Indoor/outdoor pollution and irritants

- **Other factors that can influence asthma severity:**
 - Rhinitis/sinusitis
 - Gastroesophageal reflux
 - Sensitivity to aspirin, other nonsteroidal anti-inflammatory drugs, and sulfites
 - Topical and systemic beta-blockers
 - Viral respiratory infections

INHALANT ALLERGENS

Exposure of an asthma patient to inhalant allergens to which the patient is sensitive increases airway inflammation and symptoms. Substantially reducing such exposure will result in significantly reduced inflammation, symptoms, and need for medication (see a summary of the evidence in box 1). In the opinion of the Expert Panel, patients with asthma at any level of severity should be queried about exposures to inhalant allergens.

Diagnosis—Determine Relevant Inhalant Sensitivity

Demonstrating a patient’s relevant sensitivity to inhalant allergens will enable the clinician to recommend specific environmental controls to reduce exposures. It will also help the patient understand the pathogenesis of asthma and the value of allergen avoidance. Given the importance of allergens and

BOX 1. THE STRONG ASSOCIATION BETWEEN SENSITIZATION TO ALLERGIES AND ASTHMA: A SUMMARY OF THE EVIDENCE

The association of asthma and allergy has long been recognized. Recent studies confirm that sensitization among genetically susceptible populations to certain indoor allergens such as house-dust mite, animal dander, and cockroach or to the outdoor fungus Alternaria is a risk for developing asthma in children (Peat et al. 1993, 1994; Sears et al. 1993a, 1993b; Sporik et al. 1990). Sensitization to outdoor pollens carries less risk for asthma (Sears et al. 1989), although grass (Reid et al. 1986) and ragweed (Creticos et al. 1996) pollen exposure has been associated with seasonal asthma. It is widely accepted that the importance of inhalant sensitivity as a cause of asthma declines with advancing age (Pollart et al. 1989).

An allergic reaction in the airways caused by natural exposure to allergens has been shown to lead to an increase in inflammatory reaction, increased airway hyperresponsiveness (Boulet et al. 1983; Peroni et al. 1994; Piacentini et al. 1993), and increased eosinophils in bronchoalveolar lavage (Rak et al. 1991). Other research has demonstrated that asthma symptoms, pulmonary function, and need for medication in mite-sensitive asthma patients correlate with the level of house-dust mite exposure (Vervloet et al. 1991; Zock et al. 1994) and that reducing house-dust mite exposure reduces asthma symptoms, nonspecific bronchial hyperresponsiveness, and evidence of active inflammation (Peroni et al. 1994; Piacentini et al. 1993; Simon et al. 1994).

Inhalant allergen exposure to seasonal outdoor fungal spores (Targonski et al. 1995; O’Hollaren et al. 1991) and to indoor allergens (Call et al. 1994) has also been implicated in fatal exacerbations of asthma. These reports emphasize that allergen exposure must be considered in the treatment of asthma.

The important allergens for children and adults appear to be those that are inhaled. Food allergens are not a common precipitant of asthma symptoms. Foods are an important cause of anaphylaxis in adults and children (Golbert et al. 1969; Sampson et al. 1992), but significant lower respiratory tract symptoms are uncommon even with positive double-blind food challenges (James et al. 1994).
their control to asthma morbidity and asthma management, the Expert Panel recommends that patients with persistent asthma who require daily therapy be evaluated for allergens as possible contributing factors as follows:

1. **Determine the patient's exposure to allergens** (see relevant questions in figure 2-1).

2. **Assess sensitivity to the allergens to which the patient is exposed.**
 - Use the patient's medical history, which is usually sufficient, to determine sensitivity to seasonal allergens.
 - Use skin testing or in vitro testing to determine the presence of specific IgE antibodies to the indoor allergens to which the patient is exposed year round (see figure 2-2 for a comparison of skin and in vitro tests). Allergy testing is the only reliable way to determine sensitivity to perennial indoor allergens (see box 2 for further explanation).

(For selected patients with asthma at any level of severity, detection of specific IgE sensitivity to seasonal or perennial allergens may be indicated as a basis for avoidance, for immunotherapy, or to characterize the patient's atopic status.)

3. **Assess the clinical significance of positive allergy tests in the context of the patient's medical history** (see figure 2-3).

Management—Reduce Exposure

The first and most important step in controlling allergen-induced asthma is to reduce exposure to relevant indoor and outdoor allergens. Effective ways patients can reduce their exposures to indoor and outdoor allergens are discussed below and summarized in figure 2-4, which also addresses irritants. Although these recommendations focus on the home environment, reductions in exposures to allergens and irritants are also appropriate in other environments where the patient spends extended periods of time, such as school, work, or day care. For information about companies that distribute products to help reduce allergen exposure, contact the Asthma and Allergy Foundation of America at 800-727-8462 or the Allergy and Asthma Network/Mothers of Asthmatics at 800-878-4403.

- **Animal Allergens.** All warm-blooded pets, including small rodents and birds, produce dander, urine, feces, and saliva that can cause allergic reactions (Swanson et al. 1985; de Blay et al. 1991a). No studies have been published on the effect of animal allergen avoidance on asthma symptoms; however, based on the opinion of the Expert Panel, the following actions to control animal antigens are recommended:
 - If the patient is sensitive, remove the animal and products made of feathers from the home to eliminate exposure.
 - If removal of the animal is not acceptable:
 - Keep the pet out of the patient's bedroom.
 - Keep the patient's bedroom door closed. Consider placing dense filtering material over forced air outlets to trap airborne dander particles.
 - Remove upholstered furniture and carpets from the home or isolate the pet from them to the extent possible.

Weekly washing of the pet may decrease the amount of dander and dried saliva the animal contributes to the environment (de Blay et al. 1991b; Klucka et al. 1995).

- **House-Dust Mite Allergen.** House-dust mites are universal in areas of high humidity (most areas of the United States) but are usually not present at high altitudes or in arid areas unless moisture is added to the indoor air. Mites depend on atmospheric moisture and human dander for survival. High levels of mites can be found in dust from mattresses, pillows, carpets, upholstered furniture, bed covers, clothes, and soft toys. The patient's bed is the most important source of dust mites to control. Recommended mite control measures are listed below (Platts-Mills et al. 1982).

Essential actions to control mites include:

- Encase the mattress in an allergen-impermeable cover.

- Encase the pillow in an allergen-impermeable cover or wash it weekly.
FIGURE 2-1. ASSESSMENT QUESTIONS* FOR ENVIRONMENTAL AND OTHER FACTORS THAT CAN MAKE ASTHMA WORSE

<table>
<thead>
<tr>
<th>Inhalant Allergens</th>
<th>Workplace Exposures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Does the patient have symptoms year round? (If yes, ask the following questions. If no, see next set of questions.)</td>
<td>Does the patient cough or wheeze during the week, but not on weekends when away from work?</td>
</tr>
<tr>
<td>■ Does the patient keep pets indoors? What type?</td>
<td>■ Do the patient’s eyes and nasal passages get irritated soon after arriving at work?</td>
</tr>
<tr>
<td>■ Does the patient have moisture or dampness in any room of his or her home (e.g., basement)? (Suggests house-dust mites, molds.)</td>
<td>■ Do coworkers have similar symptoms?</td>
</tr>
<tr>
<td>■ Does the patient have mold visible in any part of his or her home? (Suggests molds.)</td>
<td>■ What substances are used in the patient’s worksite? (Assess for sensitizers.)</td>
</tr>
<tr>
<td>■ Has the patient seen cockroaches in his or her home in the past month? (Suggests cockroach exposure.)</td>
<td></td>
</tr>
<tr>
<td>■ Assume exposure to house-dust mites unless patient lives in a semiarid region. However, if a patient living in a semiarid region uses a swamp cooler, exposure to house dust mites must still be assumed.</td>
<td></td>
</tr>
<tr>
<td>Do symptoms get worse at certain times of the year? (If yes, ask when symptoms occur.)</td>
<td></td>
</tr>
<tr>
<td>■ Early spring? (trees)</td>
<td>■ Does the patient have constant or seasonal nasal congestion and/or postnasal drip?</td>
</tr>
<tr>
<td>■ Late spring? (grasses)</td>
<td></td>
</tr>
<tr>
<td>■ Late summer to autumn? (weeds)</td>
<td></td>
</tr>
<tr>
<td>■ Summer and fall? (Alternaria, Cladosporium)</td>
<td></td>
</tr>
<tr>
<td>Tobacco Smoke</td>
<td>Rhinitis</td>
</tr>
<tr>
<td>■ Does the patient smoke?</td>
<td></td>
</tr>
<tr>
<td>■ Does anyone smoke at home or work?</td>
<td></td>
</tr>
<tr>
<td>■ Does anyone smoke at the child’s day care?</td>
<td></td>
</tr>
<tr>
<td>Indoor/Outdoor Pollutants and Irritants</td>
<td>Gastroesophageal Reflux</td>
</tr>
<tr>
<td>■ Is a wood-burning stove or fireplace used in the patient’s home?</td>
<td>■ Does the patient have heartburn?</td>
</tr>
<tr>
<td>■ Are there unvented stoves or heaters in the patient’s home?</td>
<td>■ Does food sometimes come up into the patient’s throat?</td>
</tr>
<tr>
<td>■ Does the patient have contact with other smells or fumes from perfumes, cleaning agents, or sprays?</td>
<td>■ Has the patient had coughing, wheezing, or shortness of breath at night in the past 4 weeks?</td>
</tr>
<tr>
<td>■ Does the patient cough or wheeze during the week, but not on weekends when away from work?</td>
<td>■ Does the infant vomit followed by cough or have wheezy cough at night? Are symptoms worse after feeding?</td>
</tr>
</tbody>
</table>

* These questions are examples and do not represent a standardized assessment or diagnostic instrument. The validity and reliability of these questions have not been assessed.
FIGURE 2-2. COMPARISON OF SKIN TESTS WITH IN VITRO TESTS

Advantages of skin tests:

- Less expensive than in vitro tests
- Results are available within 1 hour.
- More sensitive than in vitro tests
- Results are visible to the patient. This may encourage compliance with environmental control measures.

Advantages of RAST and other in vitro tests:

- Do not require knowledge of skin testing technique
- Do not require availability of allergen extracts
- Can be performed on patients who are taking medications that suppress the immediate skin test (antihistamines, antidepressants)
- No risk of systemic reactions
- Can be done for patients with extensive eczema

BOX 2. RATIONALE FOR ALLERGY TESTING FOR PERENNIAL INDOOR ALLERGENS

Determination of sensitivity to a perennial indoor allergen is usually not possible with a patient medical history alone (Murray and Milner 1995). Increased symptoms during vacuuming or bed making and decreased symptoms when away from home on a business trip or vacation are suggestive but not sufficient. Allergy skin or in vitro tests are reliable in determining the presence of specific IgE (Adinoff et al. 1990), but these tests do not determine whether the specific IgE is responsible for the patient’s symptoms. That is why patients should only be tested for sensitivity to the allergens to which they are exposed and why the third step in evaluating patients for allergen sensitivity calls for assessing the clinical relevance of the sensitivity.

The recommendation to do skin or in vitro tests for patients with persistent asthma exposed to perennial indoor allergens will result in a limited number of allergy tests for about half of all asthma patients. This is based on the prevalence of persistent asthma and the level of exposure to indoor allergens. It is estimated that about half of all asthma patients have persistent asthma based on data on children in the United States (Taylor and Newacheck 1992) and on adults in Australia (Boston Consulting Group 1992). About 80 percent of the U.S. population is exposed to house-dust mites (Nelson and Fernandez-Caldas 1995), 60 percent to cat or dog, and a much smaller percentage to both animals (Ingram et al. 1995). Cockroaches are a consideration only in the inner city and southern parts of the United States.

Skin or in vitro tests for patients exposed to perennial allergens are essential to justify the expense and effort involved in implementing environmental controls. In addition, patient adherence to maintaining environmental controls (e.g., with regard to pets) is likely to be poor without proof of the patient’s sensitivity.
--- Wash the sheets and blankets on the patient’s bed weekly in hot water. A temperature of ≥130 °F is necessary for killing house-dust mites.

Desirable actions to control mites include:

- Reduce indoor humidity to less than 50 percent.
- Remove carpets from the bedroom.
- Avoid sleeping or lying on upholstered furniture.
- Remove from the home carpets that are laid on concrete.
- In children’s beds, minimize the number of stuffed toys and wash the toys weekly in hot water.

Chemical agents are available for killing mites and denaturing the antigen; however, the effects are not dramatic and do not appear to be maintained for long periods. Therefore, use of these agents in the homes of house-dust mite-sensitive asthma patients should not be recommended routinely (Woodfolk et al. 1995). Vacuuming removes mite allergen from carpets but is inefficient at removing live mites.

Cockroach Allergen

Cockroach sensitivity and exposure are common among patients with asthma who live in inner cities (Kang et al. 1993; Call et al. 1992). In an inner-city asthma study, asthma severity increased with increasing levels of cockroach antigen in the bedroom of sensitized children (Rosenstreich et al. 1997). Although no studies have been published that report the effect of cockroach reduction on asthma symptoms, it is the opinion of the Expert Panel that control measures need to be instituted when the patient is sensitive to cockroaches and infestation is present in the home. Patients should not leave food or garbage exposed. Poison baits, boric acid, and traps are preferred to chemical agents because the latter can be irritating when inhaled by asthma patients. If chemical agents are used, the home should be well ventilated and the patient should not return to the home until the odor has dissipated.

Figure 2-3. Patient Interview Questions* for Assessing the Clinical Significance of Positive Allergy Tests

<table>
<thead>
<tr>
<th>Animal Dander. If there are pets in the patient’s home and the patient is sensitive to dander of that species of animal, the likelihood that animal dander allergy is contributing to asthma symptoms is increased if answers to the following questions are affirmative. However, absence of positive responses does not exclude a contribution of animal dander to the patient’s symptoms.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do nasal, eye, or chest symptoms appear in a room where carpets are being or have just been vacuumed?</td>
</tr>
<tr>
<td>Do nasal, eye, or chest symptoms improve when away from home for a week or longer?</td>
</tr>
<tr>
<td>Do the symptoms become worse the first 24 hours after returning home?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>House Dust Mites. Mite allergy is more likely to be a contributing factor to asthma severity if answers to the following questions are affirmative. However, absence of a positive response does not exclude a contribution of mite allergen to the patient’s symptoms.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do nasal, eye, or chest symptoms appear in a room where carpets are being or have just been vacuumed?</td>
</tr>
<tr>
<td>Does making a bed cause nasal, eye, or chest symptoms?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Outdoor Allergens (Pollens and Outdoor Molds). Contribution of pollens and outdoor molds in causing asthma symptoms is suggested by a positive answer to this question:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is asthma consistently worse in spring, summer, fall, or parts of the growing season?</td>
</tr>
</tbody>
</table>

Usually, if pollen or mold spores are causing increased asthma symptoms, the patient will also have symptoms of allergic rhinitis—sneezing, itching nose and eyes, runny and obstructed nose.

<table>
<thead>
<tr>
<th>Indoor Fungi (Molds). Contribution of indoor molds in causing asthma symptoms is suggested by a positive answer to this question:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do nasal, eye, or chest symptoms appear in damp or moldy rooms, such as basements?</td>
</tr>
</tbody>
</table>

* These questions are provided as examples for the clinician. The validity and reliability of these questions have not been assessed.
Indoor Fungi (Molds). Indoor fungi are particularly prominent in humid environments and homes that have dampness problems. Children living in homes with dampness have increased respiratory symptoms (Cuijpers et al. 1995; Verheef et al. 1995), but the relative contribution of fungi, house-dust mites, or irritants is not clear. Because an association between indoor fungi and respiratory and allergic disease is suggested by some studies (Bjornsson et al. 1995; Smedje et al. 1996; Strachan 1988), measures to control dampness or fungal growth in the home may be beneficial.

Outdoor Allergens (Tree, Grass, and Weed Pollens and Seasonal Mold Spores). Patients can reduce exposure by staying indoors with windows closed in an air-conditioned environment (Solomon et al. 1980), particularly during the midday and afternoon when pollen and some spore counts are highest (Long and Kramer 1972; Smith and Rooks 1954; Mullins et al. 1986). Conducting outdoor activities shortly after sunrise will result in less pollen exposure. These actions may not be realistic for some patients, especially children.

Immunotherapy

Allergen immunotherapy may be considered for asthma patients when (1) there is clear evidence of a relationship between symptoms and exposure to an unavoidable allergen to which the patient is sensitive, (2) symptoms occur all year or during a major portion of the year, and (3) there is difficulty controlling symptoms with pharmacologic management either because the medication is ineffective, multiple medications are required, or the patient is not accepting of medication. This recommendation is based on the opinion of the Expert Panel and the evidence described below. If use of allergen immunotherapy is elected, it should be administered only in a physician’s office where facilities and trained personnel are available to treat any life-threatening reaction that can, but rarely does, occur (AAAI Board of Directors 1994; Frew 1993). Controlled studies of immunotherapy, usually conducted with single allergens, have demonstrated reduction in asthma symptoms caused by exposure to grass, cat, house-dust mite, ragweed, Cladosporium, and Alternaria (Reid et al. 1986; Malling et al. 1986; Creticos et al. 1996; Holst et al. 1990). A meta-analysis of 20 randomized, placebo-controlled studies has confirmed the effectiveness of immunotherapy in asthma (Abramson et al. 1995). Few studies have
been reported on multiple allergen mixes, which are commonly employed in clinical practice.

The course of allergen immunotherapy is typically of 3 to 5 years' duration. Reactions to immunotherapy, especially bronchoconstriction, are more frequent among patients with asthma, particularly those with poorly controlled asthma, compared with those with allergic rhinitis (Reid et al. 1993). For this reason, enthusiasm for the use of immunotherapy differs considerably among experts (Abramson et al. 1995; Canadian Society of Allergy and Clinical Immunology 1995; Frew 1993).

Assessment of Devices That May Modify Indoor Air

- Vacuuming carpets once or twice a week is essential to reduce accumulation of house dust. Patients sensitive to components of house dust should avoid using conventional vacuum cleaners, and these patients should stay out of rooms where a vacuum cleaner is being or has just been used (Murray et al. 1983). If patients vacuum, they can use a dust mask, a central cleaner with the collecting bag outside the home, or a cleaner fitted with a HEPA (high-efficiency particulate air) filter or with a double bag (Woodfolk et al. 1993).

- Humidifiers and evaporative (swamp) coolers are not recommended for use in the homes of house-dust mite-sensitive patients with asthma. These are potentially harmful because increased humidity may encourage the growth of both mold (Solomon 1976) and house-dust mites (Ellingson et al. 1995). In addition, humidifiers may pose a problem if not properly cleaned because they can harbor and aerosolize mold spores (Solomon 1974).

- Air conditioning during warm weather is recommended for asthma patients because it allows windows and doors to stay closed, which prevents entry of outdoor allergens (Solomon et al. 1980). Regular use of central air conditioning also will usually control humidity sufficiently to reduce house-dust mite growth (Lintner and Brame 1993).

- Use of a dehumidifier will reduce house-dust mite levels in areas where the humidity of the outside air remains high for most of the year (Cabrera et al. 1995).

- Indoor air-cleaning devices cannot substitute for the more effective measures described previously (see page 43, Management—Reduce Exposure). However, air-cleaning devices (i.e., HEPA and electrostatic precipitating filters) have been shown to reduce airborne cat dander (de Blay et al. 1991b), mold spores (Maloney et al. 1987), and particulate tobacco smoke (U.S. Environmental Protection Agency 1990). Air cleaners cannot significantly reduce exposure to house-dust mite and cockroach allergens because these heavy particles do not remain airborne (de Blay et al. 1991a). Most studies of air cleaners have failed to demonstrate an effect on asthma symptoms or pulmonary function (Nelson et al. 1988; Reisman et al. 1990; Warner et al. 1993; Warburton et al. 1994).

- Air-duct cleaning of heating/ventilation/air conditioning systems has been reported to decrease levels of airborne fungi in residences (Garrison et al. 1993). The effect on levels of house-dust mite or animal dander has not been studied. Limited evidence precludes the Expert Panel from making a recommendation in this area.

OCCUPATIONAL EXPOSURES

Early recognition and control of exposures are particularly important in occupationally induced asthma, because the likelihood of complete resolution of symptoms decreases with time (Chan-Yeung et al. 1987; Pisati et al. 1993). Occupational asthma is suggested by a correlation between asthma symptoms and work, with improvement when away from work for several days. Other indications of workplace exposure are listed in figure 2-5. The patient may fail to recognize the work relationship, because symptoms often begin several hours after exposure. Serial peak flow records at work and away from work can confirm the work association (Moscato et al. 1995).

Workplace exposure to sensitizing chemicals or dusts can induce asthma, which often persists after the exposures are terminated (Chan-Yeung et al. 1987; Pisati et al. 1993). This should be distinguished from allergen- or irritant-induced aggravation of preexisting asthma. Acute exposure to irritant gases, dusts, or fumes can cause an asthma-like condition (reactive airway dysfunction syndrome) (Brooks et al. 1985).

Patient confidentiality issues are particularly important in work-related asthma. Because even general
inquiries about the potential adverse health effects of work exposures may occasionally result in reprisals against the patient (e.g., job loss), asthma patients need to be informed of this possibility and be full partners in the decision to approach management regarding the effects or control of workplace exposures.

IRRITANTS

In the opinion of the Expert Panel, patients with asthma at any level of severity should be queried about exposures to irritants. Sample assessment questions are in figure 2-1.

Environmental Tobacco Smoke

Asthma patients should not smoke or be exposed to environmental tobacco smoke (Marquette et al. 1992). Tobacco smoke is the most important environmental indoor irritant and is a major precipitant of asthma symptoms in children and adults (Abbey et al. 1993; Greer et al. 1993; Jindal et al. 1994; Leuenberger et al. 1994). Jindal and colleagues (1994) found that exposure of adults to environmental tobacco smoke is associated with decreased levels of pulmonary function, increased requirements for medication, and more frequent absences from work. In addition, exposure to maternal smoke has been shown to be a risk factor for the development of asthma in infancy (Arshad and Hide 1992) and childhood (Frischer et al. 1992; Gortmaker et al. 1993; Søyseth et al. 1995; Martin et al. 1995; Agudo et al. 1994), although not for persistence of childhood asthma into adulthood (Roorda et al. 1993).

Indoor/Outdoor Air Pollution and Irritants

Asthma patients should avoid exertion or exercise outside to the extent possible when levels of air pollution are high. Increased pollution levels, particularly of respirable particulates (Abbey et al. 1993; Koenig et al. 1993; Pope et al. 1991; Walters et al. 1994; Schwartz et al. 1993; Ostro et al. 1995) and ozone (Abbey et al. 1993; Cody et al. 1992; Ponka 1991; Thurston et al. 1992; Ostro et al. 1995; Romieu et al. 1995; Kesten et al. 1995; Wite et al. 1994), but also of SO2 (Moseholm et al. 1993) and NO2 (Moseholm et al. 1993; Kesten et al. 1995), have been reported to precipitate symptoms of asthma (Abbey et al. 1993; Koenig et al. 1987; Moseholm et al. 1993; Pope et al. 1991) and to increase emergency department visits and hospitaliza-

FIGURE 2-5. EVALUATION AND MANAGEMENT OF WORK-AGGRAVATED ASTHMA AND OCCUPATIONAL ASTHMA

Evaluation

Potential for workplace-related symptoms:
- Recognized sensitizers (e.g., isocyanates, plant or animal products).
- Irritants* or physical stimuli (e.g., cold/heat, dust, humidity).
- Coworkers may have similar symptoms.

Patterns of symptoms (in relation to work exposures):
- Improvement during vacations or days off (may take a week or more).
- Symptoms may be immediate (<1 hour), delayed (most commonly, 2 to 8 hours after exposure), or nocturnal.
- Initial symptoms may occur after high-level exposure (e.g., spill).

Documentation of work-relatedness of airflow limitation:
- Serial charting for 2 to 3 weeks (2 weeks at work and up to 1 week off work as needed to identify or exclude work-related changes in peak expiratory flow):
 - Record when symptoms and exposures occur.
 - Record when a bronchodilator is used.
 - Measure and record peak flow every 2 hours while awake.
- Immunologic tests.
- Referral for further confirmatory evaluation (e.g., bronchial challenges).

Management

Work-aggravated asthma:
- Work with onsite health care providers or managers/supervisors.
- Discuss avoidance, ventilation, respiratory protection, tobacco smoke-free environment.

Occupationally induced asthma:
- Recommend complete cessation of exposure to initiating agent.

* Material Safety Data Sheets may be helpful for identifying respiratory irritants, but many sensitizers are not listed.

Patients also should avoid exposure to fumes from unvented gas, oil, or kerosene stoves; wood-burning appliances or fireplaces (Ostro et al. 1994); sprays; and strong odors because they irritate the lungs and can precipitate asthma symptoms.

OTHER FACTORS THAT CAN INFLUENCE ASTHMA SEVERITY

Rhinitis/Sinusitis

Treatment of upper respiratory tract symptoms is an integral part of asthma management. Intranasal corticosteroids are recommended for the treatment of chronic rhinitis in patients with persistent asthma. Antihistamine/decongestant combinations also may be used; they provide symptomatic relief but have not been shown to have a protective effect on the lower airways secondary to their action on the nose. Intranasal corticosteroids reduce nasal inflammation, obstruction, and discharge and have been shown to reduce lower airway hyperresponsiveness and asthma symptoms (Aubier et al. 1992; Watson et al. 1993; Corren et al. 1992; Welsh et al. 1987). Intranasal cromolyn has been shown to reduce symptoms of asthma during the ragweed season, but to a lesser extent than intranasal corticosteroids in the same study (Welsh et al. 1987).

Treatment of sinusitis includes medical measures to promote drainage (Zeiger 1992) and the use of antibiotics when complicating acute bacterial infection is present (Wald 1992; Gwaltney et al. 1992). In cases of subacute or chronic sinusitis, physicians need to make a judgment regarding the appropriateness of antibiotic therapy. Antibiotic therapy was not shown to be of clear benefit in children who had nasal symptoms or cough for longer than 3 weeks and who had abnormal sinus x-rays but no fever (Dohlman et al. 1993).

Asthma is commonly associated with perennial and seasonal rhinitis and sinusitis. Studies indicate that inflammation of the upper airway contributes to lower airway hyperresponsiveness and asthma symptoms (Watson et al. 1993; Corren et al. 1992; Welsh et al. 1987). The histopathology in the chronically thickened mucosa of the paranasal sinuses is similar to that in the nose and bronchi, with a primarily eosinophilic infiltrate that, in most patients, is notably lacking in neutrophils (Harlin et al. 1988; Demoly et al. 1994).

Gastroesophageal Reflux

Medical management of gastroesophageal reflux should be instituted for any patients with asthma complaining of frequent heartburn or pyrosis, particularly those with frequent episodes of nocturnal asthma. Medical management of gastroesophageal reflux includes:

- Avoiding food and drink within 3 hours of retiring (Nelson 1984)
- Elevating the head of the bed on 6- to 8-inch blocks (Nelson 1984)
- Using appropriate pharmacologic therapy (Hixson et al. 1992)

For patients who have persistent symptoms following optimal therapy, further evaluation is indicated.

For patients with poorly controlled asthma, particularly with a nocturnal component, investigation for gastroesophageal reflux may be warranted even in the absence of suggestive symptoms (Irwin et al. 1989).

The symptoms of gastroesophageal reflux are common in both children and adults with asthma (Nelson 1984). Reflux during sleep can contribute to nocturnal asthma (Martin et al. 1982; Davis et al. 1983). Both medical (Ekstrom et al. 1989) and surgical (Perrin-Fayolle et al. 1989) therapy of gastroesophageal reflux have been reported to reduce the symptoms of asthma.

Aspirin Sensitivity

Adult patients with asthma should be questioned regarding precipitation of bronchoconstriction by aspirin and other nonsteroidal anti-inflammatory drugs. If they have experienced a reaction to any of these drugs, they should be informed of the potential for all these drugs to precipitate severe and even fatal exacerbations. Adult patients with severe persistent asthma or nasal polyps should be counseled regarding the risk of using these drugs. Usually safe alternatives to aspirin include acetaminophen or salsalate (Szczeklik et al. 1977; Settipane et al. 1995).
From 3 percent of patients with asthma seen in a private allergy practice (Chafee and Settipane 1974) to 39 percent of adults with asthma admitted to an asthma referral hospital (Spector et al. 1979) have been reported to experience severe and even fatal exacerbations of asthma after taking aspirin or certain other nonsteroidal anti-inflammatory drugs. The prevalence of aspirin sensitivity increases with increasing age and severity of asthma (Chafee and Settipane 1974; Spector et al. 1979).

Sulfite Sensitivity

Patients who have asthma symptoms associated with eating processed potatoes, shrimp, or dried fruit or with drinking beer or wine should avoid these products (Taylor et al. 1988). These products contain sulfites, which are used to preserve foods and beverages. They have caused severe asthma exacerbations, particularly in patients with severe persistent asthma.

Beta-Blockers

Nonselective beta-blockers, including those in ophthalmological preparations, can cause asthma symptoms and should be avoided by asthma patients (Odeh et al. 1991; Schoene et al. 1984), although cardioselective beta-blockers, such as betaxolol, may be tolerated (Dunn et al. 1986).

Infections

Annual influenza vaccinations are recommended for patients with persistent asthma (Bell et al. 1978; CDC 1993). It is well established that viral respiratory infections can exacerbate asthma, particularly in children with asthma under the age of 10 (Busse et al. 1993). Respiratory syncytial virus, rhinovirus, and influenza virus have been implicated (Busse et al. 1993), with rhinovirus being implicated in the majority of the exacerbations of asthma in children (Johnston et al. 1995). The role of infections causing exacerbations of asthma also appears to be important in adults (Nicholson et al. 1993).

Viral infections are the most frequent precipitants of asthma exacerbations in infancy. In the majority of cases, young children are predisposed to have bronchial obstruction during viral infections because of very small airway size (Martinez et al. 1995) and will not have further exacerbations after infancy. However, chronic asthma also may start as early as the first year of life among infants with a family history of asthma, persistent rhinorrhea, atopic dermatitis, or high IgE levels. Early identification of these infants allows institution of environmental controls to reduce exposure to tobacco smoke, animal dander, and house-dust mites.

PREVENTING THE ONSET OF ASTHMA

Primary prevention of asthma (preventing initial development) is an accepted approach for occupational asthma (Venables 1994; Chan-Yeung et al. 1987) but remains unproven outside the workplace. Recent studies indicate that exposures to high levels of house-dust mite antigen (Sporik et al. 1990; Peat et al. 1993, 1994) and environmental tobacco smoke (Martinez et al. 1995; Kuehr et al. 1995) are associated with an increased incidence of asthma among infants. This suggests that reducing these exposures may result in reduction in the incidence of asthma. Prolonged breast feeding and avoidance of early introduction of allergenic foods have been reported to reduce eczema and food sensitization but not to reduce the prevalence of asthma (Zeiger 1994).

REFERENCES

COMPONENT 3:
PHARMACOLOGIC THERAPY

KEY POINTS

- Underdiagnosis and inappropriate therapy are major contributors to asthma morbidity and mortality.
- Goals of asthma therapy are:
 - Prevent chronic and troublesome symptoms (e.g., coughing or breathlessness in the night, in the early morning, or after exertion)
 - Maintain (near) "normal" pulmonary function
 - Maintain normal activity levels (including exercise and other physical activity)
 - Prevent recurrent exacerbations of asthma and minimize the need for emergency department visits or hospitalizations
 - Provide optimal pharmacotherapy with minimal or no adverse effects
 - Meet patients’ and families’ expectations of and satisfaction with asthma care
- Persistent asthma is most effectively controlled with daily anti-inflammatory therapy.
- A stepwise approach to pharmacologic therapy is recommended:
 - The amount and frequency of medication is dictated by asthma severity and directed toward suppression of increasing airway inflammation.
 - Initiate therapy at a higher level at the onset to establish prompt control and then step down.
 - Continual monitoring is essential to ensure that asthma control is achieved.
 - Step down therapy cautiously once control is achieved and sustained.
 - Step-down therapy is necessary to identify the minimum medication necessary to maintain control.
- Regular followup visits (at 1- to 6-month intervals) are essential to maintain control and consider appropriate step down in therapy.
- Therapeutic strategies should be considered in concert with clinician-patient partnership strategies; education of patients is essential for achieving optimal asthma control.
- At each step, patients should be advised to avoid or control allergens, irritants, or other factors that make the patient’s asthma worse.
- Referral to an asthma specialist for consultation or comanagement is recommended if there are difficulties achieving or maintaining control of asthma or if the patient requires step 4 care. Referral may be considered for patients who require step 3 care. For patients younger than 3 years of age, referral is recommended if the patient requires step 3 or 4 care and should be considered if the patient requires step 2 care.
- New medications are available.
 - Long-acting inhaled beta2-agonists
 - Effective 12-hour bronchodilator
 - Adjunctive therapy to inhaled corticosteroids for maintaining control, especially helpful for nighttime symptoms
 - Not to be used to treat acute symptoms or exacerbations
 - Nedocromil
 - Similar role in therapy as cromolyn sodium, with similar safety profile
 - Leukotriene modifiers
 - Zafirlukast, leukotriene receptor antagonist, and zileuton, 5-lipoxygenase inhibitor
 - May be considered alternative daily long-term-control medications for patients with mild persistent asthma who are 12 years of age and older, but further clinical experience and study are needed to establish their roles in therapy
Component 3: Pharmacologic Therapy

- Increased understanding of inhaled corticosteroids notes that:
 - Inhaled corticosteroids are the most potent inhaled anti-inflammatory agent currently available.
 - Early intervention with inhaled corticosteroids can improve asthma control and normalize lung function and may prevent irreversible airway injury.
 - Higher doses of inhaled corticosteroids may be associated with possible, but not predictable, growth retardation in children. The clinical significance of this potential systemic effect has yet to be determined.
 - Issues regarding clinical comparability and bioavailability of different preparations and different delivery systems indicate the need to adjust doses accordingly.

- Management of asthma exacerbations includes:
 - Inhaled beta₂-agonist to provide prompt relief of airflow obstruction
 - Systemic corticosteroid, for moderate-to-severe exacerbations, to suppress and reverse airway inflammation
 - Oxygen to relieve hypoxia for moderate-to-severe exacerbations
 - Monitoring response to therapy with serial measurements of lung function

Differences from 1991 Expert Panel Report

- Medications are now categorized into two general classes: long-term-control medications used to achieve and maintain control of persistent asthma and quick-relief medications used to treat acute symptoms and exacerbations. However, the updated report continues to emphasize that the most effective medications for long-term therapy are those shown to have anti-inflammatory effects.

- New medications are available—long-acting inhaled beta₂-agonists, nedocromil, zafirlukast, and zileuton—that have positions in therapy for long-term control and prevention of symptoms.

- There is an increased understanding of inhaled corticosteroids and their significant role in asthma therapy. An estimated clinical comparability of different inhaled corticosteroid preparations is presented.

- The stepwise approach to asthma therapy emphasizes initiating higher level therapy at the onset to establish prompt control and then stepping down.

- A new section on asthma in infants and young children incorporates recent studies on wheezing in early childhood.

Selecting the appropriate pharmacologic therapy to achieve and maintain control of asthma involves several considerations: the medications and their routes of administration, a stepwise approach to managing asthma long term as a chronic disorder, and a protocol for managing exacerbations. Each will be discussed in this component. In addition, substantial reports in the literature since publication of the 1991 Expert Panel Report have commented on the safety of regular administration of inhaled beta₂-agonists and the potential adverse effects of inhaled corticosteroids. Because of the importance of these two classes of compounds in the treatment of asthma, it is the opinion of the Panel that special emphasis should be given to these issues. A summary is presented in this component.

The therapeutic strategies provided in this component should be considered in concert with the clinician-patient partnership strategies provided in component 4. Effective communication with, and education of, patients will increase the benefits of the therapeutic regimen.
OVERVIEW OF THE MEDICATIONS

Pharmacologic therapy is used to prevent and control asthma symptoms, reduce the frequency and severity of asthma exacerbations, and reverse airflow obstruction. Recommendations in this component reflect the scientific concept that asthma is a chronic disorder with recurrent episodes of airflow limitation, mucus production, and cough. Asthma medications are thus categorized into two general classes: long-term-control medications taken daily on a long-term basis to achieve and maintain control of persistent asthma (these medications are also known as long-term preventive, controller, or maintenance medications) and quick-relief medications taken to provide prompt reversal of acute airflow obstruction and relief of accompanying bronchoconstriction (these medications are also known as reliever or acute rescue medications). Patients with persistent asthma require both classes of medication. Figures 3-1 and 3-2 present summaries of the indications, mechanisms, potential adverse effects, and therapeutic issues for currently available long-term-control and quick-relief medications.

Long-Term-Control Medications

Long-term-control medications are taken daily on a long-term basis to achieve and maintain control of persistent asthma. They include anti-inflammatory agents, long-acting bronchodilators, and leukotriene modifiers. Because eosinophilic inflammation is a constant feature of the mucosa of the airways in asthma, the most effective long-term-control medications are those that attenuate inflammation (Haahtela et al. 1991; Kerrebijn et al. 1987; van Essen-Zandvliet et al. 1992). The Expert Panel defines anti-inflammatory medications as those that cause a reduction in the markers of airway inflammation in airway tissue or airway secretions (e.g., eosinophils, mast cells, activated lymphocytes, macrophages, and cytokines; or eosinophilic cationic protein and tryptase; or extravascular leakage of albumin, fibrinogen, or other vascular protein) and thus decrease the intensity of airway hyperresponsiveness. Because many factors contribute to the inflammatory response in asthma, many

KEY POINTS: THE MEDICATIONS

Long-term-control medications

- **Corticosteroids**: Most potent and effective anti-inflammatory medication currently available. Inhaled form is used in the long-term control of asthma. Systemic corticosteroids are often used to gain prompt control of the disease when initiating long-term therapy.
- **Cromolyn sodium and nedocromil**: Mild-to-moderate anti-inflammatory medications. May be used as initial choice for long-term-control therapy for children. Can also be used as preventive treatment prior to exercise or unavoidable exposure to known allergens.
- **Long-acting beta2-agonists**: Long-acting bronchodilator used concomitantly with anti-inflammatory medications for long-term control of symptoms, especially nocturnal symptoms. Also prevents exercise-induced bronchospasm (EIB).
- **Methylxanthines**: Sustained-release theophylline is a mild-to-moderate bronchodilator used principally as adjuvant to inhaled corticosteroids for prevention of nocturnal asthma symptoms. May have mild anti-inflammatory effect.
- **Leukotriene modifiers**: Zafirlukast, a leukotriene receptor antagonist, or zileuton, a 5-lipoxygenase inhibitor, may be considered an alternative therapy to low doses of inhaled corticosteroids or cromolyn or nedocromil for patients ≥12 years of age with mild persistent asthma, although further clinical experience and study are needed to establish their roles in asthma therapy.

Quick-relief medications

- **Short-acting beta2-agonists**: Therapy of choice for relief of acute symptoms and prevention of EIB.
- **Anticholinergics**: Ipratropium bromide may provide some additive benefit to inhaled beta2-agonists in severe exacerbations. May be an alternative bronchodilator for patients who do not tolerate inhaled beta2-agonists.
- **Systemic corticosteroids**: Used for moderate-to-severe exacerbations to speed recovery and prevent recurrence of exacerbations.
drugs may be considered anti-inflammatory. It is not yet established, however, which anti-inflammatory actions are responsible for therapeutic effects, such as reduction in symptoms, improvement in expiratory flow, reduction in airway hyperresponsiveness, prevention of exacerbations, or prevention of airway wall remodeling.

Corticosteroids

Corticosteroids are the most potent and consistently effective long-term-control medication for asthma. Their broad action on the inflammatory process may account for their efficacy as preventive therapy. Their clinical effects include reduction in severity of symptoms, improvement in peak expiratory flow and spirometry, diminished airway hyperresponsiveness, prevention of exacerbations, and possibly the prevention of airway wall remodeling (Barnes et al. 1993; Jeffery et al. 1992; Dahl et al. 1993; Fabbri et al. 1993; Gustafsson et al. 1993; Haentela et al. 1991; Kamada et al. 1996; Rafferty et al. 1985; van Essen-Zandvliet et al. 1992). Which of these clinical effects depend on specific anti-inflammatory actions of corticosteroids is not yet clear. Corticosteroids suppress the generation of cytokines, recruitment of airway eosinophils, and release of inflammatory mediators. These anti-inflammatory actions of corticosteroids have been noted in clinical trials and analyses of airway histology (Busse 1993; Booth et al. 1995; Laitinen et al. 1992; D'Alonzo et al. 1994; Djukanovic et al. 1993; Duddridge et al. 1993; Laitinen et al. 1991; Levy et al. 1995; MCGill et al. 1995).

Dosages for inhaled corticosteroids vary depending upon the specific product and delivery devices (see figure 3-5b). For many patients, a twice-a-day dosing schedule maintains control of asthma; even high doses of some preparations are effective when given twice a day (Novan et al. 1995). Some studies show that once-daily dosing is effective in mild persistent asthma (Jones et al. 1994; Pincus et al. 1995).

Cromolyn Sodium and Nedocromil

Although cromolyn and nedocromil have distinct properties (Clark 1993), they have similar anti-inflammatory actions. Their mechanism appears to involve the blockade of chloride channels (Alton and Norris 1996), and they modulate mast cell mediator release and eosinophil recruitment (Eady 1986). They also inhibit the early and late asthmatic response to allergen challenge and exercise-induced bronchospasm (EIB) (Novembre et al. 1994; Alton and Norris 1996; Thompson 1989; Gonzalez and Brogden 1987).

The two compounds are equally effective against allergen challenge (Gonzalez and Brogden 1987), although nedocromil appears to be more potent than cromolyn in inhibiting bronchospasm provoked by exercise (Novembre et al. 1995; deBenedictis et al. 1995), by cold dry air (Juniper et al. 1987), and by bradykinin aerosol (Dixon and Barnes 1989).

Both compounds have been shown to reduce asthma symptoms, improve morning peak flow, and reduce need for quick-relief beta2-agonists (Lal et al. 1993; Schwartz et al. 1996). Two large clinical trials comparing nedocromil MDI 4 mg qid to cromolyn MDI 2 mg qid demonstrated that they are generally comparable in mild allergic patients and that nedocromil was more effective than cromolyn in nonallergic patients using inhaled corticosteroids. Furthermore, nedocromil may have a modest effect in helping reduce the dose requirements for inhaled corticosteroids (Lal et al. 1993; O'Hickey and Rees 1994; Svendsen and Jorgensen 1991), although some studies did not demonstrate this effect (Wong et al. 1993).

Dosing recommendations for both drugs are for administration four times a day, although nedocromil has been shown to be clinically effective with twice-daily dosing (Creticos et al. 1995).

The clinical response to cromolyn and nedocromil is less predictable than the response to inhaled corticosteroids. Both compounds have a strong safety profile.

Long-Acting Beta2-Agonists

The principal action of beta2-agonists is to relax airway smooth muscle by stimulating beta2-receptors, which increases cyclic AMP and produces functional antagonism to bronchoconstriction. Long-acting inhaled beta2-agonists have a duration of bronchodilation of at least 12 hours after a single dose (Becker and Simons 1989; D’Alonzo et al. 1994). This class of medication is not to be used for exacerbations. Rather, it is used as an adjunct to anti-inflammatory therapy for providing long-term control of symptoms, especially nocturnal symptoms (Yates et al. 1995) and to prevent exercise-induced bronchospasm. The use and safety of beta2-agonists are discussed on page 67, Special Issues Regarding Safety.
FIGURE 3-1. LONG-TERM-CONTROL MEDICATIONS

<table>
<thead>
<tr>
<th>Name/Products</th>
<th>Indications/Mechanisms</th>
<th>Potential Adverse Effects</th>
<th>Therapeutic Issues</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corticosteroids</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Glucocorticoids)</td>
<td></td>
<td>Cough, dysphonia, oral thrush (candidiasis).</td>
<td>Spacer/holding chamber devices and mouth washing after inhalation decrease local side effects and systemic absorption.</td>
</tr>
<tr>
<td>Inhaled:</td>
<td>Long-term prevention of symptoms; suppression, control, and reversal of inflammation.</td>
<td>In high doses (see figure 3-5b), systemic effects may occur, although studies are not conclusive, and clinical significance of these effects has not been established (e.g., adrenal suppression, osteoporosis, growth suppression, and skin thinning and easy bruising) (Barnes and Pedersen 1993; Kamada et al. 1996).</td>
<td>Preparations are not absolutely interchangeable on a mcg or per puff basis (see figure 3-5c for estimated clinical comparability). New delivery devices may provide greater delivery to Airways, which may affect dose.</td>
</tr>
<tr>
<td>Beclomethasone dipropionate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Budesonide</td>
<td></td>
<td></td>
<td>The risks of uncontrolled asthma should be weighed against the limited risks of inhaled corticosteroids. The potential but small risk of adverse events is well balanced by their efficacy. (See text.)</td>
</tr>
<tr>
<td>Flunisolide</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluticasone propionate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triamcinolone acetoniode</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Systemic:</td>
<td></td>
<td>Cough, dysphonia, oral thrush (candidiasis).</td>
<td>Dexamethasone is not included because it is highly absorbed and has long-term suppressive side effects.</td>
</tr>
<tr>
<td>Methylprednisolone</td>
<td></td>
<td>In high doses (see figure 3-5b), systemic effects may occur, although studies are not conclusive, and clinical significance of these effects has not been established (e.g., adrenal suppression, osteoporosis, growth suppression, and skin thinning and easy bruising) (Barnes and Pedersen 1993; Kamada et al. 1996).</td>
<td>Dexamethasone is not included because it is highly absorbed and has long-term suppressive side effects.</td>
</tr>
<tr>
<td>Prednisolone</td>
<td></td>
<td>Use at lowest effective dose. For long-term use, alternate-day a.m. dosing produces least toxicity. If daily doses are required, one study shows improved efficacy with no increase in adrenal suppression when administered at 3 p.m. rather than in the morning (Beam et al. 1992).</td>
<td>Dexamethasone is not included because it is highly absorbed and has long-term suppressive side effects.</td>
</tr>
<tr>
<td>Prednisone</td>
<td></td>
<td>Use at lowest effective dose. For long-term use, alternate-day a.m. dosing produces least toxicity. If daily doses are required, one study shows improved efficacy with no increase in adrenal suppression when administered at 3 p.m. rather than in the morning (Beam et al. 1992).</td>
<td>Dexamethasone is not included because it is highly absorbed and has long-term suppressive side effects.</td>
</tr>
</tbody>
</table>
Component 3: Pharmacologic Therapy

Figure 3-1. Long-Term-Control Medications (Continued)

<table>
<thead>
<tr>
<th>Name/Products</th>
<th>Indications/Mechanisms</th>
<th>Potential Adverse Effects</th>
<th>Therapeutic Issues</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cromolyn Sodium</td>
<td>Indications: Long-term prevention of symptoms; may modify inflammation.</td>
<td>15 to 20 percent of patients complain of an unpleasant taste from nedocromil.</td>
<td>Therapeutic response to cromolyn and nedocromil often occurs within 2 weeks, but a 4- to 6-week trial may be needed to determine maximum benefit.</td>
</tr>
<tr>
<td>and Nedocromil</td>
<td>Preventive treatment prior to exposure to exercise or known allergen.</td>
<td></td>
<td>Dose of cromolyn MDI (1 mg/puff) may be inadequate to affect airway hyperresponsiveness. Nebulizer delivery (20 mg/ampule) may be preferred for some patients</td>
</tr>
<tr>
<td></td>
<td>Mechanisms</td>
<td></td>
<td>Safety is the primary advantage of these agents.</td>
</tr>
<tr>
<td></td>
<td>Anti-inflammatory. Block early and late reaction to allergen. Interfere with chloride channel function. Stabilize mast cell membranes and inhibit activation and release of mediators from eosinophils and epithelial cells.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inhibit acute response to exercise, cold dry air, and SO₂.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Long-Acting Beta₂-Agonists</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inhaled:</td>
<td>Indications</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salmeterol</td>
<td>Long-term prevention of symptoms, especially nocturnal symptoms, added to anti-inflammatory therapy</td>
<td></td>
<td>N ot to be used to treat acute symptoms or exacerbations.</td>
</tr>
<tr>
<td></td>
<td>Prevention of exercise-induced bronchospasm.</td>
<td></td>
<td>Clinical significance of potentially developing tolerance is uncertain because studies show symptom control and bronchodilation are maintained.</td>
</tr>
<tr>
<td></td>
<td>Not to be used to treat acute symptoms or exacerbations.</td>
<td></td>
<td>Should not be used in place of anti-inflammatory therapy.</td>
</tr>
<tr>
<td></td>
<td>Mechanisms</td>
<td></td>
<td>May provide more effective symptom control when added to standard doses of inhaled corticosteroid compared to increasing the corticosteroid dosage.</td>
</tr>
<tr>
<td></td>
<td>Bronchodilation. Smooth muscle relaxation following adenylate cyclase activation and increase in cyclic AMP producing functional antagonism of bronchoconstriction.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>In vitro, inhibit mast cell mediator release, decrease vascular permeability, and increase mucociliary clearance.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Compared to short-acting inhaled beta₂-agonist, salmeterol (but not formoterol) has slower onset of action (15 to 30 minutes) but longer duration (> 12 hours).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oral:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Albuterol,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sustained-release</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FIGURE 3-1. LONG-TERM-CONTROL MEDICATIONS (CONTINUED)

<table>
<thead>
<tr>
<th>Name/Products</th>
<th>Indications/Mechanisms</th>
<th>Potential Adverse Effects</th>
<th>Therapeutic Issues</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methylxanthines</td>
<td>Indications</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Theophylline, sustained-release tablets and capsules | ■ Long-term control and prevention of symptoms, especially nocturnal symptoms.
Mechanisms |
| | ■ Bronchodilation. Smooth muscle relaxation from phosphodiesterase inhibition and possibly adenosine antagonism
■ May affect eosinophilic infiltration into bronchial mucosa as well as decrease T-lymphocyte numbers in epithelium
■ Increases diaphragm contractility and mucociliary clearance. | ■ Dose-related acute toxicities include tachycardia, nausea and vomiting, tachyarrhythmias (SVT), central nervous system stimulation, headache, seizures, hematemesis, hyperglycemia, and hypokalemia.
■ Adverse effects at usual therapeutic doses include insomnia, gastric upset, aggravation of ulcer or reflux, increase in hyperactivity in some children, difficulty in urination in elderly males with prostatism. | ■ Maintain steady-state serum concentrations between 5 and 15 mcg/mL. Routine serum concentration monitoring is essential due to significant toxicities, narrow therapeutic range, and individual differences in metabolic clearance. Absorption and metabolism may be affected by numerous factors (see figure 3-5a), which can produce significant changes in steady-state serum theophylline concentrations.
■ Not generally recommended for exacerbations. There is minimal evidence for added benefit to optimal doses of inhaled beta2-agonists. Serum concentration monitoring is mandatory. |
| | **Indications** | | |
| | No specific adverse effects to date. As with any new drug, there is possibility of rare hypersensitivity or idiosyncratic reactions that cannot usually be detected in initial premarketing trials. One reported case of reversible hepatitis and hyperbilirubinemia; high concentrations may develop in patients with liver impairment. | | Administration with meals decreases bioavailability; take at least 1 hour before or 2 hours after meals. |
| | **Mechanisms** |
| | ■ Leukotriene receptor antagonist; selective competitive inhibitor of LTD4 and LTE4 receptors. | | Inhibits the metabolism of warfarin and increases prothrombin time; it is a competitive inhibitor of the CY P2C9 hepatic microsomal isozymes. (It has not affected elimination of terfenadine, theophylline, or ethinyl estradiol drugs metabolized by the CY P3A4 isozymes.) |
| **Leukotriene Modifiers** | **Indications** |
| Zafirlukast tablets | ■ Long-term control and prevention of symptoms in mild persistent asthma for patients ≥12 years of age. | | Zileuton is microsomal CY P3A4 enzyme inhibitor that can inhibit the metabolism of terfenadine, warfarin, and theophylline. Doses of these drugs should be monitored accordingly. |
| | **Mechanisms** |
| | ■ 5-lipoxygenase inhibitor. | Elevation of liver enzymes has been reported. Limited case reports of reversible hepatitis and hyperbilirubinemia. | Monitor hepatic enzymes (ALT). |
| Zileuton tablets | ■ Long-term control and prevention of symptoms in mild persistent asthma for patients ≥12 years of age. | No specific adverse effects to date. As with any new drug, there is possibility of rare hypersensitivity or idiosyncratic reactions that cannot usually be detected in initial premarketing trials. One reported case of reversible hepatitis and hyperbilirubinemia; high concentrations may develop in patients with liver impairment. | **Indications** |
| | **Mechanisms** | Administration with meals decreases bioavailability; take at least 1 hour before or 2 hours after meals. | Inhibits the metabolism of warfarin and increases prothrombin time; it is a competitive inhibitor of the CY P2C9 hepatic microsomal isozymes. (It has not affected elimination of terfenadine, theophylline, or ethinyl estradiol drugs metabolized by the CY P3A4 isozymes.) |
| | **Mechanisms** | Maintenance of steady-state serum concentrations between 5 and 15 mcg/mL. Routine serum concentration monitoring is essential due to significant toxicities, narrow therapeutic range, and individual differences in metabolic clearance. Absorption and metabolism may be affected by numerous factors (see figure 3-5a), which can produce significant changes in steady-state serum theophylline concentrations. | Elevation of liver enzymes has been reported. Limited case reports of reversible hepatitis and hyperbilirubinemia. |
| | **Therapeutic Issues** | Maintain steady-state serum concentrations between 5 and 15 mcg/mL. Routine serum concentration monitoring is essential due to significant toxicities, narrow therapeutic range, and individual differences in metabolic clearance. Absorption and metabolism may be affected by numerous factors (see figure 3-5a), which can produce significant changes in steady-state serum theophylline concentrations. | Zileuton is microsomal CY P3A4 enzyme inhibitor that can inhibit the metabolism of terfenadine, warfarin, and theophylline. Doses of these drugs should be monitored accordingly. |
| | **Therapeutic Issues** | Administration with meals decreases bioavailability; take at least 1 hour before or 2 hours after meals. | Monitor hepatic enzymes (ALT). |
Figure 3-2. Quick-Relief Medications

<table>
<thead>
<tr>
<th>Name/Products</th>
<th>Indications/Mechanisms</th>
<th>Potential Adverse Effects</th>
<th>Therapeutic Issues</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short-Acting</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inhaled Beta2-</td>
<td>Indications</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agonists</td>
<td>■ Relief of acute symptoms; quick-relief medication.</td>
<td>Tachycardia, skeletal muscle tremor, hypokalemia, increased lactic acid, headache, hyperglycemia.</td>
<td>Drugs of choice for acute bronchospasm. Inhaled route has faster onset, fewer adverse effects, and is more effective than systemic routes. The less beta2-selective agents (isoproterenol, metaproterenol, isoetharine, and epinephrine) are not recommended due to their potential for excessive cardiac stimulation, especially in high doses. Albuterol liquid is not recommended.</td>
</tr>
<tr>
<td>Albuterol</td>
<td>■ Preventive treatment prior to exercise for exercise-induced bronchospasm.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bitolterol</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pirbuterol</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terbutaline</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechanisms</td>
<td>■ Bronchodilation. Smooth muscle relaxation following adenylate cyclase activation and increase in cyclic AMP producing functional antagonism of bronchoconstriction.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anticholinergics</td>
<td>Indications</td>
<td>Drying of mouth and respiratory secretions, increased wheezing in some individuals, blurred vision if sprayed in eyes.</td>
<td>Reverses only cholinergically mediated bronchospasm; does not modify reaction to antigen. Does not block exercise-induced bronchospasm.</td>
</tr>
<tr>
<td>Ipratropium bromide</td>
<td>■ Relieve of acute bronchospasm (see Therapeutic Issues column).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechanisms</td>
<td>■ Bronchodilation. Competitive inhibition of muscarinic cholinergic receptors.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>■ Reduces intrinsic vagal tone to the airways. May block reflex bronchoconstriction secondary to irritants or to reflux esophagitis.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>■ May decrease mucus gland secretion.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For patients with mild intermittent asthma, regularly scheduled daily use neither harms nor benefits asthma control (Drazen et al. 1996). Regularly scheduled daily use is not generally recommended.

Increasing use or lack of expected effect indicates inadequate asthma control. >1 canister a month (e.g., albuterol-200 puffs per canister) may indicate overreliance on this drug; >2 canisters in 1 month poses additional adverse risks.

For patients frequently using beta2-agonist, anti-inflammatory medication should be initiated or intensified.

Drying of mouth and respiratory secretions, increased wheezing in some individuals, blurred vision if sprayed in eyes.

Reverses only cholinergically mediated bronchospasm; does not modify reaction to antigen. Does not block exercise-induced bronchospasm.

May provide additive effects to beta2-agonist but has slower onset of action.

Is an alternative for patients with intolerance to beta2-agonists.

Treatment of choice for bronchospasm due to beta-blocker medication.
Corticosteroids

Systemic:
- Methylprednisolone
- Prednisolone
- Prednisone

Indications
- For moderate-to-severe exacerbations to prevent progression of exacerbation, reverse inflammation, speed recovery, and reduce rate of relapse.

Mechanisms
- **Anti-inflammatory.** See figure 3-1.
- Short-term use: reversible abnormalities in glucose metabolism, increased appetite, fluid retention, weight gain, mood alteration, hypertension, peptic ulcer, and rarely aseptic necrosis of femur.
- Consideration should be given to coexisting conditions that could be worsened by systemic corticosteroids, such as herpes virus infections, varicella, tuberculosis, hypertension, peptic ulcer, and Strongyloides.

Potential Adverse Effects
- Short-term therapy should continue until patient achieves 80% PEF personal best or symptoms resolve. This usually requires 3 to 10 days but may require longer.
- There is no evidence that tapering the dose following improvement prevents relapse.

Methylxanthines

Theophylline, the principally used methylxanthine, provides mild-to-moderate bronchodilation in asthma. Although its mechanism of action has yet to be established (Weinberger and Hendeles 1996; Hendeles et al. 1995), recent evidence suggests that low serum concentrations of theophylline are mildly anti-inflammatory (Sullivan et al. 1994; Kidney et al. 1995; Pauwels 1989). Sustained-release theophylline’s main use is as adjuvant therapy, and it is particularly effective for controlling nocturnal asthma symptoms. Sustained-release theophylline may be considered as an alternative, but not preferred, long-term preventive therapy when issues arise concerning cost or adherence to regimens using inhaled medication. Monitoring serum concentration levels is essential to ensure that therapeutic, but not toxic, doses are achieved.

Leukotriene Modifiers

Leukotrienes are potent biochemical mediators released from mast cells, eosinophils, and basophils that contract airway smooth muscle, increase vascular permeability, increase mucus secretions, and attract and activate inflammatory cells in the airways of patients with asthma (Henderson 1994). Two leukotriene modifiers—zafirlukast and zileuton—have recently become available as oral tablets for the treatment of asthma.

From the information currently available, it appears that leukotriene modifiers improve lung function (Gaddy et al. 1992) and diminish symptoms and the need for short-acting inhaled beta_2-agonists. The majority of trials have been conducted in mild-to-moderate asthma, and the improvements noted have been modest. Leukotriene modifiers may be considered an alternative to low-dose inhaled corticosteroid therapy for patients with mild persistent asthma, although increased clinical experience and further study in a wide range of patients are needed to determine those patients most likely to benefit from leukotriene modifiers and to establish a more specific role for leukotriene modifiers in asthma therapy.

Zafirlukast, a leukotriene receptor antagonist, has been demonstrated to attenuate the late response to inhaled allergen and post-allergen induced bronchial responsiveness (Dahlen et al. 1994; Taylor et al. 1991). Studies comparing zafirlukast to placebo in patients with mild-to-moderate asthma demonstrated that patients treated with zafirlukast experienced modest improvement in FEV_1 (mean improvement of 11 percent above placebo), improved symptom scores, and reduced albuterol use (average decline of 1 puff/day) (Spector et al. 1994). In a small study of healthy
males, 60 mg a day of zafirlukast caused a significant increase in the half-life of warfarin. Consequently, for those individuals receiving zafirlukast and warfarin, it will be necessary to closely monitor prothrombin times and adjust doses of warfarin accordingly.

Zileuton, a 5-lipoxygenase inhibitor, has been demonstrated to provide immediate and sustained improvements in FEV1 (mean increase of 15 percent above placebo) in placebo-controlled trials in patients with mild-to-moderate asthma (Israel et al. 1993, 1996). Compared to placebo, the patients with moderate asthma treated with zileuton experienced significantly fewer exacerbations requiring oral corticosteroids (Israel et al. 1996), thus suggesting anti-inflammatory action. Finally, zileuton is capable of attenuating bronchoconstriction from exercise (Meltzer et al. 1996) and from aspirin in aspirin-sensitive individuals (Israel et al. 1993). Because liver toxicity has been found in some subjects receiving zileuton, it is recommended that hepatic enzymes (ALT) be monitored in patients who take this medication. Zileuton is a microsomal CYP3A4 enzyme inhibitor that can inhibit the metabolism of terfenadine, warfarin, and theophylline. Doses of these drugs should be monitored accordingly.

Quick-Relief Medications

Quick-relief medications are used to provide prompt relief of bronchoconstriction and its accompanying acute symptoms such as cough, chest tightness, and wheezing. They include short-acting beta2-agonists and anticholinergics. Although the onset of action is slow (>4 hours), systemic corticosteroids are important in the treatment of moderate-to-severe exacerbations because they prevent progression of the exacerbation, speed recovery, and prevent early relapses.

Short-Acting Beta2-Agonists

Short-acting beta2-agonists relax airway smooth muscle and cause a prompt (within 30 minutes) increase in airflow. Inhaled short-acting beta2-agonists are the drug of choice for treating acute asthma symptoms and exacerbations and for preventing EIB. Concerns about the safety of short-acting beta2-agonists are discussed in another section of this component (see page 67, Special Issues Regarding Safety).

Anticholinergics

Cholinergic innervation is an important factor in the regulation of airway smooth muscle tone. Ipratropium bromide is a quaternary derivative of atropine that does not have atropine's side effects. Ipratropium bromide may provide some additive benefit with inhaled beta2-agonists in severe asthma exacerbations. Its effectiveness in long-term management of asthma has not been demonstrated (Kerstjens et al. 1992; Gross 1988; Storms et al. 1986).

Systemic Corticosteroids

Systemic corticosteroids can speed resolution of airflow obstruction and reduce the rate of relapse (Fanta et al. 1983; Rowe et al. 1992; Scarfone et al. 1993; Connett et al. 1994; Chapman et al. 1991).

Medications To Reduce Oral Systemic Corticosteroid Dependence

Troleandomycin, Cyclosporine, Methotrexate, Gold, Intravenous Immunoglobulin, Dapsone, and Hydroxychloroquine

These regimens to reduce oral systemic corticosteroid dependence should be used only in selected patients who are under the supervision of an asthma specialist. Although some of the compounds have corticosteroid-sparing effects, their use in asthma remains complicated because of highly variable effects, potential toxicity, and limited clinical experience (Bernstein et al. 1996; Jarjour et al. 1996; Mularkey et al. 1988; Shiner et al. 1990; Erzurum et al. 1991; Muralaka et al. 1978; Klaustermeyer et al. 1987; Kamada et al. 1993; Nelson et al. 1993; Alexander et al. 1992; Mazer and Gelfand 1991). Colchicine is not considered effective in reducing need for oral systemic or high doses of inhaled corticosteroids (Newman et al. 1997).

Complementary Alternative Medicine

Alternative healing methods are not substitutes for recommended pharmacologic therapy. Although alternative healing methods may be popular with selected patients and of some interest to investigators, their scientific basis has not been established.

The most widely known complementary alternative medicine methods are acupuncture, homeopathy, herbal medicine, and Ayurvedic medicine (which includes transcendental meditation, herbs, and yoga).
A review of multiple trials on the use of acupuncture in asthma concluded that the trials lacked quality and that the effectiveness of acupuncture in treating asthma has not been established (Kleijnen et al. 1991). One trial, however, demonstrated benefit in EIB (Fung et al. 1986). Homeopathy, based on the “law of similars” and the use of infinitesimally small doses, is as yet unproven for asthma (Reilly et al. 1986); some homeopathic remedies may contain potent unidentified pharmacologic agents (Morice 1986). No controlled clinical trials have been reported on herbal medicines, and the claims of effectiveness of western plant derivatives for asthma remain unsubstantiated (Dorsch and Wagner 1991; Ziment and Stein 1993). Because complementary alternative medicine is reported to be used by as much as one-third of the U.S. population (Eisenberg et al. 1993), it may be important to inquire about all the medications a patient uses and advise the patient accordingly (see component 4).

ROUTE OF ADMINISTRATION

Medications for asthma can be administered either by inhaled or systemic routes. Systemic routes are oral (ingested) or parenteral (subcutaneous, intramuscular, or intravenous). The major advantages of delivering drugs directly into the lungs via inhalation are that higher concentrations can be delivered more effectively to the airways and that systemic side effects are avoided or minimized (Newhouse and Dolovich 1986). Furthermore, the onset of action of inhaled bronchodilators is substantially shorter than that of oral bronchodilators.

Inhaled medications, or aerosols, are available in a variety of devices that differ in technique required and quantity of drug delivered to the lung. See figure 3-3 for a summary of issues to consider for different devices. Whatever device is selected, patients should be instructed in its use and their technique checked regularly.

Most inhaled medications currently used for asthma are available as metered-dose inhalers (MDIs). Historically, MDI technology has utilized chlorofluorocarbons (CFCs) as propellants. CFCs usually constitute 95 percent or more of the formulation emitted from an MDI; CFCs are metabolically stable and even the portion of an actuation that is systemically absorbed is quickly excreted unchanged via exhalation. However, CFCs have been found to deplete stratospheric ozone and have been banned internationally. Although a temporary medical exemption has been granted, it is expected that CFC-propelled MDIs will eventually be phased out completely. Alternatives include MDIs with other propellants (nonchlorinated propellants such as hydrofluoroalkane [HFA] 134a do not have ozone-depleting properties), multidose dry powder inhalers, and other hand-held devices with convenience and delivery characteristics similar to current MDIs. An MDI for albuterol with HFA 134a has been approved for use; additional non-CFC products and delivery systems are expected in the future. The Food and Drug Administration approval process requires that the replacement products demonstrate comparability to the corresponding CFC products so that clinicians and patients can anticipate similar effectiveness and safety with the new products. During the phaseout of CFC products, clinicians will need to be informed of the alternatives and assist their patients in the transition to non-CFC products (see component 4).

SPECIAL ISSUES REGARDING SAFETY

Short-Acting Inhaled Beta₂-Agonists

<table>
<thead>
<tr>
<th>KEY POINTS: SHORT-ACTING INHALED BETA<sub>2</sub>-AGONISTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>■ Short-acting beta<sub>2</sub>-agonists are the most effective medication for relieving acute bronchospasm.</td>
</tr>
<tr>
<td>■ Increasing use of short-acting beta<sub>2</sub>-agonists or the use of more than one canister in 1 month indicates inadequate control of asthma and the need for initiating or intensifying anti-inflammatory therapy.</td>
</tr>
<tr>
<td>■ Regularly scheduled, daily use of short-acting beta<sub>2</sub>-agonists is generally not recommended.</td>
</tr>
</tbody>
</table>

Short-acting inhaled beta₂-agonists (e.g., albuterol) are the medications of choice for treating exacerbations of asthma and for preventing EIB. Prior to 1990, many clinicians prescribed short-acting beta₂-agonists on a regularly scheduled basis in the belief that this treatment regimen improved overall asthma symptom control. Some recent reports, however, have modified these beliefs. For example, in moderate asthma, regular use of a potent inhaled beta₂-agonist (fenoterol) produced a significant diminution in asthma control and objective measurements of pulmonary function (Sears et al. 1990). In mild asthma, regularly scheduled use of albuterol compared to use on an as-needed basis only resulted in no significant differences in a variety of
FIGURE 3-3. AEROSOL DELIVERY DEVICES

<table>
<thead>
<tr>
<th>Device/Drugs</th>
<th>Population</th>
<th>Optimal Technique*</th>
<th>Therapeutic Issues</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metered-dose inhaler (MDI)</td>
<td>> 5 years</td>
<td>Actuation during a slow (30 L/min or 3-5 seconds) deep inhalation, followed by 10-second breath-holding. Under laboratory conditions, open-mouth technique (holding MDI 2 inches away from open mouth) enhances delivery to the lung. However, it has not consistently been shown to enhance clinical benefit compared to closed-mouth technique (closing lips around MDI mouthpiece).</td>
<td>Slow inhalation may be difficult. Difficulty with coordination of actuation and inhalation, particularly in young children and elderly. Patients may incorrectly stop inhalation at actuation. Deposition of 80 percent of actuated dose in oropharynx. Mouth washing is effective in reducing systemic absorption (Selroos and Halme 1991).</td>
</tr>
<tr>
<td>Beta2-agonists</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corticosteroids</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cromolyn sodium and nedocromil</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anticholinergics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Breath-actuated MDI</td>
<td>> 5 years</td>
<td>Slow (30 L/min or 3-5 seconds) inhalation followed by 10-second breath-holding.</td>
<td>Indicated for patients unable to coordinate inhalation and actuation. May be particularly useful in elderly (Newman et al. 1991). Slow inhalation may be difficult and patients may incorrectly stop inhalation at actuation. Requires more rapid inspiration to activate than is optimal for deposition. Cannot be used with currently available spacer/holding chamber devices.</td>
</tr>
<tr>
<td>Beta2-agonists</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dry powder inhaler (DPI)</td>
<td></td>
<td>Rapid (60 L/min or 1-2 seconds), deep inhalation. Minimally effective inspiratory flow is device dependent.</td>
<td>Dose lost if patient exhales through device. Delivery may be > MDI depending on device and technique. Can be used in children 4 years old, but effects are more consistent with children > 5 (Pedersen et al. 1990; Goren et al. 1994; Kemp et al. 1989; Kesten et al. 1994). Most appear to have similar delivery efficiency as MDI either with or without spacer/holding chamber, but some may have delivery > MDI (Thorsson et al. 1994; Agertoft and Pedersen 1993; Kemp et al. 1989; Melchior et al. 1993; Vidgren et al. 1983). Mouth washing is effective in reducing systemic absorption (Selroos and Halme 1991).</td>
</tr>
<tr>
<td>Beta2-agonists</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corticosteroids</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Device/Drugs</td>
<td>Population</td>
<td>Optimal Technique*</td>
<td>Therapeutic Issues</td>
</tr>
<tr>
<td>------------------</td>
<td>---------------------------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Spacer/holding chamber</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

 > 4 years
 < 4 years with face mask

 | Slow (30 L/min or 3-5 seconds) inhalation or tidal breathing immediately following actuation.

 | Actuation only once into spacer/holding chamber per inhalation (O’Callaghan et al. 1994). If face mask is used, allow 3-5 inhalations per actuation (Everard et al. 1992).

 | Easier to use than MDI alone. With a face mask, enables MDI to be used with small children (Everard et al. 1992; Connett et al. 1993). Simple tubes do not obviate coordinating actuation and inhalation. Bulky. Output may be reduced in some devices after cleaning. The larger volume spacers/holding chambers (> 600 cc) may increase lung delivery over MDI alone in patients with poor MDI technique. The effect of a spacer/holding chamber on output from an MDI is dependent on both MDI and spacer type; thus data from one combination should not be extrapolated to all others (Ahrens et al. 1995; Kim et al. 1987).

 | Spacers/holding chambers decrease oropharyngeal deposition and will reduce potential system absorption of inhaled corticosteroid preparations that have higher oral bioavailability (Newman et al. 1984; Brown et al. 1990; Lipworth 1995; Selroos and Halme 1991). Spacers/holding chambers are recommended for all patients on medium-to-high doses of inhaled corticosteroids.

 | May be as effective as nebulizer in delivering high doses of beta2-agonists during severe exacerbations.

| Nebulizer |

 Beta2-agonists
 Cromolyn
 Anticholinergics
 Corticosteroids |

 ≤ 2 years
 Patients of any age who cannot use MDI with spacer/holding chamber or spacer and face mask (e.g., during exacerbations) |

 Slow tidal breathing with occasional deep breaths. Tightly fitting face mask for those unable to use mouthpiece. |

 Less dependent on patient coordination or cooperation.
 Delivery method of choice for cromolyn in children and for high-dose beta2-agonists and anticholinergics in moderate-to-severe exacerbations in all patients.
 Expensive; time consuming; bulky; output is device dependent; and there are significant internebulizer and intranebulizer output variances. |

* See figure 4-3 for description of MDI and DPI techniques.

outcome indices. Although regularly scheduled use of beta2-agonists in mild asthma produced no harmful effects in a 4-month period, it also produced no demonstrable benefits (Drazen et al. 1996). Similar findings were noted in studies with moderate asthma (D’Alonzo et al. 1994; Pearlman et al. 1992). Based on these and other observations (Cockcroft et al. 1993; van Schayck et al. 1991; O’Connor et al. 1992; Mullen et al. 1993; Ernst et al. 1993; Suissa et al. 1994), the regularly scheduled, daily use of short-acting beta2-agonists is not generally recommended.

The frequency of beta2-agonist use can be clinically useful as a barometer of disease activity because increasing use of beta2-agonists has been associated with increased risk for death or near death in patients with asthma (Spitzer et al. 1992). The use of more than one beta2-agonist canister (e.g., albuterol, 200 puffs per canister) predominantly for quick-relief treatment during a 1-month period most likely indicates overreliance on this drug and suggests inadequate asthma control (Spitzer et al. 1992).

Long-Acting Inhaled Beta2-Agonists

- Long-acting beta2-agonists (salmeterol) can be beneficial to patients when added to inhaled corticosteroid therapy, especially to control nighttime symptoms (Greening et al. 1994; Woolcock et al. 1996). Daily use of long-acting beta2-agonists should generally not exceed 84 mcg (salmeterol; four puffs).
- Salmeterol is not to be used for treatment of acute symptoms or exacerbations.
- Patient education regarding correct use of salmeterol is critical.
- Patients should be instructed not to stop anti-inflammatory therapy while taking salmeterol even though their symptoms may significantly improve.

Long-acting beta2-agonists have several beneficial clinical properties. They attenuate EIB for longer time periods than do short-acting beta2-agonists (Green and Price 1992; Henniksen et al. 1992) and improve nocturnal asthma symptoms (Fitzpatrick et al. 1990; Maae et al. 1990). Recent studies suggest that for patients with inadequate symptom control who are receiving low-to-medium doses of inhaled corticosteroids, it may be more beneficial to add salmeterol than to increase the dose of inhaled corticosteroids (Greening et al. 1994; Woolcock et al. 1996). Furthermore, in one study, salmeterol resulted in statistically significant increases in overall quality of life (Juniper et al. 1995) although the clinical significance of the reported differences is not certain.

Several studies report that patients do not appear to develop a tolerance to the bronchodilator action of salmeterol even after months of regular treatment (D’Alonzo et al. 1994; Lotvall et al. 1992; Pearlman et al. 1992; Ullman et al. 1990). In contrast, in bronchoprovocation studies following chronic administration of either short-acting or long-acting beta2-agonists, a decrease was demonstrated in the bronchoprotective effect against exercise (Ramage et al. 1994), allergen (Cockcroft et al. 1993, 1995; Bhagat et al. 1996), and methacholine (Bhagat et al. 1996; Cheung et al. 1992). However, the bronchoprotective effect over time, although diminished, was still significantly greater than placebo. Thus, the clinical importance of the reported decrease in bronchoprotective effect remains uncertain (McFadden 1995).

Following the introduction of salmeterol into clinical practice, case reports of sudden severe attacks of asthma (Clark et al. 1993) raised concerns that in certain asthma patients, under certain conditions, the use of salmeterol may cause a sudden worsening of symptoms and possibly death. A recent randomized study in England compared more than 16,000 patients who received regular salmeterol for a 16-week period with more than 8,000 patients receiving regular (qid) albuterol therapy. The study found more deaths in the salmeterol group; however, the differences did not reach statistical significance (Castle et al. 1993). Nor did a prescription-event monitoring survey demonstrate a statistically significant difference in deaths (Mann et al. 1996). Several large studies have demonstrated that, overall, patients taking salmeterol do not experience an increase in the frequency of exacerbations (Britton et al. 1992; Lundback et al. 1993; Greening et al. 1994; Pearlman et al. 1992; Woolcock et al. 1996). There are ongoing longitudinal studies to determine if there might be risk for special populations. The potential for patients to incorrectly use salmeterol as a quick-relief medication warrants special attention by the clinician and appropriate patient education. Based on current information, long-acting inhaled beta2-agonists should be used only in conjunction with anti-inflammatory medication. When added to inhaled corticosteroids, long-acting inhaled beta2-agonists are helpful long-term-control therapy.
Inhaled Corticosteroids

KEY POINTS: INHALED CORTICOSTEROIDS

- Inhaled corticosteroids are the most effective long-term therapy available for mild, moderate, or severe persistent asthma; in general, inhaled corticosteroids are well tolerated and safe at the recommended dosages.
- The potential but small risk of adverse events from the use of inhaled corticosteroids is well balanced by their efficacy.
- To reduce the potential for adverse effects, the following measures are recommended:
 - Administer inhaled corticosteroids with spacers/holding chambers.
 - Advise patients to rinse their mouths (rinse and spit) following inhalation.
 - Use the lowest possible dose of inhaled corticosteroid to maintain control.
 - To maintain control of asthma (especially for nocturnal symptoms), consider adding a long-acting inhaled beta₂-agonist to a low-to-medium dose of inhaled corticosteroid rather than using a higher dose of inhaled corticosteroid.
 - For children, monitor growth (see box on page 72).
 - For postmenopausal women, consider supplements of calcium (1,000 to 1,500 mg per day) and vitamin D (400 units a day). Estrogen replacement therapy, where appropriate, may be considered for patients on doses that exceed 1,000 mcg of inhaled corticosteroid a day.

Inhaled corticosteroids are the most effective long-term therapy available for patients with persistent asthma. In general, inhaled corticosteroids are well tolerated and safe at the recommended dosages (Barnes 1995; van Essen-Zandvliet et al. 1992; Tinkelman et al. 1993). Systemic effects have been identified, particularly at high doses (see figure 3-5b for a definition of high-, medium-, and low-dose inhaled corticosteroids), but their clinical significance remains unclear. Furthermore, there may be interindividual variations in dose-response effects, and thus some patients may experience effects at lower doses. (See Key Points above for a summary of recommendations to minimize the potential for adverse effects.) In general, the potential for adverse effects must be weighed against the risk of uncontrolled asthma; to date evidence supports the use of inhaled corticosteroids, especially at low and medium doses.

Local Adverse Effects

Oral candidiasis (thrush) is one of the most common adverse effects of inhaled corticosteroids. Positive throat cultures of Candida can be identified in about 45 to 58 percent of patients, whereas clinical thrush is diagnosed in only 0 to 34 percent of patients (Rinehart et al. 1975; Toogood et al. 1980; Shaw and Edmunds 1986). With lower dosages of inhaled corticosteroids, candidiasis is uncommon (5 percent) (Rinehart et al. 1975), although it is more frequent in adults than in children. **Prevention and treatment:** Use a spacer/holding chamber to reduce the incidence of colonization and clinical thrush, rinse mouth with water after inhalation (Selroos and Halme 1991), and administer inhaled corticosteroids less frequently (bid vs. qid). Topical or oral antifungal agents should be used to treat active infections.

Dysphonia is reported in 5 to 50 percent of patients using inhaled corticosteroids and is associated with vocal stress and increasing dosages of inhaled corticosteroids (Toogood et al. 1980). **Prevention and treatment:** Use a spacer/holding chamber, temporarily reduce dosage, or rest for vocal stress.

Reflex cough and bronchospasm can be reduced by slower rates of inspiration and/or use of a spacer/holding chamber or pretreatment with an inhaled beta₂-agonist. There is no convincing evidence that the routine use of an inhaled beta₂-agonist prior to each dose of inhaled corticosteroids increases intrapulmonary delivery of the inhaled corticosteroid or reduces dosage requirement.

Systemic Adverse Effects

Linear Growth. The potential effects of inhaled corticosteroids on children’s growth are important because the drugs are more likely to be used for longer periods of time, although it is recognized that poorly controlled asthma itself may result in retarded linear growth. Growth in children with asthma who have not received any form of corticosteroid therapy may be influenced by concomitant atopy, asthma severity, and being male, among other factors (Kamada and Szefler 1995; Allen 1996). Indeed, childhood asthma appears to be associated with...
KEY POINTS: INHALED CORTICOSTEROIDS AND LINEAR GROWTH IN CHILDREN

- The potential risks of inhaled corticosteroids are well balanced by their benefits.
- Growth rates are highly variable in children. Short-term evaluations may not be predictive of attaining final adult height.
- Poorly controlled asthma may delay growth in children.
- In general, children with asthma tend to have longer periods of reduced growth rates prior to puberty (males > females).
- The potential for adverse effects on linear growth from inhaled corticosteroids appears to be dose dependent. In treating children with mild-to-moderate persistent asthma, medium-dose inhaled corticosteroid therapy may be associated with a possible, but not predictable, adverse effect on linear growth. The clinical significance of this potential systemic effect has yet to be determined. High doses of inhaled corticosteroids have greater potential for growth suppression.
- Use of high doses of inhaled corticosteroids with children with severe persistent asthma has significantly less potential for having an adverse effect on linear growth than oral systemic corticosteroids.
- A majority of studies of the use of inhaled corticosteroids by children have not demonstrated an effect on growth, but a few have identified growth delay. Some caution (e.g., monitoring growth, stepping down therapy when possible) is suggested while this issue is studied further.

Because of these numerous confounding factors, evaluating the effects of systemic or inhaled corticosteroids on growth in children with asthma has been challenging and has led to contradictory findings. A few studies of children with asthma have identified some growth delay in those treated with inhaled corticosteroids, suggesting that some caution may be prudent until this important issue can be studied further. A 1-year controlled trial comparing children with mild-to-moderate asthma receiving either inhaled beclomethasone (400 mcg per day, administered without a spacer/holding chamber) or oral theophylline demonstrated slower growth in children receiving beclomethasone (Tinkelman et al. 1993). In a placebo-controlled, community-based 7-month study of 7- to 9-year-old children to determine the effect on growth during treatment with beclomethasone at 400 mcg/day, growth was significantly decreased in both males and females, and there was no evidence of catchup growth during a 5-month washout period (Doull et al. 1995). However, the results of this short-term study may not reflect effects on long-term growth.

Bone Metabolism/Osteoporosis. The few published observations regarding the effect of inhaled beclomethasone on bone metabolism and osteoporosis are complicated by oral corticosteroid use and small patient populations (Jennings et al. 1991a, 1991b; Toogood et al. 1991). The effects of inhaled corticosteroid on markers of skeletal metabolism—serum osteocalcin, serum alkaline phosphatase, and urinary hydroxyproline:creatinine ratio—are equivocal (Hodsman et al. 1991; Jennings et al. 1991a; Ali et al. 1991). The clinical implications in terms of risk of osteoporosis and fracture after long-term use of inhaled corticosteroids are still unknown (Jennings et al. 1991b; Pouw et al. 1991). Although low and medium dosages of inhaled corticosteroids appear to have no major adverse effects on any clinically important measure of bone metabolism (Toogood et al. 1991, 1995), a dose-dependent, yet significant, reduction in bone mineral content of subjects with asthma has been associated with inhaled corticosteroid use (Packe et al. 1992; Puolijoki et al. 1992; Toogood...
et al. 1988). Elderly female patients may be more at risk due to preexisting osteoporosis, previous use of oral corticosteroids, a sedentary lifestyle, and the normal changes of estrogen in aging that affect calcium utilization. However, the risk of uncontrolled asthma, which may unnecessarily limit the patient’s mobility and activities, must be weighed against the limited risks of using inhaled corticosteroids.

Prevention and treatment: Concurrent treatment with calcium supplements and vitamin D (and estrogen replacement where appropriate) is reasonable.

Disseminated Varicella. Although high doses of inhaled corticosteroids theoretically present risks similar to those of systemic corticosteroids, the reports of disseminated varicella in patients receiving only inhaled corticosteroids are rare, causality is not clear, and there is no evidence that recommended doses of inhaled corticosteroids are immunosuppressive. Cases have been reported of children with severe persistent asthma on immunosuppressive doses of systemic corticosteroids developing fatal disseminated disease from varicella infection (Kasper and Howe 1990; Silk et al. 1988). Other case reports indicate complications for patients with *Strongyloides* or tuberculosis who take high doses of systemic corticosteroids.

Prevention and treatment: Children who require episodic therapy with systemic corticosteroids who have not had clinical varicella should receive the varicella vaccine. The vaccine should not be administered to patients who are receiving immunosuppressive doses of systemic corticosteroids (2 mg/kg or more of prednisone equivalent or 20 mg/day of prednisone for more than 1 month), unless this dosage is discontinued for at least 1 month. Children who have completed a short prednisone course may receive varicella vaccine without delay (American Academy of Pediatrics 1995; CDC 1994). Children and adults on treatment with immunosuppressive doses of corticosteroids who have not been immunized against varicella and are exposed to varicella infection are candidates for zoster immunoglobulin and therapy with oral acyclovir. Should they develop clinical varicella, intravenous acyclovir with or without zoster immunoglobulin should be given.

Dermal thinning and increased ease of skin bruising have been observed in elderly subjects treated with inhaled corticosteroids. The effect is dose dependent, but the threshold dose is variable (Capewell et al. 1990).

Hypothalamic Pituitary Axis (HPA) Function. The issue of inhaled corticosteroid effects on HPA function is complex and requires further study. Several studies indicate that low-to-medium doses of inhaled corticosteroids do not appear to have significant effects on HPA function (Doull et al. 1995; Goldstein and König 1983). However, some studies showed that, compared with placebo, both beclomethasone and budesonide reduced the 24-hour urinary cortisol excretion even in doses as low as 400 to 500 mcg daily (Tabachnik and Zadik 1991; Prahl 1991). At higher doses, there appears to be a dose-dependent effect on different measures of HPA function (Kamada et al. 1996; Brown et al. 1993). Fluticasone caused greater adrenal suppression at doses of 400 to 2,000 mcg than budesonide in equivalent doses (Clark et al. 1996; Boorsma et al. 1996). The clinical significance, if any, of these findings is not known.

Cataracts. Although cataracts are a documented adverse effect of systemic corticosteroids, there appears to be no association between inhaled corticosteroids and posterior subcapsular cataracts in adults (Toogood et al. 1993) or children (Simons et al. 1993; Rooklin et al. 1979).

Glucose Metabolism. In a study of children, inhaled corticosteroids at dosages from 400 to 1,000 mcg/day (budesonide) failed to affect fasting glucose or glycated hemoglobin (Turpeinen et al. 1991). At 1,000 mcg/day, a significantly greater rise in fasting serum insulin levels and glucose during a glucose tolerance test was noted, but results remained within normal limits.

REFERENCES

Ahrens R, Lux C, Bahl T, Hans H. Choosing the metered-dose inhaler spacer or holding chamber that matches the patient’s needs: evidence that the specific drug being delivered is an important consideration. *J Allergy Clin Immunol* 1995;96:288-94.

Clark DJ, Grove A, Cargill RL, Lipworth BJ. Comparative adrenal suppression with inhaled budesonide and fluticasone propionate in adult asthmatic patients. Thorax 1996;51:262-6.

Israel E, Cohn J, Dubé L, Drazen JM. Effect of treatment with zileuton, a 5-lipoxygenase inhibitor, in patients with asthma. JAMA 1996;275:931-6.

Mazer BD, Gelfand EW. An open-label study of high-dose intravenous immunoglobulin in severe childhood asthma. J Allergy Clin Immunol 1991;87:976-83.

Morice A. Adulterated “homeopathic” care for asthma. Lancet 1986;1:862-3.

Thorsson L, Edsbacker S, Conradson TB. Lung deposition of budesonide from Turbuhaler is twice that from a pressurized metered-dose inhaler P-MDI. Eur Respir J 1994;7:1839-44.

Pharmacologic Therapy: Managing Asthma Long Term

KEY RECOMMENDATIONS FOR MANAGING ASTHMA LONG TERM

- Persistent asthma is most effectively controlled with daily long-term-control medication, specifically, anti-inflammatory therapy.
- A stepwise approach to pharmacologic therapy is recommended to gain and maintain control of asthma:
 - The amount and frequency of medication is dictated by asthma severity and directed toward suppression of airway inflammation.
 - Therapy should be initiated at a higher level than the patient's step of severity at the onset to establish prompt control and then stepped down.
 - Continual monitoring is essential to ensure that asthma control is achieved.
 - Step-down therapy is essential to identify the minimum medication necessary to maintain control.
- Regular followup visits (at 1- to 6-month intervals) are essential to ensure that control is maintained and the appropriate step down in therapy is considered.
- Therapeutic strategies should be considered in concert with clinician-patient partnership strategies; education of patients is essential for achieving optimal pharmacologic therapy.
- At each step, patients should be advised to avoid or control allergens, irritants, or other factors that make the patient's asthma worse.
- Referral to an asthma specialist for consultation or comanagement of the patient is recommended if there are difficulties achieving or maintaining control of asthma or if the patient requires step 4 care (see component 1-Initial Assessment and Diagnosis). Referral may be considered if the patient requires step 3 care. For infants and young children, referral is recommended if the patient requires step 3 or 4 care and should be considered if the patient requires step 2 care.

STEPWISE APPROACH FOR MANAGING ASTHMA IN ADULTS AND CHILDREN OLDER THAN 5 YEARS OF AGE

The aim of asthma therapy is to maintain control of asthma with the least amount of medication and hence minimal risk for adverse effects. Control of asthma is defined as:

- Preventing chronic and troublesome symptoms (e.g., coughing or breathlessness in the night, in the early morning, or after exertion)
- Maintaining (near) “normal” pulmonary function
- Maintaining normal activity levels (including exercise and other physical activity)
- Preventing recurrent exacerbations of asthma and minimizing the need for emergency department visits or hospitalizations
- Providing optimal pharmacotherapy with minimal or no adverse effects
- Meeting patients’ and families’ expectations of and satisfaction with asthma care

The stepwise approach to therapy, in which the dose and number of medications and frequency of administration are increased as necessary and decreased when possible, is used to achieve this control. This is illustrated in figures 3-4a and 3-4b. Figures 3-5a and 3-5d present usual medication dosages for therapy. Because asthma is a chronic inflammatory disorder of the airways with recurrent exacerbations, therapy for persistent asthma must emphasize efforts to suppress inflammation over the long term and prevent exacerbations. Recommendations in the stepwise approach to therapy are based on the Expert Panel's review of the literature (see component 3-Medications) and the Expert Panel's experience and opinion.
Gaining Control of Asthma

The clinician must judge individual patient needs and circumstances to determine at what step to initiate therapy. There are two appropriate approaches to gaining control of asthma:

- Start treatment at the step appropriate to the severity of the patient’s disease at the time of evaluation and gradually step up if control is not achieved.

OR

- At the onset, administer therapy at a level higher than the patient’s step of severity to gain rapid control. This can be accomplished by either a short course of systemic corticosteroids (see figure 3-5a) along with inhaled corticosteroids or initiating a medium-to-high dose of inhaled corticosteroids. Once control is gained, step down the therapy.

The two approaches are illustrated by the solid and broken lines in the following diagram.

The more aggressive approach of gaining prompt control with a higher level of therapy is preferred, in the opinion of the Expert Panel. At present, there are no studies directly comparing the two approaches— the traditional step-up care (low dose to high) vs. step-down care (initial high dose to low). However, there is evidence supporting a more aggressive initial approach. First, asthma symptoms and altered pulmonary function are related to the level of ongoing airway inflammation. Suppression of airway inflammation is more likely to occur with higher doses of corticosteroids. Furthermore, studies indicate that the dose of inhaled or systemic corticosteroids can be reduced and the clinical benefits sustained once the disease is controlled (Haahtela et al. 1994; Agertoft and Pedersen 1994). A preliminary observation in a retrospective study of children suggests that initiating inhaled corticosteroids early in the course of the disease results in better clinical benefit and less accumulated corticosteroid dose over the long term (Agertoft and Pedersen 1994). Therefore, it is conceivable that a more aggressive approach in initial therapy will more rapidly suppress airway inflammation, restore pulmonary function, and allow for eventual asthma control at lower doses of anti-inflammatory therapy.

Continual monitoring is essential to ensure that asthma control is achieved. Control is indicated by, for example, peak expiratory flow (PEF) values indicating less than 10 to 20 percent variability or PEF consistently greater than 80 percent of the patient’s personal best, minimal symptoms, minimal need for short-acting inhaled beta₂-agonist, absence of nighttime awakenings, and no activity limitations.

If control is not achieved with initial therapy (e.g., within 1 month), the pharmacologic management plan, and possibly the diagnosis, should be reevaluated (see Pharmacologic Steps, page 87).

Maintaining Control of Asthma

Once control is achieved and sustained for several weeks or months, a reduction in pharmacologic therapy— a step down— is appropriate and helpful to identify the minimum therapy for maintaining control. Reduction in therapy should be gradual because asthma can deteriorate at a highly variable rate and intensity.

In general, the last medication added to the medical regimen should be the first medication reduced. Although guidelines for the rate of reduction and intervals for evaluation have not been established, the opinion of the Expert Panel is that the dose of inhaled corticosteroids may be reduced about
FIGURE 3-4a. STEPWISE APPROACH FOR MANAGING ASTHMA IN ADULTS AND CHILDREN OLDER THAN 5 YEARS OF AGE

Goals of Asthma Treatment

- Prevent chronic and troublesome symptoms (e.g., coughing or breathlessness in the night, in the early morning, or after exertion)
- Maintain (near) “normal” pulmonary function
- Maintain normal activity levels (including exercise and other physical activity)
- Prevent recurrent exacerbations of asthma and minimize the need for emergency department visits or hospitalizations
- Provide optimal pharmacotherapy with minimal or no adverse effects
- Meet patients’ and families’ expectations of and satisfaction with asthma care

Classify Severity of Asthma

Clinical Features Before Treatment

<table>
<thead>
<tr>
<th>Symptoms**</th>
<th>Nighttime Symptoms</th>
<th>Lung Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>STEP 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Severe Persistent</td>
<td>Continual symptoms</td>
<td>Frequent</td>
</tr>
<tr>
<td></td>
<td>Limited physical activity</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Frequent exacerbations</td>
<td></td>
</tr>
<tr>
<td>STEP 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moderate Persistent</td>
<td>Daily symptoms</td>
<td>> 1 time a week</td>
</tr>
<tr>
<td></td>
<td>Daily use of inhaled short-acting beta₂-agonist</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exacerbations affect activity</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exacerbations ≥2 times a week; may last days</td>
<td></td>
</tr>
<tr>
<td>STEP 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mild Persistent</td>
<td>Symptoms > 2 times a week but ≤ 1 time a day</td>
<td>> 2 times a month</td>
</tr>
<tr>
<td></td>
<td>Exacerbations may affect activity</td>
<td></td>
</tr>
<tr>
<td>STEP 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mild Intermittent</td>
<td>Symptoms ≤ 2 times a week</td>
<td>≤ 2 times a month</td>
</tr>
<tr>
<td></td>
<td>Asymptomatic and normal PEF between exacerbations</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exacerbations brief (from a few hours to a few days); intensity may vary</td>
<td></td>
</tr>
</tbody>
</table>

The presence of one of the features of severity is sufficient to place a patient in that category. An individual should be assigned to the most severe grade in which any feature occurs. The characteristics noted in this figure are general and may overlap because asthma is highly variable. Furthermore, an individual’s classification may change over time.

Patients at any level of severity can have mild, moderate, or severe exacerbations. Some patients with intermittent asthma experience severe and life-threatening exacerbations separated by long periods of normal lung function and no symptoms.
Component 3: Pharmacologic Therapy

Long-Term Control

STEP 4 Severe Persistent

<table>
<thead>
<tr>
<th>Daily medications:</th>
<th>Quick Relief</th>
<th>Education</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-inflammatory: inhaled corticosteroid (high dose) AND Long-acting bronchodilator: either long-acting inhaled beta2-agonist, sustained-release theophylline, or long-acting beta2-agonist tablets AND Corticosteroid tablets or syrup long term (make repeat attempts to reduce systemic steroids and maintain control with high dose inhaled steroids)</td>
<td>Short-acting bronchodilator: inhaled beta2-agonists as needed for symptoms. Intensity of treatment will depend on severity of exacerbation; see component 3-Managing Exacerbations. Use of short-acting inhaled beta2-agonists on a daily basis, or increasing use, indicates the need for additional long-term-control therapy.</td>
<td>Steps 2 and 3 actions plus: Refer to individual education/counseling</td>
</tr>
</tbody>
</table>

STEP 3 Moderate Persistent

<table>
<thead>
<tr>
<th>Daily medication:</th>
<th>Quick Relief</th>
<th>Education</th>
</tr>
</thead>
<tbody>
<tr>
<td>Either Anti-inflammatory: inhaled corticosteroid (medium dose) OR Inhaled corticosteroid (low-medium dose) and add a long-acting bronchodilator, especially for nighttime symptoms; either long-acting inhaled beta2-agonist, sustained-release theophylline, or long-acting beta2-agonist tablets. If needed Anti-inflammatory: inhaled corticosteroids (medium-high dose) AND Long-acting bronchodilator, especially for nighttime symptoms; either long-acting inhaled beta2-agonist, sustained-release theophylline, or long-acting beta2-agonist tablets.</td>
<td>Short-acting bronchodilator: inhaled beta2-agonists as needed for symptoms. Intensity of treatment will depend on severity of exacerbation; see component 3-Managing Exacerbations. Use of short-acting inhaled beta2-agonists on a daily basis, or increasing use, indicates the need for additional long-term-control therapy.</td>
<td>Step 1 actions plus: Teach self-monitoring Refer to group education if available Review and update self-management plan</td>
</tr>
</tbody>
</table>

FIGURE 3-4b. STEPWISE APPROACH FOR MANAGING ASTHMA IN ADULTS AND CHILDREN OLDER THAN 5 YEARS OF AGE: TREATMENT

- Preferred treatments are in bold print.
Long-Term Control

STEP 2

Mild Persistent

- **Long-Term Control**
 - One daily medication:
 - **Anti-inflammatory:** either inhaled corticosteroid (low doses) or cromolyn or nedocromil (children usually begin with a trial of cromolyn or nedocromil).
 - Sustained-release theophylline to serum concentration of 5-15 mcg/mL is an alternative, but not preferred, therapy. Zafirlukast or zileuton may also be considered for patients ≥12 years of age, although their position in therapy is not fully established.

Quick Relief

- Short-acting bronchodilator: inhaled beta₂-agonists as needed for symptoms.
- Intensity of treatment will depend on severity of exacerbation; see component 3-Managing Exacerbations.
- Use of short-acting inhaled beta₂-agonists on a daily basis, or increasing use, indicates the need for additional long-term-control therapy.

Education

- Step 1 actions plus:
 - Teach self-monitoring
 - Refer to group education if available
 - Review and update self-management plan

NOTE:

- The stepwise approach presents general guidelines to assist clinical decisionmaking; it is not intended to be a specific prescription. Asthma is highly variable; clinicians should tailor specific medication plans to the needs and circumstances of individual patients.
- Gain control as quickly as possible; then decrease treatment to the least medication necessary to maintain control. Gaining control may be accomplished by either starting treatment at the step most appropriate to the initial severity of the condition or starting at a higher level of therapy (e.g., a course of systemic corticosteroids or higher dose of inhaled corticosteroids).
- A rescue course of systemic corticosteroids may be needed at any time and at any step.
- Some patients with intermittent asthma experience severe and life-threatening exacerbations separated by long periods of normal lung function and no symptoms. This may be especially common with exacerbations provoked by respiratory infections. A short course of systemic corticosteroids is recommended.
- At each step, patients should control their environment to avoid or control factors that make their asthma worse (e.g., allergens, irritants); this requires specific diagnosis and education.
- Referral to an asthma specialist for consultation or comanagement is recommended if there are difficulties achieving or maintaining control of asthma or if the patient requires step 4 care. Referral may be considered if the patient requires step 3 care (see also component 1-Initial Assessment and Diagnosis).
Component 3: Pharmacologic Therapy

Figure 3.5a. Usual Dosages for Long-Term-Control Medications

<table>
<thead>
<tr>
<th>Medication</th>
<th>Dosage Form</th>
<th>Adult Dose</th>
<th>Child Dose</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inhaled Corticosteroids (see figures 3-5b and 3-5c)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methylprednisolone</td>
<td>2, 4, 8, 16, 32 mg tablets</td>
<td>7.5–60 mg daily in a single dose or qod as needed for control</td>
<td>0.25–2 mg/kg daily in single dose or qod as needed for control</td>
<td>For long-term treatment of severe persistent asthma, administer single dose in a.m. either daily or on alternate days (alternate-day therapy may produce less adrenal suppression). If daily doses are required, one study suggests improved efficacy and no increase in adrenal suppression when administered at 3:00 p.m. (Beam et al. 1992).</td>
</tr>
<tr>
<td>Prednisolone</td>
<td>5 mg tablets, 5 mg/5 cc, 15 mg/5 cc</td>
<td>Short-course “burst”: 40–60 mg per day as single or 2 divided doses for 3–10 days</td>
<td>Short course “burst”: 1–2 mg/kg/day, maximum 60 mg/day, for 3–10 days</td>
<td></td>
</tr>
<tr>
<td>Prednisone</td>
<td>1, 2.5, 5, 10, 20, 25 mg tablets; 5 mg/cc, 5 mg/5 cc</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Systemic Corticosteroids</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methylprednisolone</td>
<td>2, 4, 8, 16, 32 mg tablets</td>
<td>7.5–60 mg daily in a single dose or qod as needed for control</td>
<td>0.25–2 mg/kg daily in single dose or qod as needed for control</td>
<td>For long-term treatment of severe persistent asthma, administer single dose in a.m. either daily or on alternate days (alternate-day therapy may produce less adrenal suppression). If daily doses are required, one study suggests improved efficacy and no increase in adrenal suppression when administered at 3:00 p.m. (Beam et al. 1992).</td>
</tr>
<tr>
<td>Prednisolone</td>
<td>5 mg tablets, 5 mg/5 cc, 15 mg/5 cc</td>
<td>Short-course “burst”: 40–60 mg per day as single or 2 divided doses for 3–10 days</td>
<td>Short course “burst”: 1–2 mg/kg/day, maximum 60 mg/day, for 3–10 days</td>
<td></td>
</tr>
<tr>
<td>Prednisone</td>
<td>1, 2.5, 5, 10, 20, 25 mg tablets; 5 mg/cc, 5 mg/5 cc</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cromolyn and Nedocromil</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cromolyn</td>
<td>MDI 1 mg/puff 1 ampule tid-qid</td>
<td>1–2 puffs tid-qid</td>
<td>1–2 puffs tid-qid</td>
<td>One dose prior to exercise or allergen exposure provides effective prophylaxis for 1–2 hours.</td>
</tr>
<tr>
<td>Nedocromil</td>
<td>MDI 1.75 mg/puff 20 mg/ampule</td>
<td>2–4 puffs tid-qid</td>
<td>1–2 puffs tid-qid</td>
<td>See cromolyn above.</td>
</tr>
<tr>
<td>Long-Acting Beta2-Agonists</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salmeterol</td>
<td>MDI 21 mcg/puff, 60 or 120 puffs</td>
<td>2 puffs q 12 hours</td>
<td>1–2 puffs q 12 hours</td>
<td>May use one dose nightly for symptoms. Should not be used for symptom relief or for exacerbations.</td>
</tr>
<tr>
<td></td>
<td>DPI 50 mcg/blister</td>
<td>1 blister q 12 hours</td>
<td>1 blister q 12 hours</td>
<td></td>
</tr>
<tr>
<td>Albuterol</td>
<td>Tablet 4 mg tablet</td>
<td>4 mg q 12 hours</td>
<td>0.3–0.6 mg/kg/day, not to exceed 8 mg/day</td>
<td></td>
</tr>
<tr>
<td>Methylxanthines</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Theophylline</td>
<td>Liquids, sustained-release tablets, and capsules</td>
<td>Starting dose 10 mg/kg/day up to 300 mg max; usual max 800 mg/day</td>
<td>Starting dose 10 mg/kg/day; usual max: ≤ 1 year of age: 0.2 (age in weeks) + 5 = mg/kg/day ≥ 1 year of age: 16 mg/kg/day</td>
<td>Adjust dosage to achieve serum concentration of 5–15 mcg/mL at steady-state (at least 48 hours on same dosage). Due to wide interpatient variability in theophylline metabolic clearance, routine serum theophylline level monitoring is important. See factors on page 87 that can affect levels.</td>
</tr>
<tr>
<td>Leukotriene Modifiers</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zafirlukast</td>
<td>20 mg tablet</td>
<td>40 mg daily (1 tablet bid)</td>
<td></td>
<td>For zafirlukast, administration with meals decreases bioavailability; take at least 1 hour before or 2 hours after meals.</td>
</tr>
<tr>
<td>Zileuton</td>
<td>300 mg tablet, 600 mg tablet</td>
<td>2,400 mg daily (two 300 mg tablets or one 600 mg tablet, qid)</td>
<td></td>
<td>For zileuton, monitor hepatic enzymes (ALT).</td>
</tr>
</tbody>
</table>
25 percent every 2 to 3 months to the lowest dose possible required to maintain control. It is likely that most patients with persistent asthma will continue to benefit from daily medication to suppress underlying airway inflammation. Patients may relapse when inhaled corticosteroids are completely discontinued (Waalkens et al. 1993).

Regular followup visits (at 1- to 6-month intervals) are essential. Clinicians need to assess whether control of asthma has been maintained and if a step down in therapy is appropriate. Clinicians also need to monitor and review the daily self-management and action plans, the medications, and the patient’s self-management behaviors (e.g., inhaler and peak flow monitoring techniques, actions to control factors that aggravate their asthma) (see figure 4-2).

The Expert Panel recommends referral to an asthma specialist for consultation or comanagement of the patient if: there are difficulties achieving or maintaining control of asthma; immunotherapy is being considered; the patient requires step 4 care (step 3 or 4 care for infants and young children); or the patient has had a life-threatening exacerbation (see component 1-Initial Assessment and Diagnosis). Referral may be considered if a patient requires step 3 care (or step 2 care for infants and young children).

Pharmacologic Steps

The following recommendations for pharmacologic therapy at different steps of asthma severity (see figures 3-4a and 3-4b) are intended to be general guidelines for making therapeutic decisions. They are not

Factors Affecting Serum Theophylline Concentrations

<table>
<thead>
<tr>
<th>Factor</th>
<th>Decreases Theophylline Concentrations</th>
<th>Increases Theophylline Concentrations</th>
<th>Recommended Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Food</td>
<td>↓ or delays absorption of some sustained-release theophylline (SRT) products</td>
<td>↑ rate of absorption (fatty foods) products</td>
<td>Select theophylline preparation that is not affected by food.</td>
</tr>
<tr>
<td>Diet</td>
<td>↑ metabolism (high protein)</td>
<td>↓ metabolism (high carbohydrate)</td>
<td>Inform patients that major changes in diet are not recommended while taking theophylline.</td>
</tr>
<tr>
<td>Systemic, febrile viral illness (e.g., influenza)</td>
<td>↓ metabolism</td>
<td></td>
<td>Decrease theophylline dose according to serum concentration level. Decrease dose by 50 percent if serum concentration measurement is not available.</td>
</tr>
<tr>
<td>Hypoxia, cor pulmonale, and decompensated congestive heart failure, cirrhosis</td>
<td>↓ metabolism</td>
<td></td>
<td>Decrease dose according to serum concentration level.</td>
</tr>
<tr>
<td>Age</td>
<td>↑ metabolism (1 to 9 years)</td>
<td>↓ metabolism (<6 months, elderly)</td>
<td>Adjust dose according to serum concentration level.</td>
</tr>
<tr>
<td>Phenobarbital, phenytoin, carbamazepine</td>
<td>↑ metabolism</td>
<td></td>
<td>Increase dose according to serum concentration level.</td>
</tr>
<tr>
<td>Cimetidine</td>
<td>↓ metabolism</td>
<td></td>
<td>Use alternative H₂ blocker (e.g., famotidine or ranitidine).</td>
</tr>
<tr>
<td>Macrolides: TAO, erythromycin, clarithromycin</td>
<td>↓ metabolism</td>
<td></td>
<td>Use alternative antibiotic or adjust theophylline dose.</td>
</tr>
<tr>
<td>Quinolones: ciprofloxacin, enoxacin, pefloxacin</td>
<td>↓ metabolism</td>
<td></td>
<td>Use alternative antibiotic or adjust theophylline dose. Circumvent with ofloxacin if quinolone therapy is required.</td>
</tr>
<tr>
<td>Rifampin</td>
<td>↑ metabolism</td>
<td></td>
<td>Increase dose according to serum concentration level.</td>
</tr>
<tr>
<td>Ticlopidine</td>
<td>↓ metabolism</td>
<td></td>
<td>Decrease dose according to serum concentration level.</td>
</tr>
<tr>
<td>Smoking</td>
<td>↑ metabolism</td>
<td></td>
<td>Advise patient to stop smoking; increase dose according to serum concentration level.</td>
</tr>
</tbody>
</table>

* This list is not all-inclusive; for discussion of other factors, see package inserts.
FIGURE 3-5b. ESTIMATED COMPARATIVE DAILY DOSAGES FOR INHALED CORTICOSTEROIDS

Adults

<table>
<thead>
<tr>
<th>Drug</th>
<th>Low Dose</th>
<th>Medium Dose</th>
<th>High Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beclomethasone dipropionate 42 mcg/puff</td>
<td>168-504 mcg (4-12 puffs — 42 mcg)</td>
<td>504-840 mcg (12-20 puffs — 42 mcg)</td>
<td>> 840 mcg (> 20 puffs — 42 mcg)</td>
</tr>
<tr>
<td>Beclomethasone dipropionate 84 mcg/puff</td>
<td>324-1008 mcg (8-40 puffs — 84 mcg)</td>
<td>1008-2700 mcg (24-70 puffs — 100 mcg)</td>
<td>> 2700 mcg (> 70 puffs — 100 mcg)</td>
</tr>
<tr>
<td>Budesonide DPI: 200 mcg/dose</td>
<td>200-400 mcg (1-2 inhalations)</td>
<td>400-600 mcg (2-3 inhalations)</td>
<td>> 600 mcg (> 3 inhalations)</td>
</tr>
<tr>
<td>Flunisolide 250 mcg/puff</td>
<td>500-1,000 mcg (2-4 puffs)</td>
<td>1,000-2,000 mcg (4-8 puffs)</td>
<td>> 2,000 mcg (> 8 puffs)</td>
</tr>
<tr>
<td>Fluticasone MDI: 44, 110, 220 mcg/puff</td>
<td>88-264 mcg (2-6 puffs — 44 mcg) OR (2-6 puffs — 110 mcg)</td>
<td>264-660 mcg (4-10 puffs — 110 mcg)</td>
<td>> 660 mcg (> 10 puffs — 110 mcg) OR (> 3 puffs — 220 mcg)</td>
</tr>
<tr>
<td>Fluticasone DPI: 50, 100, 250 mcg/dose</td>
<td>200-500 mcg (2-6 inhalations — 50 mcg)</td>
<td>500-1000 mcg (3-6 inhalations — 100 mcg)</td>
<td>> 1000 mcg (> 6 inhalations — 100 mcg) OR (> 2 inhalations — 250 mcg)</td>
</tr>
<tr>
<td>Triamcinolone acetonide 100 mcg/puff</td>
<td>400-1,000 mcg (4-10 puffs)</td>
<td>1,000-2,000 mcg (10-20 puffs)</td>
<td>> 2,000 mcg (> 20 puffs)</td>
</tr>
</tbody>
</table>

Children

<table>
<thead>
<tr>
<th>Drug</th>
<th>Low Dose</th>
<th>Medium Dose</th>
<th>High Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beclomethasone dipropionate 42 mcg/puff</td>
<td>84-336 mcg (2-8 puffs — 42 mcg)</td>
<td>336-672 mcg (8-16 puffs — 42 mcg)</td>
<td>> 672 mcg (> 16 puffs — 42 mcg)</td>
</tr>
<tr>
<td>Beclomethasone dipropionate 84 mcg/puff</td>
<td>168-672 mcg (4-32 puffs — 84 mcg)</td>
<td>672-1344 mcg (16-32 puffs — 84 mcg)</td>
<td>> 1344 mcg (> 32 puffs — 84 mcg)</td>
</tr>
<tr>
<td>Budesonide DPI: 200 mcg/dose</td>
<td>100-200 mcg (1-2 inhalations)</td>
<td>200-400 mcg (2-4 inhalations — 200 mcg)</td>
<td>> 400 mcg (> 4 inhalations — 200 mcg)</td>
</tr>
<tr>
<td>Flunisolide 250 mcg/puff</td>
<td>500-750 mcg (2-3 puffs)</td>
<td>1,000-1,250 mcg (4-5 puffs)</td>
<td>> 1,250 mcg (> 5 puffs)</td>
</tr>
<tr>
<td>Fluticasone MDI: 44, 110, 220 mcg/puff</td>
<td>88-176 mcg (2-4 puffs — 44 mcg) OR (2-4 puffs — 110 mcg)</td>
<td>176-440 mcg (4-10 puffs — 110 mcg) OR (4-10 puffs — 220 mcg)</td>
<td>> 440 mcg (> 10 puffs — 110 mcg) OR (> 2 puffs — 220 mcg)</td>
</tr>
<tr>
<td>Fluticasone DPI: 50, 100, 250 mcg/dose</td>
<td>200-400 mcg (2-4 inhalations — 50 mcg)</td>
<td>400-800 mcg (3-6 inhalations — 100 mcg) OR (3-6 inhalations — 250 mcg)</td>
<td>> 800 mcg (> 6 inhalations — 100 mcg) OR (> 2 inhalations — 250 mcg)</td>
</tr>
<tr>
<td>Triamcinolone acetonide 100 mcg/puff</td>
<td>400-800 mcg (4-8 puffs)</td>
<td>800-1,200 mcg (8-12 puffs)</td>
<td>> 1,200 mcg (> 12 puffs)</td>
</tr>
</tbody>
</table>

Note:
- **The most important determinant of appropriate dosing is the clinician's judgment of the patient's response to therapy.** The clinician must monitor the patient's response on several clinical parameters and adjust the dose accordingly. The stepwise approach to therapy emphasizes that once control of asthma is achieved, the dose of medication should be carefully titrated to the minimum dose required to maintain control, thus reducing the potential for adverse effect.
- See figure 3-5c for an explanation of the rationale used for the comparative dosages. The reference point for the range in the dosages for children is data on the safety of inhaled corticosteroids in children, which, in general, suggest that the dose ranges are equivalent to beclomethasone dipropionate 200-400 mcg/day (low dose), 400-800 mcg/day (medium dose), and > 800 mcg/day (high dose).
- Some dosages may be outside package labeling.
- Metered-dose inhaler (MDI) dosages are expressed as the actuator dose (the amount of drug leaving the actuator and delivered to the patient), which is the labeling required in the United States. This is different from the dosage expressed as the valve dose (the amount of drug leaving the valve, all of which is not available to the patient), which is used in many European countries and in some of the scientific literature. Dry powder inhaler (DPI) dosages are expressed as the amount of drug in the inhaler following activation.

88
Data from in vitro and clinical trials suggest that the different inhaled corticosteroid preparations are not equivalent on a per puff or microgram basis. However, it is not entirely clear what implications these differences have for dosing recommendations in clinical practice because there are few data directly comparing the preparations. Relative dosing for clinical comparability is affected by differences in topical potency, clinical effects at different doses, delivery device, and bioavailability. The Expert Panel developed recommended dose ranges (see figure 3-5b) for different preparations based on available data and the following assumptions and cautions about estimating relative doses needed to achieve comparable clinical effect.

Relative topical potency using human skin blanching
- The standard test for determining relative topical anti-inflammatory potency is the topical vasoconstriction (MacKenzie skin blanching) test.
- The MacKenzie topical skin blanching test correlates with binding affinities and binding half-lives for human lung corticosteroid receptors (see table below) (Dahlberg et al. 1984; Högger and Rohdewald 1994).
- The relationship between relative topical anti-inflammatory effect and clinical comparability in asthma management is not certain. However, recent clinical trials suggest that different in vitro measures of anti-inflammatory effect correlate with clinical efficacy (Barnes and Pedersen 1993; Johnson 1996; Kamada et al. 1996; Ebden et al. 1986; Leblanc et al. 1994; Gustafsson et al. 1993; Lundback et al. 1993; Barnes et al. 1993; Fabbri et al. 1993; Langdon and Capsey 1994; Ayres et al. 1995; Rafferty et al. 1985; Bjorkander et al. 1982; Stiksa et al. 1982; Willey et al. 1982).

<table>
<thead>
<tr>
<th>Medication</th>
<th>Topical Potency (Skin Blanching)*</th>
<th>Corticosteroid Receptor Binding Half-Life</th>
<th>Receptor Binding Affinity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beclomethasone dipropionate (BDP)</td>
<td>600</td>
<td>7.5 hours</td>
<td>13.5</td>
</tr>
<tr>
<td>Budesonide (BUD)</td>
<td>980</td>
<td>5.1 hours</td>
<td>9.4</td>
</tr>
<tr>
<td>Flunisolide (FLU)</td>
<td>330</td>
<td>3.5 hours</td>
<td>1.8</td>
</tr>
<tr>
<td>Fluticasone propionate (FP)</td>
<td>1,200</td>
<td>10.5 hours</td>
<td>18.0</td>
</tr>
<tr>
<td>Triamcinolone acetonide (TAA)</td>
<td>330</td>
<td>3.9 hours</td>
<td>3.6</td>
</tr>
</tbody>
</table>

* Numbers are assigned in reference to dexamethasone, which has a value of “1” in the MacKenzie test.

Relative doses to achieve similar clinical effects
- Clinical effects are evaluated by a number of outcome parameters (e.g., changes in spirometry, peak flow rates, symptom scores, quick-relief beta2-agonist use, frequency of exacerbations, airway responsiveness).
- The daily dose and duration of treatment may affect these outcome parameters differently (e.g., symptoms and peak flow may improve at lower doses and over a shorter treatment time than bronchial reactivity) (van Essen-Zandvliet et al. 1992; Hahtela et al. 1991).
- Delivery systems influence comparability. For example, the DPI delivery device for budesonide delivers approximately twice the amount of drug to the airway as the MDI, thus enhancing the clinical effect (Thorsson et al. 1994; Agertoft and Pedersen 1993).
- Individual patients may respond differently to different preparations, as noted by clinical experience.

Clinical trials comparing effects in reducing symptoms and improving peak expiratory flow demonstrate:
- BDP and BUD achieved comparable effects at similar microgram doses by MDI (Bjorkander et al. 1982; Ebden et al. 1986; Rafferty et al. 1985).
- BDP achieved effects similar to twice the dose of TAA on a microgram basis.
- FP achieved effects similar to twice the dose of BDP and BUD via an MDI on a microgram basis (Gustafsson et al. 1993; Fabbri et al. 1993; Barnes et al. 1993; Dahl et al. 1993; Ayres et al. 1995).
- BUD by dry powder inhaler achieved effects similar to twice the dose delivered by MDI, thus implying greater bronchial delivery by the delivery device (Thorsson et al. 1994; Agertoft and Pedersen 1993).
Bioavailability

Both the relative potency and the relative bioavailability (systemic availability) determine the potential for systemic activity of an inhaled corticosteroid preparation. As illustrated here, the bioavailability of an inhaled corticosteroid is dependent on the absorption of the dose delivered to the lungs and the oral bioavailability of the swallowed portion of the dose received.

- Absorption of the dose delivered to the lungs:
 - Approximately 10 to 30 percent of the dose from the MDI is delivered to the lungs. This amount varies among preparations and delivery devices.
 - Nearly all of the amount delivered to the lungs is bioavailable.

- Oral bioavailability of the swallowed portion of the dose received:
 - Approximately 80 percent of the dose from the MDI without a spacer/holding chamber is swallowed.
 - The oral bioavailability of this amount varies:
 - Either a high first-pass liver metabolism or the use of a spacer/holding chamber with an MDI can decrease oral bioavailability, thus enhancing safety (Lipworth 1995).

The approximate oral bioavailability of inhaled corticosteroids has been reported as: BDP 20%; FLU 21%; TAA 10.6%; BUD 11%; FP 1% (Chaplin et al. 1980; Check and Kaliner 1990; Clissold and Heel 1984; Davies 1993; Harding 1990; Heald et al. 1995; Martin et al. 1974; Mollman et al. 1985; Szefler 1991; Wurthwein and Rohdewald 1990).

Although few clinical trials are available that compare systemic activity among preparations (Kamada et al. 1996), studies have found:

- As suggested by one cross-over comparison study, BDP, FLU, and TAA appear to have equivalent dose-dependent systemic activity, as measured by 24-hour urinary free cortisol excretion (McCubbin et al. 1995).
- Inconsistent results comparing BDP and BUD. Some show equivalent systemic activity (Kamada et al. 1996; Prahl 1991; Prahl et al. 1987); others show BUD having slightly less systemic activity than BDP (Barnes and Pedersen 1993; Pedersen and Fuglsang 1988; Bisgaard et al. 1988).
- FP had greater adrenal suppression at doses of 400 to 2,000 micrograms than BUD in equivalent microgram doses delivered by MDI and accompanied by mouth washing to prevent oral bioavailability (Clark et al. 1996). This confirms that there are differences in microgram potencies among preparations and that absorption through the lung can result in systemic activity.
FIGURE 3-5d. USUAL DOSAGES FOR QUICK-RELIEF MEDICATIONS

Short-Acting Inhaled Beta₂-Agonists

<table>
<thead>
<tr>
<th>Medication</th>
<th>Dosage Form</th>
<th>Adult Dose</th>
<th>Child Dose</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albuterol</td>
<td>MDI</td>
<td>2 puffs 5 minutes prior to exercise</td>
<td>1-2 puffs 5 minutes prior to exercise</td>
<td>An increasing use or lack of expected effect indicates diminished control of asthma.</td>
</tr>
<tr>
<td>Albuterol HFA</td>
<td>MDI</td>
<td>2 puffs tid-qid prn</td>
<td>2 puffs tid-qid prn</td>
<td>Not generally recommended for long-term treatment. Regular use on a daily basis indicates the need for additional long-term-control therapy.</td>
</tr>
<tr>
<td>Bitolterol</td>
<td>DPI</td>
<td>1-2 capsules q 4-6 hours as needed and prior to exercise</td>
<td>1 capsule q 4-6 hours as needed and prior to exercise</td>
<td>Differences in potency exist so that all products are essentially equipotent on a per puff basis.</td>
</tr>
<tr>
<td>Pirbuterol</td>
<td>Nebulizer solution</td>
<td>1.25-5 mg (.25-1 cc) in 2-3 cc of saline q 4-8 hours</td>
<td>0.05 mg/kg (min 1.25 mg, max 2.5 mg) in 2-3 cc of saline q 4-6 hours</td>
<td>May double usual dose for mild exacerbations.</td>
</tr>
<tr>
<td>Terbutaline</td>
<td>Nebulizer solution</td>
<td>0.5-3.5 mg (.25-1 cc) in 2-3 cc of saline q 4-8 hours</td>
<td>Not established</td>
<td>Nonselective agents (i.e., epinephrine, isoproterenol, metaproterenol) are not recommended due to their potential for excessive cardiac stimulation, especially in high doses.</td>
</tr>
</tbody>
</table>

Anticholinergics

<table>
<thead>
<tr>
<th>Medication</th>
<th>Dosage Form</th>
<th>Adult Dose</th>
<th>Child Dose</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albuterol Rotahaler</td>
<td>DPI</td>
<td>1-2 puffs 5 minutes prior to exercise</td>
<td>1-2 puffs 5 minutes prior to exercise</td>
<td>An increasing use or lack of expected effect indicates diminished control of asthma.</td>
</tr>
<tr>
<td>Albuterol</td>
<td>Nebulizer solution</td>
<td>1.25-5 mg (.25-1 cc) in 2-3 cc of saline q 4-8 hours</td>
<td>0.05 mg/kg (min 1.25 mg, max 2.5 mg) in 2-3 cc of saline q 4-6 hours</td>
<td>May mix with cromolyn or ipratropium nebulizer solutions. May double dose for mild exacerbations.</td>
</tr>
<tr>
<td>Bitolterol</td>
<td>Nebulizer solution</td>
<td>0.5-3.5 mg (.25-1 cc) in 2-3 cc of saline q 4-8 hours</td>
<td>Not established</td>
<td>May not mix with other nebulizer solutions.</td>
</tr>
</tbody>
</table>

Systemic Corticosteroids

<table>
<thead>
<tr>
<th>Medication</th>
<th>Dosage Form</th>
<th>Adult Dose</th>
<th>Child Dose</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methylprednisolone</td>
<td>Tablets</td>
<td>2, 4, 8, 16, 32 mg tablets</td>
<td>Short course “burst”: 40-60 mg/day as single or 2 divided doses for 3-10 days</td>
<td>Short courses or “bursts” are effective for establishing control when initiating therapy or during a period of gradual deterioration.</td>
</tr>
<tr>
<td>Prednisolone</td>
<td>Tablets</td>
<td>5 mg tabs, 5 mg/5 cc, 15 mg/5 cc</td>
<td>Short course “burst”: 1-2 mg/kg/day, maximum 60 mg/day, for 3-10 days</td>
<td>The burst should be continued until patient achieves 80% PEF personal best or symptoms resolve. This usually requires 3-10 days but may require longer. There is no evidence that tapering the dose following improvement prevents relapse.</td>
</tr>
<tr>
<td>Prednisone</td>
<td>Tablets</td>
<td>1, 2.5, 5, 10, 20, 25 mg tabs, 5 mg/cc, 5 mg/5 cc</td>
<td>Evidence is lacking for anticholinergics producing added benefit to beta₂-agonists in long-term asthma therapy.</td>
<td>(Applies to all three systemic corticosteroids)</td>
</tr>
</tbody>
</table>
Component 3: Pharmacologic Therapy

intended to be prescriptions for individual treatment. Specific therapy should be tailored to the needs and circumstances of individual patients. Pharmacologic therapy must be accompanied at every step by patient education and measures to control those factors that contribute to the severity of the asthma (see components 2 and 4).

If optimal control of asthma is not achieved and sustained at any step of care (nocturnal symptoms, urgent care visits, or an increased need for short-acting beta₂-agonists are key indications that asthma is not optimally controlled), several actions may be considered:

- Patient adherence and technique in using medications correctly should be assessed.

- A temporary increase in anti-inflammatory therapy may be indicated to reestablish control. A deterioration of asthma may be characterized by gradual reduction in PEF (approximately 20 percent), by failure of inhaled bronchodilators to produce a sustained response, by a reduced tolerance to activities or exercise, and by the development of increasing nocturnal symptoms. To regain control of asthma, a short course of oral prednisone (see figure 3-5a) is often effective. If asthma symptoms do not recur and pulmonary functions remain normal, no additional therapy is necessary. However, if the prednisone burst does not control symptoms, is effective only for a short period of time (e.g., less than 1 to 2 weeks), or is repeated frequently, the patient should be managed according to the next higher step of care.

- Other factors that diminish control may need to be identified and addressed. These factors include the presence of a coexisting condition (e.g., sinusitis), a new or increased exposure to allergens or irritants, patient or family barriers to adequate self-management behaviors, or psychosocial problems. In some cases, alternative diagnoses may need to be considered, such as vocal cord dysfunction.

- A step up to the next higher step of care may be necessary.

- Consultation with an asthma specialist may be indicated (see component 1-Initial Assessment and Diagnosis).

Intermittent Asthma

Step 1: Mild Intermittent Asthma. Short-acting inhaled beta₂-agonists taken as needed to treat symptoms are usually sufficient therapy for mild, intermittent asthma. If effective in relieving symptoms and normalizing pulmonary function, intermittent use of short-acting inhaled beta₂-agonists can continue to be used on an as-needed basis. If significant symptoms reoccur or beta₂-agonist is required for quick-relief treatment more than two times a week (with the exception of using beta₂-agonist for exacerbations caused by viral infections and for exercise-induced bronchospasm [EIB]), the patient should be moved to the next step of care.

Patients with intermittent asthma who experience EIB benefit from taking inhaled beta₂-agonists, cromolyn, or nedocromil shortly before exercise (see Exercise-Induced Bronchospasm, page 100). Cromolyn or nedocromil taken before unavoidable exposure to an allergen known to exacerbate the patient's asthma may be beneficial (Cockcroft and Murdock 1987).

The Expert Panel recommends the following actions for managing exacerbations due to viral respiratory infections, which are especially common in children. If the symptoms are mild, inhaled beta₂-agonist (every 4 to 6 hours for 24 hours, longer with a physician consult) may be sufficient to control symptoms and improve lung function. If this therapy needs to be repeated more frequently than every 6 weeks, a step up in long-term care is recommended. If the viral respiratory infection provokes a moderate-to-severe exacerbation, a short course of systemic corticosteroids should be considered. For those patients with a history of severe exacerbations with viral respiratory infections, systemic corticosteroids should be initiated at the first sign of the infection.

The Expert Panel recommends that a detailed written action plan be developed for those patients with intermittent asthma who have a history of severe exacerbations (see figure 4-5). Intermittent asthma—in frequent exacerbations separated by periods of no symptoms and normal pulmonary function—is often mild. However, some patients with intermittent asthma experience sudden, severe, and life-threatening exacerbations. It is essential to treat these exacerbations accordingly. The patient's action plan should include indicators of worsening asthma (specific symptoms and PEF mea-
surements), as well as specific recommendations for using beta₂-agonist rescue therapy, early administration of systemic corticosteroids, and seeking medical care. Furthermore, periodic monitoring (see component 1-Periodic Assessment and Monitoring) of the patient is appropriate to evaluate whether the patient’s asthma is indeed intermittent or whether a step up in long-term therapy is warranted.

Persistent Asthma

The Expert Panel recommends that patients with persistent asthma, either mild, moderate, or severe, receive daily long-term-control medication. The most effective long-term-control medications are those with anti-inflammatory effects, that is, those that diminish chronic airway inflammation and airway hyperresponsiveness. Evidence from clinical trials supports this recommendation (van Essen-Zandvliet et al. 1992; Kerstjens et al. 1992).

Step 2: Mild Persistent Asthma. The main characteristics of step 2 care are as follows:

- Step 2 care long-term-control medication is daily anti-inflammatory medication: either inhaled corticosteroids at a low dose (see figure 3-5b), cromolyn, or nedocromil. For children, a trial of cromolyn or nedocromil is often the initial long-term therapy due to the safety profiles of these medications.

- Sustained-release theophylline is an alternative, but not preferred, long-term-control medication. It is not preferred because its modest clinical effectiveness (theophylline is primarily a bronchodilator and its anti-inflammatory activity demonstrated thus far is modest) must be balanced against concerns about potential toxicity (see component 3-Medications). Theophylline remains a therapeutic option for certain patients due to expense or need for tablet-form medication.

 Sustained-release theophylline is given to achieve a serum concentration of between 5 and 15 mcg/mL. Periodic theophylline monitoring is necessary to maintain a therapeutic—but not toxic—level.

- Zafirlukast or zileuton may also be considered an alternative long-term-control medication for patients 12 years of age and older, although their position in therapy is not yet fully established. Initial experience in clinical trials and possible patient requirements for tablet-form medication make these new medications a therapeutic option. Further clinical experience and additional data are needed to establish the role of zafirlukast and zileuton in stepwise therapy.

 Quick-relief medication must be available. Inhaled short-acting beta₂-agonists should be taken as needed to relieve symptoms. The intensity of treatment will depend on the severity of the exacerbation (see component 3-Managing Exacerbations). Use of inhaled short-acting beta₂-agonists on a daily basis, or increasing use, indicates the need for additional long-term-control therapy.

Step 3: Moderate Persistent Asthma. Consultation with an asthma specialist may be considered because the therapeutic options at this juncture pose a number of challenging risk/benefit outcomes. There are at least three options for initiating step 3 therapy:

- Increase inhaled corticosteroids to medium dose. This strategy will benefit many patients. Adverse effects, although infrequent, may arise (see component 3-Medications).

 OR

- Add a long-acting bronchodilator to a low-to-medium dose of inhaled corticosteroids. The long-acting bronchodilator may be either a long-acting inhaled beta₂-agonist (e.g., salmeterol) (Greening et al. 1994; Woolcock et al. 1996) or sustained-release theophylline (Nasif et al. 1981); although not preferred, long-acting beta₂-agonist tablets may be considered. This approach has been shown to improve symptom control and may be especially beneficial in patients who have significant nocturnal symptoms. Improved asthma control has been demonstrated with an inhaled long-acting beta₂-agonist and a medium-dose inhaled corticosteroid compared to a doubled dose of inhaled corticosteroid (Woolcock et al. 1996), but the potential for incorrectly using long-acting inhaled beta₂-agonists as a quick-relief medication needs to be considered. The approach of adding theophylline has the potential for adverse reactions related to fluctuations in theophylline serum concentrations.
■ Establish control with medium-dose inhaled corticosteroids, then lower the dose (but still within the medium-dose range) and add nedocromil. Nedocromil has a notable safety profile, and some studies (Lal et al. 1993; O’Hickey and Rees 1994; Svendsen and Jorgensen 1991) have shown that it has some, albeit modest, inhaled corticosteroid-sparing effects in adults. Other studies (e.g., Wong et al. 1993) did not demonstrate this. Therefore, this treatment option is not preferred. Furthermore, adding another inhaler into the patient’s medication schedule may affect patient adherence. It will also affect the total cost of care.

If the patient’s asthma is not optimally controlled with initial step 3 therapy, and medications are used correctly, additional step 3 therapy is recommended.

■ Increase daily long-term-control medications to a high dose of inhaled corticosteroids,

AND

■ Add a long-acting bronchodilator, especially to control nocturnal symptoms. The long-acting bronchodilator can be either long-acting inhaled beta2-agonist or sustained-release theophylline. An evening dose of either bronchodilator may alleviate and prevent nocturnal symptoms and thus improve adherence to the overall therapeutic regimen.

Step 4: Severe Persistent Asthma. Patients whose asthma is not controlled on high doses of inhaled corticosteroids and the addition of long-acting bronchodilators will also need oral systemic corticosteroids on a regularly scheduled, long-term basis. For patients who require long-term systemic corticosteroids:

■ Use the lowest possible dose (single dose daily or on alternate days).

■ Monitor patients closely for corticosteroid adverse side effects (see component 3-Medications).

■ When control of asthma is achieved, make persistent attempts to reduce systemic corticosteroids. High doses of inhaled corticosteroids are preferable to systemic corticosteroids because inhaled corticosteroids have fewer systemic effects.

■ Consultation with an asthma specialist is recommended.

SPECIAL CONSIDERATIONS FOR MANAGING ASTHMA IN DIFFERENT AGE GROUPS

Infants and Young Children (5 Years of Age and Younger)

KEY RECOMMENDATIONS FOR MANAGING ASTHMA IN INFANTS AND YOUNG CHILDREN

■ Diagnosing asthma in infants is often difficult, yet underdiagnosis and undertreatment are key problems in this age group. Thus, a diagnostic trial of inhaled bronchodilators and anti-inflammatory medications may be helpful.

■ In general, infants and young children consistently requiring symptomatic treatment more than two times per week should be given daily anti-inflammatory therapy.

■ When initiating daily anti-inflammatory therapy, a trial of cromolyn or nedocromil is often given due to the safety profile of these medications.

■ Response to therapy should be carefully monitored. Once control of asthma symptoms is established and sustained, a careful step down in therapy should be attempted. If clear benefit is not observed, alternative therapies or diagnoses should be considered.

Diagnosis

Several studies show that as many as 50 to 80 percent of children with asthma develop symptoms before their fifth birthday. Diagnosis can be difficult in this age group and has important implications. On the one hand, asthma in early childhood is frequently underdiagnosed (receiving such labels as chronic bronchitis, wheezing bronchitis, recurrent pneumonia, gastroesophageal reflux, and recurrent upper respiratory tract infections), and thus many infants and young children do not receive adequate therapy. On the other hand, not all wheeze and cough are caused by asthma, and caution is needed to avoid giving infants and young children inappropriately prolonged asthma therapy. Episodic or
chronic wheeze, cough, and breathlessness also may be seen in other less common conditions, including cystic fibrosis, vascular ring, tracheomalacia, primary immunodeficiency, congenital heart disease, parasitic disease, and foreign body aspiration.

Among children 5 years of age and younger, the most common cause of asthma symptoms is viral respiratory infection. At present, the relative contributions of airway inflammation, bronchial smooth muscle abnormalities, or other structural factors in producing wheeze with acute viral upper respiratory infections are unknown. There appear to be two general patterns of illness in infants and children who have wheezing with acute viral upper respiratory infections: a remission of symptoms in the preschool years and persistence of asthma throughout childhood. There are no clear markers to predict the prognosis for an individual child; however, the factors more strongly associated with continuing asthma are allergy, a family history of allergy or asthma, and perinatal exposure to passive smoke and aeroallergens (Pullan and Hey 1982; Sporik et al. 1991; Miraglia del Giudice et al. 1982; Shapiro and Konig 1985; Silverman et al. 1972; Bertelsen et al. 1986; Glass et al. 1981). Fewer studies are available on nedocromil, but benefit has been demonstrated (Brogden and Sorkin 1993). Sustained-release theophylline, an alternative long-term-control medication for older children, may have particular risks of adverse side effects in infants, who frequently have febrile illnesses which increase theophylline concentrations. Theophylline should be considered only if serum concentration levels will be carefully monitored.

In deciding when to initiate daily long-term-control therapy, the clinician must weigh the possible long-term effects of inadequately controlled asthma vs. the possible adverse effects of medications given over prolonged periods. A preliminary study suggests that appropriate control of childhood asthma may prevent more serious asthma or irreversible obstruction in later years (Agertoft and Pedersen 1994). There is evidence that anti-inflammatory treatment can reduce morbidity from wheezing in early childhood (Connett et al. 1993). Studies in older children suggest that the potential but small risk of delayed growth from the use of inhaled corticosteroids is balanced by their efficacy (see component 3-Medications). Furthermore, there are options (cromolyn and nedocromil) for initiating anti-inflammatory therapy.

Diagnosis is complicated by the difficulty in obtaining objective measurements of lung function in this age group. Essential elements in the evaluation include the history, symptoms, physical examination, and assessment of quality of life. A therapeutic trial with medications listed in figure 3-5d will also aid in the diagnosis.

Treatment

Figure 3-6 illustrates the Expert Panel’s recommendations for a stepwise approach to managing acute and chronic asthma symptoms, regardless of the prognosis for the wheezing infant or young child.

It is the opinion of the Expert Panel that, in general, infants and young children consistently requiring symptomatic treatment more than two times per week should be given daily anti-inflammatory medication.

At present there are few studies of medications in children younger than 3 years of age. A therapeutic trial of anti-inflammatory medications should be monitored carefully. Treatment should be stopped if a clear beneficial effect is not obvious. Although only inhaled corticosteroids have been shown to be effective in long-term clinical studies with infants (Ilangovan et al. 1993; Gleeson and Price 1988; Bisgaard et al. 1990), cromolyn has demonstrated symptom control and reduced airway hyperresponsiveness in a number of pediatric studies (Geller-Bernstein and Sneh 1980; Hiiman et al. 1987; M iraglia del Giudice et al. 1982; Shapiro and Konig 1985; Silverman et al. 1972; Bertelsen et al. 1986; Glass et al. 1981). Fewer studies are available on nedocromil, but benefit has been demonstrated (Brogden and Sorkin 1993). Sustained-release theophylline, an alternative long-term-control medication for older children, may have particular risks of adverse side effects in infants, who frequently have febrile illnesses which increase theophylline concentrations. Theophylline should be considered only if serum concentration levels will be carefully monitored.

In deciding when to initiate daily long-term-control therapy, the clinician must weigh the possible long-term effects of inadequately controlled asthma vs. the possible adverse effects of medications given over prolonged periods. A preliminary study suggests that appropriate control of childhood asthma may prevent more serious asthma or irreversible obstruction in later years (Agertoft and Pedersen 1994). There is evidence that anti-inflammatory treatment can reduce morbidity from wheezing in early childhood (Connett et al. 1993). Studies in older children suggest that the potential but small risk of delayed growth from the use of inhaled corticosteroids is balanced by their efficacy (see component 3-Medications). Furthermore, there are options (cromolyn and nedocromil) for initiating anti-inflammatory therapy.

Recommendations for treating infants and young children at different steps of care include:

- The patient’s response to therapy should be monitored carefully. When benefits are sustained, a step down in therapy should be attempted. If there are no clear benefits, treatment should be stopped and alternative therapies or diagnoses should be considered.
- Daily long-term-control therapy often begins with cromolyn or nedocromil.
- When inhaled corticosteroids are introduced in step 2 care, doses may range from 100 to 400 mcg/day; this generally translates to a dose of 15 mcg/kg up to 400 mcg/day beclomethasone (Allen and Lemanske 1993). See figures 3-5b and 3-5c for discussion of equivalency among preparations.
FIGURE 3-6. STEPWISE APPROACH FOR MANAGING INFANTS AND YOUNG CHILDREN (5 YEARS OF AGE AND YOUNGER) WITH ACUTE OR CHRONIC ASTHMA SYMPTOMS

<table>
<thead>
<tr>
<th>Step</th>
<th>Long-Term Control</th>
<th>Quick Relief</th>
</tr>
</thead>
</table>
| **STEP 4** Severe Persistent | Daily anti-inflammatory medicine
- High-dose inhaled corticosteroid with spacer/holding chamber and face mask
- If needed, add systemic corticosteroids
2 mg/kg/day and reduce to lowest daily or alternate-day dose that stabilizes symptoms | Bronchodilator as needed for symptoms (see step 1)
up to 3 times a day |
| **STEP 3** Moderate Persistent | Daily anti-inflammatory medication. Either:
- Medium-dose inhaled corticosteroid with spacer/holding chamber and face mask
OR, once control is established:
- Medium-dose inhaled corticosteroid and nedocromil
OR
- Medium-dose inhaled corticosteroid and long-acting bronchodilator (theophylline) | Bronchodilator as needed for symptoms (see step 1)
up to 3 times a day |
| **STEP 2** Mild Persistent | Daily anti-inflammatory medication. Either:
- Cromolyn (nebulizer is preferred; or MDI)
OR, infants and young children usually begin with a trial of cromolyn or nedocromil
OR
- Low-dose inhaled corticosteroid with spacer/holding chamber and face mask | Bronchodilator as needed for symptoms (see step 1) |
| **STEP 1** Mild Intermittent | No daily medication needed. | Bronchodilator as needed for symptoms ≤2 times a week.
Intensity of treatment will depend upon severity of exacerbation (see component 3-Managing Exacerbations). Either:
- Inhaled short-acting β2-agonist by nebulizer or face mask and spacer/holding chamber
OR
- Oral β2-agonist for symptoms
With viral respiratory infection
- Bronchodilator q 4-6 hours up to 24 hours (longer with physician consult) but, in general, repeat no more than once every 6 weeks
- Consider systemic corticosteroid if
 • Current exacerbation is severe
 OR
 • Patient has history of previous severe exacerbations |

NOTE:
The stepwise approach presents guidelines to assist clinical decisionmaking. Asthma is highly variable; clinicians should tailor specific medication plans to the needs and circumstances of individual patients.
- Gain control as quickly as possible, then decrease treatment to the least medication necessary to maintain control. Gaining control may be accomplished by either starting treatment at the step most appropriate to the initial severity of their condition or by starting at a higher level of therapy (e.g., a course of systemic corticosteroids or higher dose of inhaled corticosteroids).
- A rescue course of systemic corticosteroid (prednisolone) may be needed at any time and step.
- In general, use of short-acting β2-agonist on a daily basis indicates the need for additional long-term-control therapy.
- It is important to remember that there are very few studies on asthma therapy for infants.
- Consultation with an asthma specialist is recommended for patients with moderate or severe persistent asthma in this age group. Consultation should be considered for all patients with mild persistent asthma.
When step 3 care is required, it is the opinion of the Expert Panel that control should be established promptly with higher doses of inhaled corticosteroid and then therapy should be stepped down after 2 to 3 months to maintain control (Pedersen and Hansen 1995). For some patients, control of asthma may be maintained by using a lower dose of inhaled corticosteroid (e.g., the minimum dose in the medium-dose range) along with the addition of either nedocromil or theophylline. Some, but not all, studies with nedocromil in adults have demonstrated its potential corticosteroid-sparing effect. There are no studies demonstrating this effect with cromolyn. Studies in infants and young children are necessary. Some clinicians prefer gradually increasing medication to establish control—for example, adding nedocromil or theophylline before increasing the dose of inhaled corticosteroid beyond low-dose therapy.

Exacerbations caused by viral respiratory infections may be intermittent yet severe. Consider systemic corticosteroids if the exacerbation is moderate to severe or at the onset of a viral respiratory infection if the patient has a history of severe exacerbations.

Consultation with an asthma specialist should be considered for infants and young children requiring step 2 care; consultation is recommended for those requiring step 3 or step 4 care.

Several delivery devices are available for infants and young children. The dose received may vary considerably among devices and age groups. (See figure 3-3 for a summary of therapeutic issues regarding aerosol delivery devices.) The child’s caregivers must be instructed in the proper use of appropriately sized face masks, spacers/holding chambers with face masks, and spacers/holding chambers for medication delivery to be effective and efficient. For children younger than 2 years of age, nebulizer therapy may be preferred for administering cromolyn and for high doses of betaagonists during exacerbations. Children between 3 and 5 years may begin therapy with MDI and spacer/holding chamber alone, but if the desired therapeutic effects are not achieved, they may require a nebulizer or an MDI plus spacer/holding chamber and face mask.

School-Age Children (Older Than 5 Years of Age) and Adolescents

KEY RECOMMENDATIONS FOR MANAGING ASTHMA IN SCHOOL-AGE CHILDREN AND ADOLESCENTS

- Pulmonary function testing should use appropriate reference populations. Adolescents compare better to childhood than to adult predicted norms.
- When initiating daily anti-inflammatory therapy for mild-to-moderate persistent asthma, a trial of cromolyn or nedocromil is often given.
- Adolescents (and younger children as appropriate) should be directly involved in establishing goals for therapy and developing their asthma management plans.
- Active participation in physical activities, exercise, and sports should be promoted.
- A written asthma management plan should be prepared for the student’s school, including plans to ensure reliable, prompt access to medications.

The pharmacologic management of school-age children and adolescents follows the same basic principles as those for adults, but the special circumstances of growth, school, and social development require special consideration.

Assessment

Pulmonary function testing should be performed using comparison data from an appropriate reference population (American Thoracic Society 1991). Adolescents generally compare better to childhood than to adult predicted norms. Testing in a laboratory or clinic specializing in children can result in higher pulmonary function values and more consistent data. Technicians who conduct pulmonary function testing for children should have special training in achieving the best possible effort from young patients.

Treatment

For children with mild or moderate persistent asthma, cromolyn or nedocromil are often effective anti-inflammatory therapies and have no known long-term systemic effects. However, for
children with severe persistent asthma, and for many children with moderate persistent asthma, cromolyn and nedocromil do not provide adequate control and thus inhaled corticosteroids are necessary for long-term therapy (see figure 3-4b).

The Expert Panel recommends that adolescents (and younger children as appropriate) be directly involved in developing their asthma management plans. Adolescents may experience more difficulties than younger children in adhering to a medication plan because they may fail to recognize the danger of poorly controlled asthma (Strunk et al. 1985), they may not accept having a chronic illness, or they may view the plan as infringing upon their emerging independence and adulthood. In teaching adolescents the same asthma self-management techniques expected of adults, the clinician should address adolescent developmental issues such as building a positive self-image and confidence, increasing personal responsibility, and gaining problem-solving skills. To accomplish this, it is often helpful to see the adolescent initially without parents present and to involve the adolescent directly in setting goals for therapy, developing an appropriate treatment plan, and reviewing the effectiveness of the plan at repeated visits. The parents can be brought in at the end of the visit to review the plan together and emphasize the parents’ important role in supporting the adolescent’s efforts.

School Issues

The clinician should prepare a written asthma management plan for the student’s school (see figure 4-7) that includes the following information: an action plan for handling exacerbations (including the clinician’s recommendation regarding self-administration of medication and plans to ensure prompt, reliable access to medications); recommendations for long-term-control medications and prevention of exercise-induced bronchospasm (EIB), if appropriate; and identification of those factors that make the student’s asthma worse so the school may help the student avoid exposure.

It is preferable to schedule daily, long-term medications so that they are not taken at school, even if this results in unequal dosing intervals throughout the day. However, in school districts that have more comprehensive school nurse coverage, children who would benefit from close supervision to promote adherence may be given medications at school. In this way, daily medication can be administered and patient education can be supplemented most days of the week.

Students with asthma often require medication during school to treat acute symptoms or to prevent EIB that may develop during physical education class, school recess, or organized sports. Reliable, prompt access to medication is essential, but it may be difficult because of school rules that preclude the child from carrying medications. The National Asthma Education and Prevention Program and several member organizations have adopted resolutions that endorse allowing students to carry and self-administer medications when the physician and parent consider this appropriate. It may be helpful for some children to have a compressor-driven nebulizer available at the school.

Sports

Physical activity at play or in organized sports is an essential part of a child’s life, and full participation in physical activities should be encouraged. Many children with asthma experience cough, wheeze, or excessive fatigue when they exercise. Treatment immediately prior to vigorous activity or exercise usually prevents EIB. If symptoms occur during usual play activities, a step up in long-term therapy is warranted. Poor endurance or EIB can be an indication of poorly controlled persistent asthma; appropriate use of long-term-control medication can reduce EIB (see Exercise-Induced Bronchospasm, page 100). Activity should be limited or curtailed only as a last resort.

Older Adults

KEY RECOMMENDATIONS FOR MANAGING ASTHMA IN OLDER ADULTS

- Chronic bronchitis/emphysema may coexist with asthma. A trial of systemic corticosteroids will determine the presence of reversibility and the extent of therapeutic benefit.
- Asthma medications may aggravate coexisting medical conditions (e.g., cardiac disease, osteoporosis); adjustments in the medication plan may need to be made.
- Be aware of increased potential for adverse drug/disease interaction (e.g., aspirin, beta-blockers).
- Review of patient technique in using medications and devices is essential.
Because of the high prevalence of other obstructive lung disease (e.g., chronic bronchitis, emphysema) among the elderly, it is important to determine the extent of reversible airflow obstruction. Careful evaluation is required because the precise cause of severe airflow obstruction can be difficult to identify in older patients with asthma. A 2- to 3-week trial of therapy with systemic corticosteroids can help detect the presence of significant reversibility of the airway disease. Long-term control asthma medication can then be offered.

Asthma medications may have increased adverse effects in the elderly patient; adjustments in the medication plan may be necessary.

- Airway response to bronchodilators may change with age, although this is not clearly established. Older patients, especially those with preexisting ischemic heart disease, may also be more sensitive to beta2-agonist side effects, including tremor and tachycardia. Concomitant use of anticholinergics and beta2-agonists may be beneficial to the older patient (Ullah et al. 1981; Barros and Rees 1990; Gross et al. 1989).

- Theophylline clearance is reduced in the elderly patient (Nielsen-Kudsk et al. 1988), causing increased blood levels of theophylline. In addition, age is an independent risk factor for developing life-threatening events from iatrogenic chronic theophylline overdose (patients 75 years of age or older have a 16-fold greater risk of death from theophylline overdose than do 25-year-olds) (Shannon and Lovejoy 1990). The potential for drug interaction—especially with antibiotics and H2-histamine antagonists such as cimetidine—is greater because of the increased use of medications in this age group. Theophylline and epinephrine may exacerbate underlying heart conditions.

- Systemic corticosteroids can provoke confusion, agitation, and changes in glucose metabolism.

- A dose-dependent reduction in bone mineral content may be associated with inhaled corticosteroid use, although low or medium doses appear to have no major adverse effect. Elderly patients may be more at risk due to preexisting osteoporosis, changes in estrogen levels that affect calcium utilization, and a sedentary lifestyle. However, the risk of not adequately controlling asthma may unnecessarily limit the patient’s mobility and activities. Concurrent treatment with calcium supplements and vitamin D, and estrogen replacement when appropriate, are recommended. At the present time, the optimal approach for identifying patients at risk for accelerated bone loss from high-dose corticosteroid therapy is to conduct bone densitometry when treatment begins and again 6 months later (NHLBI 1996), although the benefits of this approach have not yet been evaluated in clinical trials.

Medications employed for other diseases may exacerbate asthma; adjustments may need to be made. Nonsteroidal anti-inflammatory agents for treating arthritis, nonselective beta-blockers for treating hypertension, or beta-blockers found in some eye drops used to treat glaucoma may exacerbate asthma. See component 2 for more details on drugs that can complicate asthma management.

For more information on asthma in older patients, see NAEP Working Group Report: Considerations for Diagnosing and Managing Asthma in the Elderly (NHLBI 1996).

MANAGING SPECIAL SITUATIONS IN ASTHMA

Seasonal Asthma

Some patients experience asthma symptoms only in relationship to certain pollens and molds. Such seasonal asthma should be treated according to the stepwise approach to long-term management of asthma. If the patient has seasonal asthma on a predictable basis, daily, long-term anti-inflammatory therapy (inhaled corticosteroids, cromolyn, or nedocromil) should be initiated prior to the anticipated onset of symptoms and continued through the season.

Cough Variant Asthma

Cough variant asthma is seen especially in young children. Cough is the principal symptom; because this frequently occurs at night, examinations during the day may be normal. Monitoring of morning and afternoon PEF variability and/or therapeutic trials with anti-inflammatory or bronchodilator medication may be helpful in diagnosis. Once the diagnosis is established, treat according to the stepwise approach to long-term management of asthma.
Exercise-Induced Bronchospasm

Exercise-induced bronchospasm—which untreated can limit and disrupt otherwise normal lives—should be anticipated in all asthma patients. EIB is a bronchospastic event that is caused by a loss of heat, water, or both from the lung during exercise because of hyperventilation of air that is cooler and dryer than that of the respiratory tree (Anderson 1985; Godfrey 1986; McFadden and Gilbert 1994). EIB usually occurs during or minutes after vigorous activity, reaches its peak 5 to 10 minutes after stopping the activity, and usually resolves in another 20 to 30 minutes.

Exercise may be the only precipitant of asthma symptoms for some patients. These patients should be monitored regularly to ensure that they have no symptoms of asthma or reductions in PEF in the absence of exercise, because EIB is often a marker of inadequate asthma management and responds well to regular anti-inflammatory therapy.

Diagnosis

A history of cough, shortness of breath, chest pain or tightness, wheezing, or endurance problems during exercise suggests EIB. An exercise challenge can be used to establish the diagnosis. This can be performed in a formal laboratory setting or as a free-run challenge sufficiently strenuous to increase the baseline heart rate to 80 percent of maximum for 4 to 6 minutes. Alternatively, the patient may simply undertake the task that previously caused the symptoms. A 15 percent decrease in PEF or FEV\textsubscript{1} (measurements taken before and after exercise at 5-minute intervals for 20 to 30 minutes) is compatible with EIB.

Management Strategies

One goal of management is to enable patients to participate in any activity they choose without experiencing asthma symptoms. EIB should not limit either participation or success in vigorous activities.

Recommended treatments include:

- **Beta\textsubscript{2}-agonists** will prevent EIB in more than 80 percent of patients.
 - Short-acting inhaled beta\textsubscript{2}-agonists used shortly before exercise (or as close to exercise as possible) may be helpful for 2 to 3 hours.
 - Salmeterol has been shown to prevent EIB for 10 to 12 hours (Kemp et al. 1994).

- **Cromolyn and nedocromil**, taken shortly before exercise, are also acceptable for preventing EIB (Tullett et al. 1985; Woolley et al. 1990; Albazzaz et al. 1989; de Benedictis et al. 1995).

- **A lengthy warmup period before exercise** may benefit patients who can tolerate continuous exercise with minimal symptoms. The warmup may preclude a need for repeated medications.

- **Long-term-control therapy, if appropriate.** There is evidence that appropriate long-term control of asthma with anti-inflammatory medication will reduce airway responsiveness, and this is associated with a reduction in the frequency and severity of EIB (Vathenen et al. 1991).

Surgery and Asthma

Asthma patients are at risk for specific complications during and after surgery: acute bronchoconstriction triggered by intubation, hypoxemia and possible hypercapnia, impaired effectiveness of cough, atelectasis and respiratory infection (Kingston and Hirschman 1984), and latex exposure (Slater 1994; Sussman and Beezhold 1995). The likelihood of these complications depends on the severity of the patient’s airway hyperresponsiveness, airflow obstruction, mucus hypersecretions, and latex sensitivity.

Recommended actions include:

- **Patients with asthma should have an evaluation before surgery that includes a review of symptoms, medication use** (particularly the use of systemic corticosteroids for longer than 2 weeks in the past 6 months), and measurement of pulmonary function.
If possible, attempts should be made to improve lung function (FEV₁ or PEF) to their predicted values or their personal best level. A short course of systemic corticosteroids may be necessary to optimize pulmonary function.

For patients who have received systemic corticosteroids during the past 6 months, give 100 mg hydrocortisone every 8 hours intravenously during the surgical period and reduce dose rapidly within 24 hours following surgery.

Pregnancy and Asthma

Maintaining sufficient lung function and blood oxygenation to ensure adequate oxygen supply to the fetus is essential. Poorly controlled asthma during pregnancy can result in increased perinatal mortality, increased prematurity, and low birth weight (Nelson and Weber 1988). For most drugs used to treat asthma and rhinitis, with the exception of brompheniramine, epinephrine, and alpha-adrenergic compounds (other than pseudoephedrine), there is little to suggest an increased risk to the fetus (Schatz et al. 1988; Federal Register 1979; Briggs et al. 1986). Other classes of drugs with some possibility of risk to the fetus include decongestants (other than pseudoephedrine), antibiotics (tetracycline, sulfonamides, and ciprofloxacin), live virus vaccines, immunotherapy (if doses are increased), and iodides.

For more information on asthma and pregnancy, see Executive Summary: Management of Asthma During Pregnancy (NHLBI 1992).

Stress and Asthma

The role of stress and psychological factors in asthma is important but not fully defined. There is emerging evidence that stress can play an important role in precipitating exacerbations of asthma and possibly act as a risk factor for an increase in prevalence of asthma (Busse et al. 1995). The mechanisms involved in this process have yet to be fully established and may involve enhanced generation of proinflammatory cytokines (Friedman et al. 1994). Equally important are psychosocial factors that are associated with poor outcome (e.g., conflict between patients and family and the medical staff, inappropriate asthma self-care, depressive symptoms, behavioral problems, emotional problems, and disregard of perceived asthma symptoms) (Strunk et al. 1985; Strunk 1993; Brush and Mathé 1993).

REFERENCES

Ayres JG, Bateman ED, Lundback E, Harris TAJ. High dose fluticasone propionate, 1 mg daily, versus fluticasone propionate, 2 mg daily, or budesonide, 1.6 mg daily, in patients with chronic severe asthma. Eur Respir J 1995;8(4):579-86.

Ebdon P, Jenkins A, Houston G, Davies BH. Comparison of two high dose corticosteroid aerosol treatments, beclomethasone dipropionate (1500 mcg/day) and budesonide (1600 mcg/day), for chronic asthma. Thorax 1986;41:869-74.

Heald D, Argenti D, Jensen B, Vaccaro S. The disposition of 14C triamcinolone acetonide administered as single oral dose of 100 mcg (800mg) to healthy volunteers. Presented at Asthma Theory to Treatment, Chicago, IL, July 15-17, 1995. (Data on file Rhône-Poulenc Rorer)

Lundback B, Alexander M, Day J, et al. Evaluation of fluticasone propionate (500 mcg day-1) administered either as dry power inhaler via a Diskhaler inhaler or pressurized inhaler and compared with beclomethasone dipropionate (1000 mcg day-1) administered by pressurized inhaler. Respir Med 1993;87:609-20.

Thorsson L, Edsbacker S, Conradson TB. Lung deposition of budesonide from Turbuhaler is twice that from a pressurized metered-dose inhaler P-MDI. Eur Respir J 1994;7:1839-44.

Pharmacologic Therapy: Managing Exacerbations of Asthma

Asthma exacerbations are acute or subacute episodes of progressively worsening shortness of breath, cough, wheezing, and chest tightness or some combination of these symptoms. Exacerbations are characterized by decreases in expiratory airflow that can be documented and quantified by simple measurement of lung function (spirometry or peak expiratory flow [PEF]). These objective measures more reliably indicate the severity of an exacerbation than does the severity of symptoms.

GENERAL CONSIDERATIONS

The Expert Panel recommends that clinicians consider the following general principles and goals for managing asthma exacerbations, based on the scientific literature and the opinion of the Panel.

Early treatment is the best strategy for management of asthma exacerbations. Important elements of early treatment include:

- A written action plan to guide patient self-management of exacerbations at home, especially for patients with moderate-to-severe persistent asthma and any patient with a history of severe exacerbations
- Recognition of early signs of worsening asthma
- Appropriate intensification of therapy
- Prompt communication between patient and clinician about any serious deterioration in symptoms or peak flow, decreased responsiveness to inhaled beta2-agonists, or decreased duration of effect

Management of asthma exacerbations includes:

- Inhaled beta2-agonist to provide prompt relief of airflow obstruction
- Systemic corticosteroids, for moderate-to-severe exacerbations or for patients who fail to respond promptly and completely to an inhaled beta2-agonist, to suppress and reverse airway inflammation
- Oxygen to relieve hypoxemia for moderate-to-severe exacerbations
- Monitoring response to therapy with serial measurements of lung function

Patients at high risk of asthma-related death require special attention—particularly intensive education, monitoring, and care. They should be counseled to seek medical care early during an exacerbation and instructed about the availability of ambulance services. Such patients include those with identifiable risk factors (see figure 3-7a).
Infants require special attention, especially due to their greater risk for respiratory failure (see figure 3-7b).

TREATMENT GOALS

The principal goals for treating asthma exacerbations are:

- **Correction of significant hypoxemia** by administering supplemental oxygen. In rare instances, alveolar hypoventilation requires mechanically assisted ventilation.

- **Rapid reversal of airflow obstruction.** This is best achieved by
 - Repetitive or continuous administration of an inhaled beta2-agonist (Brenner 1983b; Lipworth et al. 1988; McFadden 1989; Lin et al. 1993; Rudnitsky et al. 1993; Papo et al. 1993)

 AND

 - Early in the course of treatment, administration of systemic corticosteroids to patients with moderate-to-severe exacerbations or to patients who fail to respond promptly and completely to an inhaled beta2-agonist (Fanta et al. 1983; Littenberg and Glück 1986; Rowe et al. 1992; Scarfone et al. 1993; Connett et al. 1994).

- **Reduction of the likelihood of recurrence of severe airflow obstruction** by intensifying therapy. Often, a short course of systemic corticosteroids is useful (Fanta et al. 1983; Littenberg and Glück 1986; Rowe et al. 1992; Scarfone et al. 1993; Connett et al. 1994).

Achieving these goals requires close monitoring by serial measurements of lung function to quantify the severity of airflow obstruction and its response to treatment. The improvement in FEV1

FIGURE 3-7a. RISK FACTORS FOR DEATH FROM ASTHMA

- Past history of sudden severe exacerbations
- Prior intubation for asthma
- Prior admission for asthma to an intensive care unit
- Two or more hospitalizations for asthma in the past year
- Three or more emergency care visits for asthma in the past year
- Hospitalization or an emergency care visit for asthma within the past month
- Use of > 2 canisters per month of inhaled short-acting beta2-agonist
- Current use of systemic corticosteroids or recent withdrawal from systemic corticosteroids
- Difficulty perceiving airflow obstruction or its severity
- Comorbidity, as from cardiovascular diseases or chronic obstructive pulmonary disease
- Serious psychiatric disease or psychosocial problems
- Low socioeconomic status and urban residence
- Illicit drug use
- Sensitivity to Alternaria

Sources: Kallenbach et al. 1993; Rodrigo and Rodrigo 1993; Sussa et al. 1994; Greenberger et al. 1993; O’Hollaren et al. 1991

FIGURE 3-7b. SPECIAL CONSIDERATIONS FOR INFANTS

- Assessment depends on physical examination rather than objective measurements. Use of accessory muscles, paradoxical breathing, cyanosis, and a respiratory rate > 60 are key signs of serious distress.

- Objective measurements such as oxygen saturation of < 91 percent also indicate serious distress.

- Response to beta2-agonist therapy can be variable and may not be a reliable predictor of satisfactory outcome. However, because infants are at greater risk for respiratory failure, a lack of response noted by either physical examination or objective measurements should be an indication for hospitalization.

- Use of oral corticosteroids early in the episode is essential but should not substitute for careful assessment by a physician.

- Most acute wheezing episodes result from viral infections and may be accompanied by fever. Antibiotics are generally not required.
after 30 minutes of treatment correlates significantly with a broad range of indices of the severity of asthma exacerbations (Rodrigo and Rodrigo 1993), and repeated measurement of airflow in the emergency department can help reduce unnecessary admissions (Taylor 1994). Use PEF or FEV\(_1\) values to guide treatment decisions, along with the patient’s history, current symptoms, and physical findings. In using PEF expressed as a percentage of personal best, it is important to consider the impact of irreversible airflow obstruction. For a patient whose best PEF is 160 L/min, for example, a fall of 40 percent represents severe, potentially life-threatening obstruction.

HOME MANAGEMENT OF ASTHMA EXACERBATIONS

Beginning treatment at home avoids treatment delays, prevents exacerbations from becoming severe, and also adds to patients’ sense of control over their asthma. The degree of care provided in the home depends on the patients’ (or parents’) abilities and experience and on the availability of emergency care. General guidelines for managing exacerbations at home are presented in figure 3-8.

The Expert Panel recommends the following actions to prepare patients for home management of asthma exacerbations, based on scientific literature (see component 1-Periodic Assessment and Monitoring and component 4) and the opinion of the Panel.

- **Teach all patients how to monitor symptoms to recognize early signs of deterioration** (see component 1-Periodic Assessment and Monitoring and component 4) and how to adjust their medications accordingly.

- **Teach patients with moderate-to-severe persistent asthma and those with a history of severe exacerbations how to monitor their peak flow** to assess the severity of an exacerbation and the response to therapy (see component 1-Periodic Assessment and Monitoring). In the absence of PEF measurement, severity can be judged only from the presence and intensity of signs and symptoms (see figure 3-9), which correlate imperfectly with the severity of airflow obstruction. This is especially true in a subgroup of patients (“poor perceivers”) who do not sense airway narrowing until it is far advanced (Kikuchi et al. 1994).

- **Give a written asthma action plan** to be followed in the event of an exacerbation (see figure 4-5), especially to patients with moderate-to-severe persistent asthma and any patient with a history of severe exacerbations. Children should also receive a plan appropriate to the school setting (see figure 4-7). The plan should direct the patient to adjust medications in response to particular signs, symptoms, and peak flow measurements and should state when to seek medical help. Review the plan with the patient and family. The clinician should tailor the plan to the needs of individual patients. Patients at risk for asthma death (see figure 3-7a) require especially close monitoring.

- **Teach patients to seek medical help early if** (1) an asthma exacerbation is severe, (2) therapy does not give rapid, sustained improvement, or (3) there is further deterioration.

- **Advise patients with moderate-to-severe persistent asthma or a history of severe exacerbations to have the medication** (e.g., corticosteroid tablets or liquid) and **equipment** (e.g., peak flow meter, compressor-driven nebulizer for young children) **for treating exacerbations at home**.

The Expert Panel recommends the following pharmacologic therapy, based on the scientific literature, for home management of exacerbations:

- **Increase the frequency of inhaled beta\(_2\)-agonist.**

- **Initiate or increase corticosteroid treatment under certain circumstances.** For mild exacerbations in patients already taking an inhaled corticosteroid, many experts prescribe doubling the dose until peak flow returns to predicted or personal best. Although this practice has not been proved in a clinical trial, a few studies suggest its benefit (Lahdensuo et al. 1996; Wilson and Silverman 1990). For moderate-to-severe exacerbations (see figure 3-9), and for mild exacerbations that persist despite an increased dose of inhaled corticosteroids, a course of oral corticosteroids is necessary (Chapman et al. 1991; Fid et al. 1983; Harris et al. 1987; Deshpande and McKenzie 1986; Loren et al. 1980; Rowe et al. 1992).

- **Continue more intensive treatment for several days.** Recovery from an exacerbation is often gradual. Greater use of medication should be continued until symptoms and PEF are stable, but
Component 3: Pharmacologic Therapy

FIGURE 3-8. MANAGEMENT OF ASTHMA EXACERBATIONS: HOME TREATMENT

Assess Severity

Measure PEF: Value <50% personal best or predicted suggests severe exacerbation.

Note signs and symptoms: Degrees of cough, breathlessness, wheeze, and chest tightness correlate imperfectly with severity of exacerbation. Accessory muscle use and suprasternal retractions suggest severe exacerbation.

Initial Treatment

- Inhaled short-acting beta₂-agonist: up to three treatments of 2-4 puffs by MDI at 20-minute intervals or single nebulizer treatment.

Good Response

Mild Exacerbation
PEF >80% predicted or personal best
No wheezing or shortness of breath
Response to beta₂-agonist sustained for 4 hours
- May continue beta₂-agonist every 3-4 hr for 24-48 hours.
- For patients on inhaled corticosteroids, double dose for 7-10 days.

- Contact clinician for follow up instructions.

Incomplete Response

Moderate Exacerbation
PEF 50-80% predicted or personal best
Persistent wheezing and shortness of breath
- Add oral corticosteroid.
- Continue beta₂-agonist.

- Contact clinician urgently (this day) for instructions.

Poor Response

Severe Exacerbation
PEF <50% predicted or personal best
Marked wheezing and shortness of breath
- Add oral corticosteroid.
- Repeat beta₂-agonist immediately.
- If distress is severe and nonresponsive, call your doctor and proceed to emergency department; consider calling ambulance or 9-1-1.

- Proceed to emergency department.

Note:

Patients at high risk of asthma-related death (see figure 3-7a) should receive immediate attention clinical attention after initial treatment. Additional therapy may be required.
Figure 3-9. Classifying Severity of Asthma Exacerbations

<table>
<thead>
<tr>
<th>Symptoms</th>
<th>Mild</th>
<th>Moderate</th>
<th>Severe</th>
<th>Respiratory Arrest Imminent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breathlessness</td>
<td>While walking</td>
<td>While talking (infant—soft, shorter cry; difficulty feeding)</td>
<td>While at rest (infant—stops feeding)</td>
<td></td>
</tr>
<tr>
<td>Can lie down</td>
<td></td>
<td></td>
<td>Sits upright</td>
<td></td>
</tr>
<tr>
<td>Talks in</td>
<td>Sentences</td>
<td>Phrases</td>
<td>Words</td>
<td></td>
</tr>
<tr>
<td>Alertness</td>
<td>May be agitated</td>
<td>Usually agitated</td>
<td>Usually agitated</td>
<td>Drowsy or confused</td>
</tr>
</tbody>
</table>

Signs

<table>
<thead>
<tr>
<th></th>
<th>Mild</th>
<th>Moderate</th>
<th>Severe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Respiratory rate</td>
<td>Increased</td>
<td>Increased</td>
<td>Often > 30/min</td>
</tr>
<tr>
<td>Use of accessory muscles, suprasternal retractions</td>
<td>Usually not</td>
<td>Commonly</td>
<td>Usually</td>
</tr>
<tr>
<td>Wheeze</td>
<td>Moderate, often only end expiratory</td>
<td>Loud; throughout exhalation</td>
<td>Usually loud; throughout inhalation and exhalation</td>
</tr>
<tr>
<td>Pulse/minute</td>
<td>< 100</td>
<td>100-120</td>
<td>> 120</td>
</tr>
<tr>
<td>Pulsus paradoxus</td>
<td>Absent < 10 mm Hg</td>
<td>May be present 10-25 mm Hg</td>
<td>Often present > 25 mm Hg (adult) 20-40 mm Hg (child)</td>
</tr>
</tbody>
</table>

Functional Assessment

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PEF % predicted or % personal best</td>
<td>> 80%</td>
<td>Approx. 50-80% or response lasts < 2 hrs</td>
<td>< 50% predicted or personal best</td>
</tr>
<tr>
<td>PaO₂ (on air) and/or</td>
<td>Normal (test not usually necessary)</td>
<td>> 60 mm Hg (test not usually necessary)</td>
<td>< 60 mm Hg: possible cyanosis</td>
</tr>
<tr>
<td>PCO₂</td>
<td>< 42 mm Hg (test not usually necessary)</td>
<td>< 42 mm Hg (test not usually necessary)</td>
<td>≥ 42 mm Hg: possible respiratory failure (see text)</td>
</tr>
<tr>
<td>SaO₂% (on air) at sea level</td>
<td>> 95% (test not usually necessary)</td>
<td>91-95%</td>
<td>< 91%</td>
</tr>
</tbody>
</table>

Hypercapnia (hypoventilation) develops more readily in young children than in adults and adolescents.

Note:
- The presence of several parameters, but not necessarily all, indicates the general classification of the exacerbation.
- Many of these parameters have not been systematically studied, so they serve only as general guides.
patients should seek medical care rather than rely on bronchodilator therapy in excessive doses or for prolonged periods.

The Expert Panel does not recommend the following home management techniques because there are no studies demonstrating effectiveness and it is the opinion of the Panel that these techniques may delay patients from obtaining necessary care.

- Drinking large volumes of liquids or breathing warm, moist air (e.g., the mist from a hot shower).
- Using over-the-counter products such as antihistamines, cold remedies, and bronchodilators. Over-the-counter metered-dose inhalers may provide transient bronchodilation, but their use should not be permitted to delay seeking medical care.

The Expert Panel also notes that although pursed-lip and other forms of controlled breathing may help to maintain calm during respiratory distress, they do not bring about improvement in lung function.

PREHOSPITAL EMERGENCY MEDICINE/AMBULANCE MANAGEMENT OF ASTHMA EXACERBATIONS

The Expert Panel recommends that prehospital providers administer supplemental oxygen and inhaled short-acting bronchodilators to patients who have signs or symptoms of asthma. Prehospital administration of inhaled bronchodilators reduces airflow obstruction and relieves symptoms (Fergusson et al. 1995). Thus, advanced life support units should have available an inhaler plus spacer/holding chamber and/or nebulizer for beta_2-agonist administration (see figure 3-10 for dosages). If these are not available, subcutaneous epinephrine or terbutaline should be given for severe exacerbations (see figure 3-10) (Sly et al. 1977; Smith et al. 1977).

Ambulance services should develop prehospital protocols for the treatment of acute asthma in children and adults. Prehospital providers should receive training in how to respond to the clinical signs and symptoms of severe airway obstruction and imminent respiratory failure.

EMERGENCY DEPARTMENT AND HOSPITAL MANAGEMENT OF ASTHMA EXACERBATIONS

Severe exacerbations of asthma are potentially life threatening. Care must be prompt. Effective initial therapies (i.e., a short-acting beta_2-agonist and the means of giving it by aerosol and a source of supplemental oxygen) should be available in a physician’s office. However, serious exacerbations require close observation for deterioration, frequent treatment, and repetitive measurement of lung function. Therefore, most severe exacerbations of asthma require prompt transfer to an emergency department for a complete course of therapy (Brenner 1983a). An overview of the treatment strategies in emergency departments and hospitals is presented in figure 3-11 and detailed below.

Assessment

The Expert Panel recommends that all clinicians treating asthma exacerbations be familiar with the characteristics of patients at risk for life-threatening deterioration (see figures 3-7a and 3-7b). In the emergency department, treatment should be started as soon as an asthma exacerbation is recognized and an assessment of lung function is made.

While treatment is given, obtain a brief, focused history and physical examination pertinent to the exacerbation (see figure 3-9). Take a more detailed history and complete physical examination and perform laboratory studies only after initial therapy has been completed.

- The objectives of functional assessment are to:
 - Obtain objective information on the severity of airflow obstruction (FEV_1 or PEF) and the patient’s response to treatment. In the emergency department, obtain FEV_1 or PEF on presentation, after initial treatment, and at frequent intervals thereafter, depending on the patient’s response to therapy. Rarely, a patient’s airflow obstruction may be so severe as to prevent performance of a maximal expiratory maneuver. In the hospital, measure FEV_1 or PEF before and 15 to 20 minutes after bronchodilator therapy during the acute phase of the exacerbation. Thereafter, measure FEV_1 or PEF at least daily until discharge. Values < 30 percent of predicted that improve by < 10 percent after
Figure 3-10. Dosages of Drugs for Asthma Exacerbations in Emergency Medical Care or Hospital

<table>
<thead>
<tr>
<th>Medications</th>
<th>Dosages</th>
<th>Child Dose</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inhaled Short-Acting Beta2-Agonists</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Albuterol Nebulizer solution (5 mg/mL)</td>
<td>2.5-5 mg every 20 minutes for 3 doses, then 2.5-10 mg every 1-4 hours as needed, or 10-15 mg/hour continuously</td>
<td>0.15 mg/kg (minimum dose 2.5 mg) every 20 minutes for 3 doses, then 0.15-0.3 mg/kg up to 10 mg every 1-4 hours as needed, or 0.5 mg/kg/hour by continuous nebulization</td>
<td>Only selective beta2-agonists are recommended. For optimal delivery, dilute aerosols to minimum of 4 mL at gas flow of 6-8 L/min.</td>
</tr>
<tr>
<td></td>
<td>MDI (90 mcg/puff)</td>
<td>4-8 puffs every 20 minutes up to 4 hours, then every 1-4 hours as needed</td>
<td>4-8 puffs every 20 minutes for 3 doses, then every 1-4 hours inhalation maneuver. Use spacer/holding chamber.</td>
</tr>
<tr>
<td>Bitolterol Nebulizer solution (2 mg/mL)</td>
<td>See albuterol dose</td>
<td>See albuterol dose</td>
<td>H as not been studied in severe asthma exacerbations. Do not mix with other drugs.</td>
</tr>
<tr>
<td></td>
<td>MDI (370 mcg/puff)</td>
<td>See albuterol dose</td>
<td>See albuterol dose</td>
</tr>
<tr>
<td>Pirbuterol MDI (200 mcg/puff)</td>
<td>See albuterol dose</td>
<td>See albuterol dose</td>
<td>H as not been studied in severe asthma exacerbations.</td>
</tr>
<tr>
<td>Systemic (Injected) Beta2-Agonists</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Epinephrine 1:1000 (1 mg/mL)</td>
<td>0.3-0.5 mg every 20 minutes for 3 doses sq</td>
<td>0.01 mg/kg up to 0.3-0.5 mg every 20 minutes for 3 doses sq</td>
<td>No proven advantage of systemic therapy over aerosol.</td>
</tr>
<tr>
<td>Terbutaline (1 mg/mL)</td>
<td>0.25 mg every 20 minutes for 3 doses sq</td>
<td>0.01 mg/kg every 20 minutes for 3 doses then every 2-6 hours as needed sq</td>
<td>No proven advantage of systemic therapy over aerosol.</td>
</tr>
<tr>
<td>Anticholinergics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ipratropium bromide Nebulizer solution (.25 mg/mL)</td>
<td>0.5 mg every 30 minutes for 3 doses then every 2-4 hours as needed</td>
<td>.25 mg every 20 minutes for 3 doses, then every 2 to 4 hours</td>
<td>May mix in same nebulizer with albuterol. Should not be used as first-line therapy; should be added to beta2-agonist therapy.</td>
</tr>
<tr>
<td></td>
<td>MDI (18 mcg/puff)</td>
<td>4-8 puffs as needed</td>
<td>4-8 puffs as needed</td>
</tr>
<tr>
<td>Corticosteroids</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prednisone</td>
<td>120-180 mg/day in 3 or 4 divided doses for 48 hours, then 60-80 mg/day until PEF reaches 70% of predicted or personal best</td>
<td>1 mg/kg every 6 hours for 48 hours then 1-2 mg/kg/day (maximum = 60 mg/day) in 2 divided doses until PEF 70% of predicted or personal best</td>
<td>For outpatient “burst” use 40-60 mg in single or 2 divided doses for adults (children: 1-2 mg/kg/day, maximum 60 mg/day) for 3-10 days</td>
</tr>
<tr>
<td>Methylprednisolone</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prednisolone</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
- No advantage has been found for higher dose corticosteroids in severe asthma exacerbations, nor is there any advantage for intravenous administration over oral therapy provided gastrointestinal transit time or absorption is not impaired. The usual regimen is to continue the frequent multiple daily dosing until the patient achieves an FEV1 or PEF of 50 percent of predicted or personal best and then lower the dose to twice daily. This usually occurs within 48 hours. Therapy following a hospitalization or emergency department visit may last from 3 to 10 days. If patients are then started on inhaled corticosteroids, studies indicate there is no need to taper the systemic corticosteroid dose. If the followup systemic corticosteroid therapy is to be given once daily, one study indicates that it may be more clinically effective to give the dose in the afternoon at 3:00 p.m., with no increase in adrenal suppression (Bean et al. 1992).
Initial Assessment (see figure 3)
History, physical examination (auscultation, use of accessory muscles, heart rate, respiratory rate), PEF or FEV₁, oxygen saturation, and other tests as indicated

FEV₁ or PEF >50%
- Inhaled beta₂-agonist by metered-dose inhaler or nebulizer, up to three doses in first hour
- Oxygen to achieve O₂ saturation ≥90%
- Oral systemic corticosteroids if no immediate response or if patient recently took oral systemic corticosteroid

FEV₁ or PEF <50% (Severe Exacerbation)
- Inhaled high-dose beta₂-agonist and anticholinergic by nebulization every 20 minutes or continuously for 1 hour
- Oxygen to achieve O₂ saturation ≥90%
- Oral systemic corticosteroid

Impending or Actual Respiratory Arrest
- Intubation and mechanical ventilation with 100% O₂
- Nebulized beta₂-agonist and anticholinergic
- Intravenous corticosteroid

Repeat Assessment
Symptoms, physical examination, PEF, O₂ saturation, other tests as needed

Moderate Exacerbation
- FEV₁ or PEF 50-80% predicted/personal best
- Physical exam: moderate symptoms
- Inhaled short-acting beta₂-agonist every 60 minutes
- Systemic corticosteroid
- Continue treatment 1-3 hours, provided there is improvement

Severe Exacerbation
- FEV₁ or PEF <50% predicted/personal best
- Physical exam: severe symptoms at rest, accessory muscle use, chest retraction
- History: high-risk patient
- No improvement after initial treatment
- Inhaled short-acting beta₂-agonist, hourly or continuous + inhaled anticholinergic
- Oxygen
- Systemic corticosteroid

Good Response
- FEV₁ or PEF ≥70%
- Response sustained 60 minutes after last treatment
- No distress
- Physical exam: normal

Incomplete Response
- FEV₁ or PEF ≤50% but <70%
- Mild-to-moderate symptoms

Poor Response
- FEV₁ or PEF <50%
- PCO₂ ≥42 mm Hg
- Physical exam: symptoms severe, drowsiness, confusion

Individualized decision re: hospitalization (see text)

Discharge Home
- Continue treatment with inhaled beta₂-agonist
- Continue course of oral systemic corticosteroid
- Patient education
 - Review medicine use
 - Review/initiate action plan
 - Recommend close medical followup

Admit to Hospital Ward
- Inhaled beta₂-agonist + inhaled anticholinergic
- Systemic (oral or intravenous) corticosteroid
- Oxygen
- Monitor FEV₁ or PEF, O₂ saturation, pulse

Admit to Hospital Intensive Care
- Inhaled beta₂-agonist hourly or continuously + inhaled anticholinergic
- Intravenous corticosteroid
- Oxygen
- Possible intubation and mechanical ventilation

Discharge Home
- Continue treatment with inhaled beta₂-agonist
- Continue course of oral systemic corticosteroid
- Patient education
 - Review medicine use
 - Review/initiate action plan
 - Recommend close medical followup
bronchodilator therapy or that fluctuate widely over 24 hours indicate a heightened risk of life-threatening deterioration.

— In patients with severe distress or with FEV₁ or PEF < 50 percent of predicted, assess the adequacy of arterial oxygen saturation by pulse oximetry (Connett and Lenney 1993; Geelhoed et al. 1994).

■ Objectives of the brief history are to determine:

— Time of onset and cause of current exacerbation

— Severity of symptoms, especially compared with previous exacerbations

— All current medications and time of last dose

— Prior hospitalizations and emergency department visits for asthma, particularly within the past year

— Prior episodes of respiratory insufficiency due to asthma (loss of consciousness or intubation and mechanical ventilation)

— Other potentially complicating illness, especially other pulmonary or cardiac disease or diseases that may be aggravated by systemic corticosteroid therapy such as diabetes, peptic ulcer, hypertension, and psychosis

■ Objectives of the physical examination are to:

— Assess the severity of the exacerbation as indicated by the findings listed in figure 3-9.

— Assess overall patient status, including level of alertness, fluid status, and presence of cyanosis, respiratory distress, and wheezing. Wheezing can be an unreliable indicator of obstruction; in rare cases, extremely severe obstruction may be accompanied by a “silent chest” (Shim and Williams 1980).

— Identify complications (e.g., pneumonia, pneumothorax, or pneumomediastinum).

— Identify other diseases that may affect asthma (e.g., allergic rhinitis, rhinitis, sinusitis).

— Rule out upper airway obstruction. Both intrathoracic and extrathoracic central airway obstruction can cause severe dyspnea and may be diagnosed as asthma. Causes include epiglottitis, organic diseases of the larynx, vocal cord dysfunction, and extrinsic and intrinsic tracheal narrowing (see component 1-Initial Assessment and Diagnosis). Clues as to their presence include dysphonia, inspiratory stridor, monophonic wheezing loudest over the central airway, normal values for PO₂, and unexpectedly complete resolution of airflow obstruction with intubation. When upper airway obstruction is suspected, obtain further evaluation by flow-volume curves and by referral for laryngoscopy (see component 1-Initial Assessment and Diagnosis).

■ The most important objective of laboratory studies is detection of actual or impending respiratory failure; other objectives include detection of theophylline toxicity and of conditions that complicate the treatment of asthma exacerbations. Do not permit these studies to delay initiation of treatment. For example,

— Consider arterial blood gas (ABG) measurement for evaluating arterial carbon dioxide tension (PCO₂) in patients with suspected hypoventilation, with severe distress, or with FEV₁ or PEF 30 percent of predicted after initial treatment. (NOTE: Respiratory drive is typically increased in asthma exacerbations, so a “normal” PCO₂ of 40 mm indicates severe airflow obstruction and a heightened risk of respiratory failure.)

— Complete blood count (CBC) may be appropriate in patients with fever or purulent sputum; keep in mind that modest leukocytosis is common in asthma exacerbations and that corticosteroid treatment causes a further outpouring of polymorphonuclear leukocytes within 1 to 2 hours of administration.

— Measure serum theophylline concentration in patients taking theophylline prior to presentation.

— It may be prudent to measure serum electrolytes in patients who have been taking diuretics regularly and in patients with coexistent cardiovascular disease, because frequent beta₂-agonist administration can cause transient decreases in serum potassium, magnesium, and phosphate.
Chest radiography is not recommended for routine assessment but should be obtained in patients suspected of a complicating cardiopulmonary process, such as pneumothorax, pneumomediastinum, pneumonia, lobar atelectasis, or congestive heart failure.

Electrocardiograms need not be routinely obtained, but a baseline electrocardiogram and continual monitoring of cardiac rhythm are appropriate in patients older than 50 years of age and in those with coexistent heart disease or chronic obstructive pulmonary disease. The electrocardiogram may show a pattern of right ventricular strain that reverses promptly with treatment of airflow obstruction.

Assessment considerations unique to children and infants are as follows:

- It is often difficult for physicians and parents to determine the severity of the airway obstruction in infants and small children with asthma. However, using a combination of the subjective and objective parameters in figure 3-9 permits a fairly accurate assessment to guide initial therapy. Many of these parameters have not been systematically studied, so they serve only as general guides.

- The differences in the anatomy and physiology of the lungs of infants place them at greater risk for respiratory failure. These differences include greater peripheral airway resistance, fewer collateral channels of ventilation, further extension of airway smooth muscle into the peripheral airways, less elastic recoil, and mechanical disadvantage of the diaphragm. Viral infections, particularly respiratory syncytial virus, are the most common cause of acute wheezing illness in infants. The edematous inflammatory response in the airways leads to air trapping and hyperinflation, atelectasis, increased respiratory rate, and wheezing. This sequence of changes can rapidly progress to respiratory failure. Close monitoring is critical.

- It is particularly important to monitor \(O_2 \) saturation by pulse oximetry in infants because their ventilation/perfusion characteristics lead them to become hypoxemic more readily than adults. \(SaO_2 \) should be normal for altitude (> 95 percent at sea level). Decreased oxygen saturation is often an early sign of severe airway obstruction, and an \(SaO_2 \) < 91 percent on room air is a good predictor of the need for hospitalization in small infants (Connett and Lenney 1993; Geelhoed et al. 1994).

- Capillary or ABG measurements should be performed in infants suspected of respiratory failure. \(PCO_2 \) is the best measurement of ventilation in infants, as it is in adults. Children with a normal \(PCO_2 \) but in obvious respiratory distress are at high risk for respiratory failure.

Treatment

In the emergency department and hospital, tailor the intensity of treatment and surveillance to the severity of the exacerbation. The primary therapies—the administration of oxygen, inhaled \(\beta_2 \)-agonist, and systemic corticosteroids—are constant, but the dose and frequency with which they are given and the frequency with which the patient’s response is assessed may vary. Thus, for patients presenting with a severe exacerbation, give inhaled \(\beta_2 \)-agonist therapy at the higher dose (figure 3-10) either repeatedly (three treatments in the first hour) or continuously (by nebulization), give systemic corticosteroids immediately, and watch closely for signs of worsening airflow obstruction or fatigue. For patients with mild exacerbations, give inhaled \(\beta_2 \)-agonist therapy and assess the patient’s response before deciding whether additional therapy is necessary. Give supplemental oxygen to patients with significant hypoxemia and to patients with \(FEV_1 \) or PEF < 50 percent of predicted when arterial \(O_2 \) monitoring is not available.

The following recommendations are based on scientific evidence (key studies are cited) and the opinion of the Expert Panel:

- **Oxygen is recommended for most patients.** Administer supplemental oxygen (by nasal cannulae or mask, whichever is best tolerated) to maintain an \(SaO_2 > 90 \) percent (> 95 percent in pregnant women and in patients with coexistent heart disease). Monitor oxygen saturation until a clear response to bronchodilator therapy has occurred.

- **Inhaled short-acting \(\beta_2 \)-agonists are recommended for all patients** (for recommended doses, see figure 3-10).
Systemic corticosteroids are recommended for most patients (for recommended doses, see figure 3-10).

In the emergency department: Give systemic corticosteroids to patients who have moderate-to-severe exacerbations and patients who do not respond completely to initial beta2-agonist therapy. These medications appear to speed the resolution of airflow obstruction and reduce the rate of relapse (Fanta et al. 1983; Rowe et al. 1992; Scarfone et al. 1993; Connett et al. 1994; Chapman et al. 1991).

- Oral administration of prednisone has been shown to have effects equivalent to those of intravenous methylprednisolone (Harrison et al. 1986; Ratto et al. 1988) and, in the opinion of the Expert Panel, is usually preferred because it is less invasive.

- Give supplemental doses of oral corticosteroids to patients who take them regularly, even if the exacerbation is mild.

- In infants and children, it is especially important to give corticosteroids early in the course of an asthma exacerbation (Harris et al. 1987).

In the hospital: Give systemic corticosteroids to patients admitted to the hospital, because they speed the resolution of asthma exacerbations (Connett et al. 1994; Rowe et al. 1992; Singh and Kumar 1993).

Methylxanthines are not generally recommended.

- In the emergency department: Theophylline/amino-phylline is not recommended because it appears to provide no additional benefit to optimal inhaled beta2-agonist therapy and may increase adverse effects (Fanta et al. 1986; Rossing et al. 1980; Murphy et al. 1993; Rodrigo and Rodrigo 1994; Coleridge et al. 1993).

- In patients currently taking a theophylline-containing preparation, determine serum theophylline concentration to rule out theophylline toxicity.
In the hospital: Therapy with oral or intravenous methylxanthines does not benefit children hospitalized with severe asthma (Strauss et al. 1994; Carter et al. 1993; DiGiulio et al. 1993). The addition of intravenous theophylline in hospitalized adults remains controversial (Huang et al. 1993; Self et al. 1990).

Antibiotics are not recommended for asthma treatment but may be necessary for comorbid conditions. Bacterial, chlamydia, and mycoplasma respiratory tract infections are thought to contribute only infrequently to exacerbations of asthma. The use of antibiotics is generally reserved for those patients with fever and purulent sputum (discolored because of polymorphonuclear leukocytes, not eosinophils) and for patients with evidence of pneumonia. When the presence of bacterial sinusitis is suspected, treat with antibiotics.

Aggressive hydration is not recommended for older children and adults but may be indicated for infants and young children. Intravenous or oral administration of large volumes of fluids does not play a role in the management of severe asthma exacerbations. However, infants and young children may become dehydrated as a result of increased respiratory rate and decreased oral intake. In these patients, make an assessment of fluid status (urine output, urine specific gravity, mucus membrane moisture, electrolytes) and provide appropriate corrections.

Chest physical therapy is not generally recommended. In general, chest physiotherapy is not beneficial and is unnecessarily stressful for the breathless asthma patient.

Mucolytics are not recommended. Avoid mucolytic agents (e.g., acetylcysteine, potassium iodide) because they may worsen cough or airflow obstruction.

Sedation is not recommended. Anxiolytic and hypnotic drugs are contraindicated in severely ill asthma patients because of their respiratory depressant effect.

Repeat Assessment

The Expert Panel recommends that repeat assessment of patients with severe exacerbations be made after the initial dose of inhaled bronchodilator and that repeat assessment of all patients be made after three doses of inhaled bronchodilator (60 to 90 minutes after initiating treatment). The response to initial treatment in the emergency department is a better predictor of the need for hospitalization than is the severity of an exacerbation on presentation (Rodrigo and Rodrigo 1993). The elements to be evaluated include the patient's subjective response, physical findings, measurement of airflow, and measurement of ABG if the patient now meets the criteria described in the discussion of laboratory studies in the Assessment section, page 110.

Hospitalization

The decision to hospitalize a patient should be based on duration and severity of symptoms, severity of airflow obstruction, course and severity of prior exacerbations, medication use at the time of the exacerbation, access to medical care and medications, adequacy of support and home conditions, and presence of psychiatric illness. In general, the principles of care in the hospital resemble those for care in the emergency department and involve both treatment with oxygen, aerosolized bronchodilators, and systemic corticosteroids and frequent assessment, including clinical assessment of respiratory distress and fatigue and objective measurement of airflow (PEF or FEV$_1$) and oxygen saturation.

Impending Respiratory Failure

Most patients respond well to therapy. However, a small minority will show signs of worsening ventilation, whether from worsening airflow obstruction, worsening respiratory muscle fatigue, or a combination of the two. Signs of impending respiratory failure include a declining mental clarity, worsening fatigue, and a PCO$_2$ of $>_{2} 42$ mm Hg. Exactly when to intubate is based on clinical judgment; however, the Expert Panel recommends that intubation not be delayed once it is deemed necessary. Because respiratory failure can progress rapidly and can be difficult to reverse, early recognition and treatment are critically important.

Because intubation of a severely ill asthma patient is difficult, additional treatments are sometimes attempted, such as intravenous administration of magnesium sulfate (Kuitert and Ketchko 1991; Skorodin et al. 1995; Tiffany et al. 1993; Green and Rothrock 1992) and substituting a mixture of helium and
Managing Exacerbations of Asthma

oxygen ("heliox") for oxygen-enriched air (Manthous et al. 1995; Gluck et al. 1990). Although limited observations suggest that these therapies may be effective, possibly among certain subgroups (Bloch et al. 1995), they have not yet been proven consistently effective. Intravenous administration of a beta\textsubscript{2}-agonist also falls into this category of unproven treatment. Recent studies suggest that albuterol is more effective and has fewer side effects when it is given by aerosol than when given intravenously (Salmeron et al. 1994), but the efficacy of adding an intravenous beta\textsubscript{2}-agonist to high-dose nebulized therapy has not been studied. Do not use intravenous isoproterenol in the treatment of asthma because of the danger of myocardial toxicity (Maguire et al. 1991).

The Expert Panel recommends the following actions regarding intubation:

- **Patients presenting with apnea or coma should be intubated immediately.** There are no other absolute indications for endotracheal intubation, but persistent or increasing hypercapnia, exhaustion, and depression of mental status strongly suggest the need for ventilatory support.

- **Consultation with or comanagement by physicians expert in ventilator management is appropriate because mechanical ventilation of patients with severe refractory asthma is complicated and fraught with risk.**

- **Because intubation is difficult in asthma patients, it is best done semi-electively, before the crisis of respiratory arrest.**

- **Intubation should be performed in a controlled setting by a physician with extensive experience in intubation and airway management.**

 - It is preferable that patients with severe exacerbations who are slowly responsive to therapy be admitted to an intensive care unit where they can be monitored closely and intubated if it is indicated.

 - Because intubation should not be delayed once it is deemed necessary, it may be performed in the emergency department or inpatient ward and the patient transferred to an intensive care unit appropriate to the patient’s age.

- Children intubated for asthma should be admitted to a pediatric intensive care unit or transferred to a facility that has such a unit.

- **Issues to consider at the time of intubation include the following:**

 - Close attention should be given to maintaining or replacing intravascular volume, because hypotension commonly accompanies the initiation of positive pressure ventilation.

 - Once mechanical ventilation has been started, it is important to avoid high ventilator pressures and the associated risks of barotrauma.

- **“Permissive hypercapnia” or “controlled hypoventilation”** is the recommended ventilator strategy to provide adequate oxygenation and ventilation while minimizing high airway pressures and barotrauma (Tuxen 1994; Darioli and Perret 1984; Menitove and Goldring 1983). It involves administration of as high an FIO\textsubscript{2} as is necessary to maintain adequate arterial oxygenation, acceptance of hypercapnia, and treatment of respiratory acidosis with intravenous sodium bicarbonate. Adjustments are made to the tidal volume, ventilator rate, and I:E ratio to minimize airway pressures. Bronchodilators are continued, and even in ventilated patients, aerosol delivery is the route of choice (Dhand and Tobin 1996).

 This ventilator strategy is not uniformly successful in critically ill asthma patients, and additional therapies are being evaluated. Their review is beyond the scope of this report.

Patient Discharge

Before discharge, provide patients with necessary medications and education in how to use them, instruction in self-assessment (e.g., by monitoring symptoms and peak flow), a followup appointment, and instruction in an action plan for managing recurrence of airflow obstruction. To ensure that these steps are taken, a discharge checklist may be useful (see example in figure 3-12).

From the Emergency Department

- **Release of the patient from the emergency department depends on the patient’s response to treatment.**
— In general, discharge is appropriate if FEV₁ or PEF has returned to ≥70 percent of predicted or personal best and symptoms are minimal or absent. Patients with an incomplete response to therapy (FEV₁ or PEF ≥50 but < 70 percent predicted or personal best) and with mild symptoms should be assessed individually for their suitability for discharge home, with consideration of factors listed in figure 3-7a.

— The Panel’s opinion is that patients with a rapid response should be observed for 30 to 60 minutes after the most recent dose of bronchodilator to ensure stability of response before discharge to home.

— Extended treatment and observation in a holding area, clinical decision unit, or overnight unit to determine the need for hospitalization may be appropriate provided there is sufficient monitoring and nursing care.

■ Prescribe sufficient medications for the patient to continue treatment after discharge. Patients given systemic corticosteroids should continue oral systemic corticosteroids for 3 to 10 days. The need for further corticosteroid therapy should be assessed at a followup visit. If the patient is receiving inhaled corticosteroids, it is not necessary to taper the dose gradually when the course is completed (O'Driscoll et al. 1993).

■ Emphasize the need for continual, regular care in an outpatient setting. Refer the patient to a followup medical appointment. A visit to the emergency department is often an indication of inadequate long-term management of asthma or inadequate plans for handling exacerbations. Notify the patient’s health care professional (or provide a referral to one if the patient does not name a source of asthma care), and instruct the patient to seek a followup medical appointment within 3 to 5 days. When possible, schedule such an appointment prior to the patient’s discharge. The followup visit should include a detailed review of the patients’ medications, inhaler and peak flow meter technique, and development of comprehensive daily management and action plans that will help prevent exacerbations and urgent care visits (see figures 4-4 and 4-5). Referral to an asthma specialist for consultation should be considered because this has been reported to reduce the rate of subsequent emergency department visits (Zeiger et al. 1991).
Managing Exacerbations of Asthma

- **Review written discharge medications** and, whenever possible, provide patient education on avoidance of asthma triggers and correct use of an inhaler (see figure 4-3).

- **Instruct the patient in a simple action plan** for increasing medications or returning for care should asthma worsen.

- **Consider issuing a peak flow meter** and providing patient education on how to measure and record daily PEF rates.

From the Hospital

- **Prior to discharge, adjust the patient’s medication to an oral and/or inhaled regimen.** The optimal timing of this transition is not precisely established, but the general approach is to wait until the patient is minimally symptomatic from asthma and has little wheezing on chest examination. Usually this clinical status corresponds to a PEF or FEV₁ of ≥70 percent of predicted or personal best. During the first 24 hours after this medication adjustment, observe the patient for possible deterioration.

- **Discharge medications should include a short-acting inhaled beta₂-agonist and sufficient oral corticosteroid** to complete the course of therapy or to continue therapy until the followup appointment. If the decision is made to start the patient on inhaled corticosteroids, they should be started before the course of oral corticosteroids is completed, because their onset of action is gradual (Kraan et al. 1988). Starting the inhaled corticosteroid therapy before discharge gives the patient additional time to learn and demonstrate appropriate technique.

- **Provide patient education:**
 - An exacerbation severe enough to require hospitalization may reflect a failure of the patient’s self-management plan. Hospitalized patients may be particularly receptive to information and advice about their illness; take the opportunity to review patient understanding of the causes of asthma exacerbations, the purposes and correct uses of treatment, and the actions to be taken for worsening symptoms or peak flow values.
 - Educate patients about their discharge medications and the importance of a followup medical visit. Referral to an asthma specialist should be considered for patients with a history of life-threatening exacerbations or multiple hospitalizations (see component 1, page 23) (Mayo et al. 1990).
 - Educate patients older than 5 years of age in the use of peak flow meters to monitor their lung function at home.
 - Review or develop an action plan for management of recurrent symptoms or exacerbations. The plan should describe the signs, symptoms, and/or peak flow values that should prompt increases in self-medication, contact with a health care provider, or return for emergency care. The plan given at discharge from the emergency department may be quite simple (e.g., instructions for discharge medications and returning for care should asthma worsen). The plan developed for discharge from the hospital should be more complete (see figure 3-12). A detailed plan for comprehensive long-term management and handling exacerbations should be developed by the regular provider at a followup visit (see figure 4-5).

REFERENCES

Fergusson, RJ, Stewart CM, Wathen CG, Moffat R, Crompton GK. Effectiveness of nebulised salbutamol administered in ambulances to patients with acute severe asthma. Thorax 1995;50:82-1.

Kelly HW, Murphy S. Corticosteroids for acute, severe asthma. DICP 1991;25:72-9.

Mayo PH, Richman J, Harris HW. Results of a program to reduce admissions for adult asthma. Ann Intern Med 1990;112:864-71.

Rodrigo C, Rodrigo G. Treatment of acute asthma. Lack of therapeutic benefit and increase of the toxicity from aminophylline given in addition to high doses of salbutamol delivered by metered-dose inhaler with a spacer. Chest 1994;106:1071-6.

COMPONENT 4:
EDUCATION FOR A PARTNERSHIP IN ASTHMA CARE

KEY POINTS

- Patient education should begin at the time of diagnosis and be integrated into every step of clinical asthma care.
- It is essential that education be provided by all members of the health care team. The principal clinician should introduce the key educational messages and negotiate agreements with patients; these messages should be reinforced and expanded by all members of the health care team.
- Teach asthma self-management, tailoring the approach to the needs of each patient. Maintain a sensitivity to cultural beliefs and practices.
- Teach and reinforce at every opportunity:
 - Basic facts about asthma
 - Roles of medications
 - Skills: inhaler/spacer/holding chamber use, self-monitoring
 - Environmental control measures
 - When and how to take rescue actions
- Jointly develop treatment goals.
- To encourage an active partnership, provide all patients with a written daily self-management plan and an action plan for exacerbations. Action plans are especially important for patients with moderate-to-severe asthma and patients with a history of severe exacerbations. Provide appropriate patients with a daily asthma diary.
- Encourage adherence by promoting open communication; individualizing, reviewing, and adjusting plans as needed; emphasizing goals and outcomes; and encouraging family involvement.

DIFFERENCES FROM 1991 EXPERT PANEL REPORT

- Emphasis is on patient education by the principal clinician as well as other members of the health care team.
- To enhance the delivery of education, detailed questions to elicit information and educational messages for each visit are provided in chart form. Reinforcement of key messages is emphasized.
- Additional emphasis is placed on evaluating outcomes in terms of patient perceptions of improvement, especially quality of life and the ability to engage in desired activities.
- Roles of written materials and formal education programs are clarified with emphasis that they can supplement but not replace education by clinicians. A list of sources for asthma education programs and materials is provided.
- Renewed emphasis is placed on providing patients with both a written treatment plan for daily self-management and a written action plan for management of exacerbations. Examples are provided that are applicable to both children and adults.
- New section on assessing and responding to cultural and language differences was added.
- New section on patient education for non-chlorofluorocarbon inhalers was added.
Patient education is an essential component of successful asthma management. Current management approaches require patients and families to effectively carry out complex pharmacologic regimens, institute environmental control strategies, detect and self-treat most asthma exacerbations, and communicate appropriately with health care providers. Patient education is the mechanism through which patients learn to successfully accomplish those tasks. It is also a powerful tool for helping patients gain the motivation, skill, and confidence to control their asthma (Feldman et al. 1987; Mellins 1989). Research shows that asthma education can be cost-effective and can reduce morbidity for both adults and children, especially among high-risk patients (Trautner et al. 1993; Bolton et al. 1991; Fireman et al. 1981; Hindi-Alexander and Cropp 1984; Lewis et al. 1984; Clark et al. 1986).

This component covers strategies for enhancing the delivery of patient education and improving the likelihood that patients will follow clinical recommendations, as well as key messages to communicate to the patient. When references are not cited, recommendations are based on the opinion of the Expert Panel.

ESTABLISH A PARTNERSHIP

Patient education should begin at the time of diagnosis and be integrated into every step of medical care, in the context of medical appointments and other clinician-patient communication. When clinicians take the time to provide education, it sends a powerful message to patients and families about the importance of being knowledgeable self-management of asthma. Specific educational messages delivered in the context of a medical care appointment clearly communicate the importance of collaboration in the treatment of asthma (Mayo et al. 1990; Ignacio-Garcia and Gonzales-Santos 1995).

From the time of diagnosis, the clinician and other members of the health care team should begin to build a partnership with the patient and family. Building the partnership requires that clinicians promote open communication and ensure that patients have a basic and accurate foundation of knowledge about asthma, understand the treatment approach, and have the self-management skills necessary to monitor the disease objectively and take medication effectively (Evans et al. 1997).

When nurses, pharmacists, respiratory therapists, and other health care professionals are available to support and expand patient education (NHLBI 1995a, 1995b), a team approach should be used. The principal clinician should introduce the key educational messages (see figure 4-1) and negotiate agreements with patients (Mayo et al. 1990; Kotses et al. 1996). Different members of the health care team should reinforce and expand these messages during office visits and telephone calls or in more formal educational sessions.

Communication and coordination within the team are critical. Team members should document in the patient's record the key educational points (see figure 4-1), patient concerns, and actions the

FIGURE 4-1. KEY EDUCATIONAL MESSAGES FOR PATIENTS

Check off or document that the following key messages have been covered:

Basic Facts About Asthma
- The contrast between asthmatic and normal airways
- What happens to the airways in an asthma attack

Roles of Medications
- How medications work
 - Long-term control: medications that prevent symptoms, often by reducing inflammation
 - Quick relief: short-acting bronchodilator relaxes muscles around airways
- Stress the importance of long-term-control medications and not to expect quick relief from them.

Skills
- Inhaler use (patient demonstrate)
- Spacer/holding chamber use
- Symptom monitoring, peak flow monitoring, and recognizing early signs of deterioration

Environmental Control Measures
- Identifying and avoiding environmental precipitants or exposures

When and How To Take Rescue Actions
- Responding to changes in asthma severity (daily self-management plan and action plan)
patient agrees to take. This will enable all members of the team to be consistent and to reinforce the educational points and the progress being made.

Teach Asthma Self-Management

The Expert Panel recommends that clinicians teach patients and families the essential information, medication skills, self-monitoring techniques, and environmental control measures outlined in figure 4-2 (Bailey et al. 1990; Ignacio-Garcia and Gonzales-Santos 1995; Kotses et al. 1995, 1996; Wilson et al. 1993). These key points should be adapted to meet the individual patient’s needs. Clinicians should:

- **Teach basic facts about asthma** so that the patient and family understand the rationale for needed actions. Give a brief verbal description of what asthma is and the intended role of each medication. Do not overwhelm the patient with too much information all at once, but repeat the important messages at each visit. Ask the patient to bring all medications to each appointment for review.

- **Teach the patient necessary medication skills**, such as correct use of the inhaler (see figure 4-3) and spacer/holding chamber and knowing when and how to take quick-relief medications. (Also see box 1, Patient Education for Non-CFC Inhalers.)

- **Teach self-monitoring skills**: symptom monitoring, peak flow monitoring as appropriate (see component 1—Periodic Assessment and Monitoring), and recognizing early signs of deterioration.

- **Teach relevant environmental control/avoidance strategies** (see figure 2-4). Teach how environmental precipitants or exposures can make the patient’s asthma worse (e.g., allergens and irritants) at home, school, and work and how to recognize both immediate and delayed reactions.
FIGURE 4-2. DELIVERY OF ASTHMA EDUCATION BY CLINICIANS DURING PATIENT CARE VISITS

<table>
<thead>
<tr>
<th>Assessment Questions</th>
<th>Information</th>
<th>Skills</th>
</tr>
</thead>
<tbody>
<tr>
<td>Focus on:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Expectations of visit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Goals of treatment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Medications</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Quality of life</td>
<td></td>
<td></td>
</tr>
<tr>
<td>“What worries you most about your asthma?”</td>
<td>W hat is asthma? A chronic lung disease. The airways are very sensitive. They become inflamed and narrow; breathing becomes difficult.</td>
<td>Teach in simple language: Teach or review and demonstrate: Inhaler (see figure 4-3) and spacer/holding chamber use. Check performance.</td>
</tr>
<tr>
<td>“What do you want to accomplish at this visit?”</td>
<td>Asthma treatments: two types of medicines are needed: - Long-term control: medications that prevent symptoms, often by reducing inflammation - Quick relief: short-acting bronchodilator relaxes muscles around airways</td>
<td></td>
</tr>
<tr>
<td>“What do you want to be able to do that you can’t do now because of your asthma?”</td>
<td>Bring all medications to every appointment.</td>
<td>Self-monitoring skills that are tied to an action plan: - Recognize intensity and frequency of asthma symptoms - Review the signs of deterioration and the need to reevaluate therapy: • Waking at night with asthma • Increased medication use • Decreased activity tolerance</td>
</tr>
<tr>
<td>“What do you expect from treatment?”</td>
<td>W hen to seek medical advice. Provide appropriate telephone number.</td>
<td>Use of a simple, written self-management plan (see figure 4-4) and action plan (see figure 4-5)</td>
</tr>
<tr>
<td>“W hat other questions do you have for me today?”</td>
<td>W hen to seek medical advice. Provide appropriate telephone number.</td>
<td></td>
</tr>
</tbody>
</table>

Recommendations for Initial Visit

Recommendations for First Followup Visit (2 to 4 weeks or sooner as needed)

Focus on:

- Expectations of visit
- Goals of treatment
- Medications
- Quality of life

Ask relevant questions from previous visit and also ask:

- “What medications are you taking?”
- “How and when are you taking them?”
- “What problems have you had using your medications?”
- “Please show me how you use your inhaled medications.”

Use of two types of medications. Remind patient to bring all medications and the peak flow meter to every appointment for review.

Self-evaluation of progress in asthma control using symptoms and peak flow as a guide.

Use of a daily self-management plan. Review and adjust as needed.

Use of an action plan. Review and adjust as needed.

Peak flow monitoring (see figure 1-7) and daily diary recording (see figure 1-9).

Correct inhaler and spacer/holding chamber technique.
FIGURE 4-2. DELIVERY OF ASTHMA EDUCATION BY CLINICIANS DURING PATIENT CARE VISITS (CONTINUED)

<table>
<thead>
<tr>
<th>Assessment Questions</th>
<th>Information</th>
<th>Skills</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommendations for Second Followup Visit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Focus on:</td>
<td>Teach in simple language:</td>
<td>Teach or review and demonstrate:</td>
</tr>
<tr>
<td>■ Expectations of visit</td>
<td></td>
<td>Inhaler/spacer/holding chamber technique.</td>
</tr>
<tr>
<td>■ Goals of treatment</td>
<td>Relevant environmental control/avoidance strategies (see figure 2-4).</td>
<td>Peak flow monitoring technique.</td>
</tr>
<tr>
<td>■ Medications</td>
<td>■ How to identify home, work, or school exposures that can cause or worsen asthma</td>
<td>Use of daily self-management plan. Review and adjust as needed.</td>
</tr>
<tr>
<td>■ Quality of life</td>
<td>■ How to control house-dust mites, animal exposures if applicable</td>
<td>Review use of action plan. Confirm that patient knows what to do if asthma gets worse.</td>
</tr>
<tr>
<td>Ask relevant questions from previous visits and also ask:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>“Have you noticed anything in your home, work, or school that makes your asthma worse?”</td>
<td>Review all medications.</td>
<td></td>
</tr>
<tr>
<td>“Describe for me how you know when to call your doctor or go to the hospital for asthma care.”</td>
<td>Review and interpret from daily diary:</td>
<td></td>
</tr>
<tr>
<td>“What questions do you have about the action plan?” “Can we make it easier?”</td>
<td>■ Peak flow measure</td>
<td></td>
</tr>
<tr>
<td>“Are your medications causing you any problems?”</td>
<td>■ Symptom scores</td>
<td></td>
</tr>
</tbody>
</table>

Recommendations for All Subsequent Visits		
Focus on:	Teach in simple language:	Teach or review and demonstrate:
■ Expectations of visit	Review and reinforce all:	Inhaler/spacer/holding chamber technique.
■ Goals of treatment	■ Educational messages	Peak flow monitoring technique.
■ Medications	■ Environmental control strategies at home, work, or school	Use of daily self-management plan. Review and adjust as needed.
■ Quality of life	■ Medications	
Ask relevant questions from previous visits and also ask:		Review use of action plan. Confirm that patient knows what to do if asthma gets worse. Periodically review and adjust written action plan.
“How have you tried to control things that make your asthma worse?”	Review and interpret from daily diary:	
“Please show me how you use your inhaled medication.”	■ Peak flow measures	
	■ Symptom scores	
Figure 4-3.

STEPS FOR USING YOUR INHALER

Please demonstrate your inhaler technique at every visit.

1. Remove the cap and hold inhaler upright.
2. Shake the inhaler.
3. Tilt your head back slightly and breathe out slowly.
4. Position the inhaler in one of the following ways (A or B is optimal, but C is acceptable for those who have difficulty with A or B. C is required for breath-activated inhalers):
 - **A.** Open mouth with inhaler 1 to 2 inches away.
 - **B.** Use spacer/holding chamber (that is recommended especially for young children and for people using corticosteroids).
 - **C.** In the mouth. Do not use for corticosteroids.
 - **D.** NOTE: Inhaled dry powder capsules require a different inhalation technique. To use a dry powder inhaler, it is important to close the mouth tightly around the mouthpiece of the inhaler and to inhale rapidly.
5. Press down on the inhaler to release medication as you start to breathe in slowly.
6. Breathe in slowly (3 to 5 seconds).
7. Hold your breath for 10 seconds to allow the medicine to reach deeply into your lungs.
8. Repeat puff as directed. Waiting 1 minute between puffs may permit second puff to penetrate your lungs better.
9. Spacers/holding chambers are useful for all patients. They are particularly recommended for young children and older adults and for use with inhaled corticosteroids.

Avoid common inhaler mistakes. Follow these inhaler tips:
- Breathe out before pressing your inhaler.
- Inhale slowly.
- Breathe in through your mouth, not your nose.
- Press down on your inhaler at the start of inhalation (or within the first second of inhalation).
- Keep inhaling as you press down on inhaler.
- Press your inhaler only once while you are inhaling (one breath for each puff).
- Make sure you breathe in evenly and deeply.

NOTE: Other inhalers are becoming available in addition to those illustrated above. Different types of inhalers may require different techniques.

Jointly Develop Treatment Goals

Fundamental to building a partnership is for clinicians and patients to jointly develop and agree on both short- and long-term treatment goals. Such agreements can encourage active participation, enhance the partnership, and improve asthma management (Schulman 1979; Clark 1989; Clark et al. 1995).

It is the opinion of the Expert Panel that clinicians should:

- **Determine the patient's personal treatment goals.** Ask how asthma interferes with the patient’s life (e.g., inability to sleep through the night, play a sport) and incorporate the responses into personal treatment goals. Asthma-specific quality-of-life instruments (Juniper et al. 1992; Marks et al. 1993) may be useful.

- **Share the general goals of asthma treatment with the patient and family.** Tell patients, “Our goals are to have you:
 - Be free from severe symptoms day and night, including sleeping through the night.”
 - Have the best possible lung function.”
 - Be able to participate fully in any activities of your choice.”
 - Not miss work or school because of asthma symptoms.”
 - Need fewer or no urgent care visits or hospitalizations for asthma.”
 - Use medications to control asthma with as few side effects as possible.”
 - Be satisfied with your asthma care.”

- **Agree on the goals of treatment.** The clinicians, the patient, and when appropriate, the patient’s family should agree on the goals of asthma management, which include both the patient’s personal goals and the general goals (see list above) suggested by the clinicians.

Provide the Patient With Tools for Self-Management

It is the opinion of the Expert Panel that, at the first visit, clinicians should develop a written, individualized, daily self-management plan (see figure 4-4) in consultation with the patient. Include the recommended doses and frequencies of daily medications and the daily self-management activities needed to achieve the agreed-on goals. Review and refine the plan at subsequent followup visits. List the treatment goals in the plan and explain how following the plan will help the patient reach those goals. Emphasizing the patient’s personal goals is essential to enhancing adherence. For example, ask, “Have you had any problems taking your bronchodilator immediately before playing basketball? Has it helped you stay in the game?”

Discuss the long-term benefits of following the written, daily self-management plan (Plaut 1996). For some patients, focusing on long-term treatment goals and discussing the “big picture” of asthma control and how medications can be adjusted over time may improve adherence (Mellins 1996).

Also at the first visit, jointly develop a written action plan to help the patient manage asthma exacerbations (see figure 4-5, pages 138-143) for examples). This is especially important for patients with moderate-to-severe persistent asthma and patients with a history of severe exacerbations. Review and refine the plan at followup visits. The action plan directs the patient to adjust medicines at home in response to particular signs, symptoms, and peak flow measurements. It should also list the PEF levels and symptoms indicating the need for acute care and emergency telephone numbers for the physician, emergency department, rapid transportation, and family/friend for aid and support. A number of action plans have been published (Woolcock et al. 1988; Beasley et al. 1989; D’Souza et al. 1994; Charlton et al. 1990; Mellins and Evans, in press; NHLBI 1995d; NHLBI 1995e). Those tested in randomized clinical trials were effective in decreasing asthma exacerbations (Woolcock et al. 1988; Charlton et al. 1990). Clinicians should choose an action plan that suits their practice, patients, and style. The examples in figure 4-5 are not endorsed by the Expert Panel; rather, they are provided to demonstrate a range of possibilities and should be modified as appropriate.

It is the opinion of the Expert Panel that clinicians should provide an asthma diary to appropriate patients for self-monitoring symptoms, peak flow measurements, frequency of daily quick-relief inhaler medication use, and activity restriction (see figure 1-9).
ASTHMA DAILY SELF-MANAGEMENT PLAN (EXAMPLE 1)

ASTHMA SELF-MANAGEMENT PLAN FOR

(N name)

YOUR TREATMENT GOALS

- Be free from severe symptoms day and night, including sleeping through the night
- Have the best possible lung function
- Be able to participate fully in any activities of your choice
- Not miss work or school because of asthma symptoms
- Not need emergency visits or hospitalizations for asthma
- Use asthma medications to control asthma with as few side effects as possible

Add personal goals here:

YOUR DAILY MEDICATIONS

<table>
<thead>
<tr>
<th>Daily Medication</th>
<th>How Much To Take</th>
<th>When To Take It</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RECORD DAILY SELF-MONITORING ACTIONS in the asthma diary your doctor gives you.

Peak flow: At least every morning when you wake up, before taking your medication, measure your peak flow and record it in your diary. Bring these records to your next appointment with your doctor.

Symptoms: Note if you had asthma symptoms (shortness of breath, wheezing, chest tightness, or cough) and rate how severe they were during the day or night: mild, moderate, severe.

Use of your quick-relief inhaler (bronchodilator): Keep a record of the number of puffs you needed to use each day or night to control your symptoms.

Actual use of daily medications:

Activity restriction:

This plan is provided as an example to clinicians.
LONG-TERM SELF-MANAGEMENT PLAN FOR PERSISTENT ASTHMA

Introduction: This long-term plan provides four benefits to the clinician and patient, who complete it together during an early visit and review it periodically. The chart (1) reflects the step-up/step-down concept of pharmacotherapy; (2) enables patient and clinician to negotiate which medicines will be used and how often; (3) combines symptoms and/or peak flow monitoring as the basis for patient’s adding or deleting medicines at home and self-adjusting doses; and (4) gives the patient a view of what the clinician recommends over the long-term—under what future circumstances the clinician intends that the regimen be increased or decreased.

Directions: The clinician writes the patient’s medicines in the first column. Based on the symptoms and peak flow specified in the top row, the clinician then writes the doses and frequency of administration for each medication. (Some clinicians may prefer to print standard recommendations on the form to save time.)

<table>
<thead>
<tr>
<th>Medication</th>
<th>At the FIRST sign of a cold or exposure to known trigger</th>
<th>If cough or wheeze is present OR peak flow is between 50 and 80% of personal best</th>
<th>If cough or wheeze worsen OR peak flow is below 50% of personal best</th>
<th>As soon as cough and wheeze have stopped OR peak flow is above 80% of personal best</th>
<th>When there is no cough or wheeze for 2 weeks, even with activity OR peak flow is above 80% of personal best for 2 weeks</th>
<th>When there is no cough or wheeze for ___ months OR peak flow is above 80% of personal best for ___ months</th>
<th>Before exercise or physical activity</th>
<th>For rapidly worsening asthma (severe exacerbation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short-acting beta-agonist</td>
<td>2 puffs</td>
<td>2 puffs</td>
<td>2 puffs</td>
<td>0</td>
<td>0</td>
<td>2 puffs</td>
<td>2-4 puffs</td>
<td>2-4 puffs</td>
</tr>
<tr>
<td>Nonsteroidal anti-inflammatory</td>
<td>2 puffs</td>
<td>2 puffs</td>
<td>2 puffs</td>
<td>2 puffs</td>
<td>2 puffs</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Inhaled corticosteroid</td>
<td>2 puffs</td>
<td>4 puffs</td>
<td>4 puffs</td>
<td>2 puffs</td>
<td>2 puffs</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TIMES PER DAY</td>
<td>3</td>
<td>4 (every 4 hrs)</td>
<td>4 (every 4 hrs)</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>5-10 minutes before exercise</td>
<td>every 20 minutes for 3 doses*</td>
</tr>
<tr>
<td>Oral corticosteroid</td>
<td>0</td>
<td>0</td>
<td>2 mg/kg/day x 2 days then 1 mg/kg/day x 3 days</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

* If there is not a good response, seek emergency care immediately. If there is a good response, return to the third column.

Source: Mellins 1996.

This plan is provided as an example to clinicians.

Please note that the following long-term plan is included only as an example of how to fill out the plan. The treatment regimen itself does not correspond to recommendations made in the *Expert Panel Report 2: Guidelines for the Diagnosis and Management of Asthma*.

LONG-TERM SELF-MANAGEMENT PLAN FOR PERSISTENT ASTHMA (EXAMPLE ONLY)
Encourage Adherence

An important part of patient education is encouraging adherence.

- **Use effective techniques to promote open communication.** Research suggests that certain clinician behaviors are associated with patient adherence and/or satisfaction with care (Clark et al. 1995). Not all are appropriate for cultural subgroups, but the items listed in figure 4-6 are general guidelines.

- **Early in each visit, elicit the patient’s concerns, perceptions, and unresolved questions about his or her asthma** (see figure 4-2). A question such as “What worries you most about your asthma?,” which cannot be answered yes or no, encourages patients and families to voice issues, personal beliefs, or concerns they may be apprehensive about discussing or may not think are of interest to the clinician. These potential barriers to adherence can be dealt with only if they are identified. By asking about and discussing such concerns, clinicians build trust and a sense of partnership with the patient. Most nonadherence originates in personal beliefs or concerns about asthma that have not been discussed with the clinician (Korsch et al. 1968; Janz et al. 1984). Until such fears and worries are identified and addressed, patients will not be able to adhere to the clinician’s recommendations (Korsch et al. 1968).

- **Assess the patient’s and family’s perceptions of the severity level of the disease.** Two questions may prove useful: “How severe do you think your asthma is?” and “How much danger do you believe you are in from your asthma?” When patients are identified who are overwhelmed by fear of death, put their fears in perspective by providing them with the results of objective assessments and expert opinion. A clearly written, detailed action plan that directs the patient how to respond to worsening asthma may be extremely helpful in reducing anxiety (figure 4-5). Patients’ perceptions about their disease severity and its threat to their well-being influence self-management behavior and use of the health care system (Janson-Bjerklie et al. 1992; Janz et al. 1984).

- **Assess the patient’s and family’s level of social support.** Ask, “Who among your family or friends can you turn to for help if your asthma worsens?” Counsel patients to identify an asthma “partner” among their family or friends who is willing to be educated and provide support. Include at least one of these individuals in follow-up appointments with the patient so that he or she can hear what is expected of the patient in following the self-management and action plans (Graham et al. 1990).

- **Encourage or enlist family involvement.** Ask patients to identify ways their family members can help them follow the plans. Ask the patient to share the plans with family members, elicit their input, and agree on actions they can help with. It may be helpful for children and parents to discuss this with a clinician present.

- **Consider referral to a psychologist, social worker, psychiatrist, or other licensed professional when stress seems to unduly interfere with daily asthma management.** As with other chronic diseases, emotional and social stress may be a confounding factor for many patients struggling with asthma control. Although stress does not cause asthma, it can play a role in precipitating asthma exacerbations (Busse et al. 1995) and can complicate an individual’s attempts at self-management. Referral to a local support group may be useful.

Figure 4-6. Promoting open communication to encourage patient adherence

<table>
<thead>
<tr>
<th>Friendly Manner:</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Show attentiveness (eye contact, attentive listening, etc.)</td>
</tr>
<tr>
<td>- Give encouragements with nonverbal communication (nodding agreement, smiling, etc.)</td>
</tr>
<tr>
<td>- Give verbal praise for effective management strategies</td>
</tr>
<tr>
<td>- Use interactive conversation (e.g., asking open-ended questions)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reassuring Communication:</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Elicit patient’s underlying concerns about asthma</td>
</tr>
<tr>
<td>- Allay fears with specific reassuring information</td>
</tr>
</tbody>
</table>

Adapted with permission from Clark et al. 1995.
Use methods to increase the chances that the patient will adhere to the written, daily self-management plan. For instance, adherence to the self-management plan is enhanced when the plan is simplified as much as possible, when the number of medications and frequency of daily doses are minimized, when the medication doses and frequency fit into the patient’s and family’s daily routine (Clark et al. 1995; Haynes et al. 1979; Eisen et al. 1990; Evans 1993; M eichenbaum and Turk 1987), and when the plan considers the patient’s ability to afford the medications (H indi-A lexander and Throm 1987). Because nonadherence is difficult for clinicians to detect (Haynes et al. 1979; Charney et al. 1967; Mushlin and Appel 1977), it is prudent to explore potential barriers to adherence with every patient by asking what concerns they have about medicines (e.g., safety) or other aspects of treatment.

MAINTAIN THE PARTNERSHIP

As part of ongoing care, the clinician should continue to build the partnership by being a sympathetic coach and by helping the patient follow the self-management plan and take other needed actions. Educational efforts should be continuous, because it may take up to 6 months for the impact of education to be evident (Toelle et al. 1993). Furthermore, it is necessary to periodically review information and skills covered previously because patient self-management behavior is likely to decline over time (Reis et al. 1995).

In particular, it is essential that clinicians demonstrate, review, evaluate, and correct inhaler/spacer/holding chamber technique at each visit because these skills deteriorate rapidly (Kesten et al. 1993). Written instructions are helpful (see figure 4-3), but insufficient (Nimmo et al. 1993; Wilson et al. 1993). Research suggests that patients tend to make specific mistakes in using inhalers that need to be corrected (Larsen et al. 1994; Dolovich et al. 1981; K esten et al. 1993; Hanania et al. 1994). Patients especially need to be reminded to inhale slowly and to activate the inhaler only once for each breath (Rau et al. 1996).

Clinicians should continue to promote open communication with the patient and family by addressing the following elements (see figure 4-2) in each followup visit:

- Continue asking patients early in each visit what concerns they have about their asthma and what they especially want addressed during the visit.
- Review the short-term goals agreed on in the initial visit. Assess how well they are being achieved (e.g., was the patient’s wish to engage in physical activity achieved?). Revise the goals as needed. Achievement of short-term goals should be discussed as indicators that the patient is moving toward long-term goals. Give positive verbal reinforcement for achievement of a goal and recognize the patient’s success in moving closer to full control of the disease.

Every effort should be made to discuss asthma care, especially the self-management plan, in the patient’s native language so that educational messages are fully understood. Research suggests that lack of language concordance between the clinician and the patient affects adherence and appropriate use of health care services (M anson 1988). Language barriers also may complicate the assessment of cultural differences. If interpreters are used, they should be equally competent in both English and the patient’s language and knowledgeable about medical terms (Woloshin et al. 1995).

TAILORED EDUCATION TO THE NEEDS OF THE INDIVIDUAL PATIENT

Assess cultural or ethnic beliefs or practices that may influence self-management activities and modify educational approaches, as needed. Cultural variables may affect patient understanding of and adherence to medical regimens (Pachter and Weller 1993; Kleinman et al. 1978). Open-ended questions such as “In your community, what does having asthma mean?” can elicit informative responses. The culturally sensitive clinician should attempt to find ways to incorporate harmless or potentially beneficial remedies with the pharmacologic plan. For example, a prevalent belief among the Latino population is that illnesses are either “hot” or “cold” (Risser and M azur 1995). Asthma is viewed as a “cold” illness amenable to “hot” treatment. Suggesting that asthma medications be taken with hot tea or hot water incorporates this belief into the therapeutic regimen and helps build the therapeutic partnership. When harmful home remedies are being used, clinicians should discourage their use by suggesting a culturally acceptable alternative as a replacement or recommending a safer route of administration (Pachter et al. 1995). These and other strategies may be useful in working with ethnic minorities (NHLBI 1995c).

Education for a Partnership in Asthma Care
Review the daily self-management plan and the steps the patient was to take (Clark et al. 1995). Adjust the plan as needed (e.g., the recommendations of how to use medicines if the dose or type is not working). Identify other problems the patient has in following the agreed-on steps (e.g., disguising the bad taste of medicine); treat these as areas needing more work, not as adherence failures. Write a self-management plan to help school personnel manage a child's asthma (see figure 4-7, page 144, for an example).

Periodically review the asthma action plan and revise as necessary. Confirm that the patient knows what to do if his or her asthma gets worse.

Continue teaching and reinforcing key educational messages (see figure 4-1). Provide information and teach skills over several visits so as not to overwhelm the patient with too much information at one time. Repeat important points often.

Give patients simple, brief written materials that reinforce the actions recommended and skills taught (Morris et al. 1986; Ley 1972; Davis et al. 1990; Estey et al. 1991). Figure 4-8 (page 146) lists organizations that distribute patient education materials; many of these organizations also have some Spanish-language materials.

SUPPLEMENT PATIENT EDUCATION DELIVERED BY CLINICIANS

All patients may benefit from a formal asthma education program that has been evaluated and reported in the literature to be effective. These programs should be taught by qualified asthma educators who are knowledgeable about asthma and experienced in patient education. Communication among the asthma educator, the clinicians providing direct care, and the patient/family is critical. When formal programs are available in local communities, they can supplement, but not replace, patient education provided in the office. Individual and group programs have been developed and tested for patients of all ages, including parents of very young children (birth to 4 years) (Clark et al. 1986; Creer et al. 1988; Evans et al. 1987; Lewis et al. 1984; NHLBI 1984a, 1984b, 1984c, 1985; Taggart et al. 1991; Wison-Pessano et al. 1987; Wison-Pessano and MChabb 1985; Bailey et al. 1990; Kotses et al. 1995; Wilson et al. 1996; Lahdensuo et al. 1996). A list of organizations distributing programs that have been validated in the literature can be found in figure 4-8.

These patient education programs should be delivered as designed. Some validity and effectiveness may be compromised when segments of various programs are pieced together or when programs are condensed. In the interest of saving time, educators should not delete educational strategies, such as using small groups or scheduling multiple sessions spaced with "homework" assignments, because these strategies have demonstrated effectiveness in motivating individuals to make significant behavior changes (Thapar 1994; Wilson et al. 1993; Kotses et al. 1995; Bailey et al. 1990).

A variety of other educational formats, such as videotapes (Yoon et al. 1993) and interactive computer software (Osman et al. 1994), also may enhance, but not replace, education delivered by clinicians.

PROVIDE PATIENT EDUCATION IN OTHER CLINICAL SETTINGS

Patient education also should be delivered in the context of emergency department visits and hospitalizations. Asthma exacerbations may represent teachable moments when patients are more receptive to educational messages. Research on adults with asthma who are referred by emergency department providers to an asthma education program shows that education can decrease utilization of emergency services (Bolton et al. 1991). Educational programs delivered to hospitalized children and adult asthma patients show increased knowledge and use of self-management behaviors (Taggart et al. 1991), reduced length of hospital stay, and overall reduction in asthma readmissions (Majo et al. 1996).

REFERENCES

Evans D. To help patients control asthma the clinician must be a good listener and teacher [editorial]. Thorax 1993;48:685-7.

Mellins RB. Developing a therapeutic plan for asthma in a primary-care setting. City Health Info 1996:15:4-6.

ASTHMA ACTION PLAN (EXAMPLE 1)

It is important in managing asthma to keep track of your symptoms, medications, and peak expiratory flow (PEF). You can use the colors of a traffic light to help learn your asthma medications:

A. **GREEN means Go**
 - Use preventive (anti-inflammatory) medicine

B. **YELLOW means Caution**
 - Use quick-relief (short-acting bronchodilator) medicine in addition to the preventive medicine.

C. **RED means STOP!**
 - Get help from a doctor.

A. Your GREEN ZONE is __________ 80 to 100% of your personal best. GO!

Breathing is good with no cough, wheeze, or chest tightness during work, school, exercise, or play.

ACTION:
- Continue with medications listed in your daily treatment plan.

B. Your YELLOW ZONE is __________ 50 to less than 80% of your personal best. CAUTION!

Asthma symptoms are present (cough, wheeze, chest tightness).

Your peak flow number drops below ________ or you notice:
- Increased need for inhaled quick-relief medicine
- Increased asthma symptoms upon awakening
- Awakening at night with asthma symptoms

ACTIONS:
- Take ______ puffs of your quick-relief (bronchodilator) medicine __________________________.
 - Repeat ______ times.
- Take ______ puffs of __________________________ (anti-inflammatory) ______ times/day.
- Begin/increase treatment with oral steroids:
 - Take ______ mg of __________________________ every a.m. ______ p.m.______.
- Call your doctor (phone) __________________ or emergency room ____________________________.

C. Your RED ZONE is __________ 50% or less of your best. DANGER!!

Your peak flow number drops below ________, or you continue to get worse after increasing treatment according to the directions above.

ACTIONS:
- Take ______ puffs of your quick-relief (bronchodilator) medicine __________________________.
 - Repeat ______ times.
- Begin/increase treatment with oral steroids. Take ______ mg now.
- Call your doctor now (phone __________________). If you cannot contact your doctor, go directly to the emergency room (phone _______________).

Other important phone numbers for transportation_______________________________.

AT ANY TIME, CALL YOUR DOCTOR IF:
- Asthma symptoms worsen while you are taking oral steroids, or
- Inhaled bronchodilator treatments are not lasting 4 hours, or
- Your peak flow number remains or falls below ___________ in spite of following the plan.

Physician Signature __________________________ Patient’s/Family Member’s Signature __________________________

This plan is provided as an example to clinicians.
Asthma Action Plan (Example 2)

<table>
<thead>
<tr>
<th>Zone</th>
<th>Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td></td>
</tr>
<tr>
<td>Yellow</td>
<td></td>
</tr>
<tr>
<td>Red</td>
<td></td>
</tr>
</tbody>
</table>

- **Medicines:**
- **Baseline/Personal Best Peak Flow:**
- **Doctor’s Name:**
- **Doctor’s Phone:**
- **Name:**

Adapted with permission from Cecilia Vicuña-Kneady, RN. This plan is provided as an example to clinicians.
Figure 4-5.

ASTHMA ACTION PLAN (EXAMPLE 3)

ADULT SELF-MANAGEMENT INSTRUCTIONS
FOR ASTHMA ACTION PLAN
DATE - ____________________

When to Monitor Peak Flow Numbers
☐ In the morning soon after waking up.
☐ Before supper.
☐ Before bed.
☐ Before and 5-15 minutes after inhaled treatments.
☐ With increased respiratory symptoms.

Important Peak Flow Numbers
Baseline ____________________
---------- % baseline ________
---------- % baseline ________

If your peak flow number drops below ______ or you notice:
• Increased use of inhaled treatments to manage asthma
• Increased asthma symptoms upon awakening
• Awakening at night with asthma symptoms

Follow these treatment steps:
☐ Increase inhaled steroids.
 Take __________ puffs of __________ time(s) a day.
☐ Begin/increase treatment with oral steroids.
 Take __________ mg of __________.
 In the ☐ morning and/or ☐ before supper.

If your peak flow number drops below ______ or you continue to get worse after increasing treatment according to the directions above, follow these treatment steps:
☐ Begin/increase treatment with oral steroids.
 Take __________ mg of __________.
 In the ☐ morning and/or ☐ before supper.
☐ Contact your health care provider.

Contact your health care provider if:
☐ Asthma symptoms worsen while you are taking oral steroids or,
☐ Inhaled bronchodilator treatments are not lasting 4 hours or,
☐ Your peak flow number falls below ________.
☐ If you cannot contact your health care provider go directly to the Emergency Room.

Directions for Resuming Normal Treatment:
☐ Continue increased treatment until symptoms and peak flow number have returned to normal, then continue increased inhaled steroids or ________ mg of oral steroids for the same number of days it took to return to normal. If your peak flow number has not returned to normal in 5 days contact your health care provider.
☐ Call your health care provider for specific instructions.

If you have questions please call:
☐ ☐ Other ____________________ After hours
☐ Your home physician.

Physician Signature ____________________ Date ____________________
Patient/Family Signature ____________________ Staff Signature ____________________

Adapted with permission from National Jewish Medical and Research Center.
This plan is provided as an example to clinicians.
ASTHMA ACTION PLAN (Peak Flow monitoring)

<table>
<thead>
<tr>
<th>ZONE</th>
<th>LEVEL</th>
<th>STATUS</th>
<th>ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green Zone: All Clear</td>
<td>1</td>
<td>DOING WELL</td>
<td>TAKE:</td>
</tr>
<tr>
<td>My best peak Flow: _________</td>
<td></td>
<td></td>
<td>Medicine Dose Max # times/day</td>
</tr>
<tr>
<td>Peak Flow: _______ to _______</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(100 - 80% of My Best Peak Flow)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• No symptoms of an asthma episode</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Able to do usual activities</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Usual medications control asthma</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yellow Zone: Caution</td>
<td>2</td>
<td>INCREASE IN SYMPTOMS</td>
<td>ADD:</td>
</tr>
<tr>
<td>Peak Flow: _______ to _______</td>
<td></td>
<td></td>
<td>Medicine Dose Max # times/day</td>
</tr>
<tr>
<td>(80 - 50% of My Best Peak Flow)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Increased asthma symptoms (including waking at night due to asthma)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Usual activities somewhat limited</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Increased need for asthma medications</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red Zone: Medical Alert</td>
<td>3</td>
<td>NO IMPROVEMENT AFTER ___ HRS OR EVEN MORE SYMPTOMS</td>
<td>ADD:</td>
</tr>
<tr>
<td>Peak Flow: Less than _______</td>
<td></td>
<td></td>
<td>Medicine Dose</td>
</tr>
<tr>
<td>(50% of My Best Peak Flow)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Increased symptoms longer than 24 hrs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Very short of breath</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Usual activities severely limited</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Asthma medications haven't reduced symptoms</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DANGER SIGNS:
- DIFFICULTY WALKING AND TALKING DUE TO SHORTNESS OF BREATH ➔ GO TO THE HOSPITAL NOW
- LIPS OR FINGERNAILS ARE BLUE ➔ OR CALL 911 NOW

Adapted with permission from Kaiser Permanente Center for Health Research, Portland, OR.
This plan is provided as an example to clinicians.
ASTHMA ACTION PLAN (Symptom monitoring)

<table>
<thead>
<tr>
<th>LEVEL</th>
<th>STATUS</th>
<th>ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Clear</td>
<td>1</td>
<td>DOING WELL</td>
</tr>
<tr>
<td>• No symptoms of an asthma episode</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Able to do usual activities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Usual medications control asthma</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caution</td>
<td>2</td>
<td>INCREASE IN SYMPTOMS</td>
</tr>
<tr>
<td>• Increased asthma symptoms (including wakening at night due to asthma)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Usual activities somewhat limited</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Increased need for asthma medications</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medical Alert</td>
<td>3</td>
<td>NO IMPROVEMENT AFTER ____ HRS or EVEN MORE SYMPTOMS</td>
</tr>
<tr>
<td>• Increased symptoms longer than 24 hrs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Very short of breath</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Usual activities severely limited</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Asthma medications haven’t reduced symptoms</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DANGER SIGNS:
- **DIFFICULTY WALKING AND TALKING DUE TO SHORTNESS OF BREATH**
- **LIPS OR FINGERNAILS ARE BLUE**

• GO TO THE HOSPITAL NOW
• OR CALL 911 NOW

Adapted with permission from Kaiser Permanente Center for Health Research, Portland, OR. This plan is provided as an example to clinicians.
Asthma Action Plan (Example 6)

For adults, teens, and children age 5 and over

Peak Flow-Based Home Treatment Plan

<table>
<thead>
<tr>
<th>Name:</th>
<th>Date:</th>
<th>Best Peak Flow:</th>
</tr>
</thead>
</table>

Green Zone: Peak flow between _________ and _________.

Normal activity. (Insert brand name in blanks.)
- Adrenaline-like medicine: albuterol (__________), pirbuterol (__________), or terbutaline (__________): 1 or 2 puffs 15 minutes before exercise.
- Nedocromil (__________) or cromlyn (__________): 2 puffs before contact with cat or other allergen.

Medicine to be taken every day:
- Nedocromil (__________) or cromlyn (__________): ____ puffs ____ times a day (a total of ____ puffs daily).
- Inhaled steroid (__________): ____ puffs ____ times a day (a total of ____ puffs daily).
- Adrenaline-like medicine (see above): ____ puffs before each nedocromil, cromlyn, or inhaled steroid dose for the first month.
- Other:

High Yellow Zone: Peak flow between _________ and _________.

Eliminate triggers and change medicines. No strenuous exercise.

Medicine to be taken:
- Adrenaline-like medicine: ____ puffs by holding chamber. Give three to six times in 24 hours. Continue until peak flow is in the Green Zone for 2 days.
- Double inhaled steroid to ____ puffs daily until peak flow is in the Green Zone for as long as it was in the Yellow Zone.
- Other:

Low Yellow Zone: Peak flow between _________ and _________.

Follow this plan if peak flow does not reach High Yellow Zone within 10 minutes after taking inhaled adrenaline-like medicine, or drops back into Low Yellow Zone within 4 hours:
- Continue adrenaline-like medicine treatment as above.
- Add oral steroid* ____ mg immediately. Continue each morning (8:00 a.m.) until peak flow is in the Green Zone for at least 24 hours.
- Please call the office before starting oral steroid.

* If your condition does not improve within 2 days after starting oral steroid, or if peak flow does not reach the Green Zone within 7 days of treatment, see your doctor.

Red Zone: Peak flow less than _________.

Follow this plan if peak flow does not reach Low Yellow Zone within 10 minutes after taking inhaled adrenaline-like medicine, or drops back into Red Zone within 4 hours.

- Adrenaline-like medicine: ____ puffs by holding chamber.
- Give oral steroid ____ mg.
- Visit your doctor or go to the emergency room.

Adapted with permission from Plaut and Brennan 1996. This plan is provided as an example to clinicians.
SCHOOL SELF-MANAGEMENT PLAN

Figure 4-7.

STUDENT ASTHMA
ACTION CARD

Name: ____________________________ Grade: _____ Age: _____
Teacher: __________________________ Room: ______________
Parent/Guardian Name: ____________ Ph: (H) ____________
Address: __________________________ Ph: (W) ____________
Parent/Guardian Name: ____________ Ph: (H) ____________
Address: __________________________ Ph: (W) ____________

Emergency Phone Contact #1
Name: ____________________________ Relationship: _____ Phone: ________

Emergency Phone Contact #2
Name: ____________________________ Relationship: _____ Phone: ________

Physician Student Sees for Asthma: ____________________________ Ph: ________
Other Physician: ____________________________ Ph: ________

DAILY ASTHMA MANAGEMENT PLAN

• Identify the things which start an asthma episode (Check each that applies to the student.)
 □ Exercise
 □ Respiratory infections
 □ Change in temperature
 □ Animals
 □ Food
 □ Strong odors or fumes
 □ Chalk dust
 □ Carpets in the room
 □ Pollens
 □ Molds

Comments __

• Control of School Environment

(List any environmental control measures, pre-medications, and/or dietary restrictions that the student needs to prevent an asthma episode.)

__
__
__

• Peak Flow Monitoring

Personal Best Peak Flow number: ________________________________
Monitoring Times: ________________________________

• Daily Medication Plan

<table>
<thead>
<tr>
<th>Name</th>
<th>Amount</th>
<th>When to Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
EMERGENCY PLAN

Emergency action is necessary when the student has symptoms such as ________________, ________________, ________________, ________________ or has a peak flow reading of ________________.

- Steps to take during an asthma episode:
 1. Give medications as listed below.
 2. Have student return to classroom if ________________
 3. Contact parent if ________________
 4. Seek emergency medical care if the student has any of the following:
 ✓ No improvement 15-20 minutes after initial treatment with medication and a relative cannot be reached.
 ✓ Peak flow of ________________
 ✓ Hard time breathing with:
 • Chest and neck pulled in with breathing
 • Child is hunched over
 • Child is struggling to breathe
 ✓ Trouble walking or talking
 ✓ Stops playing and can't start activity again
 ✓ Lips or fingernails are gray or blue

IF THIS HAPPENS, GET EMERGENCY HELP NOW!

- Emergency Asthma Medications

<table>
<thead>
<tr>
<th>Name</th>
<th>Amount</th>
<th>When to Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

COMMENTS / SPECIAL INSTRUCTIONS

__

__

FOR INHALED MEDICATIONS

☐ I have instructed ____________________________ in the proper way to use his/her medications. It is my professional opinion that ____________________________ should be allowed to carry and use that medication by him/herself.

☐ It is my professional opinion that ________________ should not carry his/her inhaled medication by him/herself.

___ Date

___ Date

Physician Signature

Parent Signature
FIGURE 4-8. SOURCES OF PATIENT EDUCATION PROGRAMS AND MATERIALS

<table>
<thead>
<tr>
<th>Organization</th>
<th>Validated Program(s); Age Group</th>
<th>Other written and audiovisual patient education materials? (in other languages?)</th>
<th>Local support groups?</th>
</tr>
</thead>
<tbody>
<tr>
<td>American Lung Association</td>
<td>Open Airways at School; 8-11 years (Evans et al. 1987)</td>
<td>Yes (Yes)</td>
<td>Yes</td>
</tr>
<tr>
<td>For the affiliate nearest you, call (800) LUNG-USA [800-586-4872]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asthma and Allergy Foundation of America</td>
<td>Asthma Care Training for Kids (A.C.T.); 7-12 years (Lewis et al. 1984)</td>
<td>Yes (Yes)</td>
<td>Yes</td>
</tr>
<tr>
<td>1125 15th Street, N.W., Suite 502</td>
<td>You Can Control Asthma; 8-12 years (Taggart et al. 1991)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Washington, D.C. 20005</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(800) 7-ASTHMA [800-727-8462]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>National Technical Information Service</td>
<td>Air Power; 9-13 years (Wilson-Pessano and McNabb 1985; NHLBI 1984c)</td>
<td>Yes (Yes)</td>
<td>No</td>
</tr>
<tr>
<td>5285 Port Royal Road</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Springfield, VA 22161</td>
<td>Air Wise; 8-13 years (McNabb et al. 1985; NHLBI 1984a)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(703) 487-4650</td>
<td>Living With Asthma; 8-13 years (Creer et al. 1988; NHLBI 1985)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>National Asthma Education and Prevention Program</td>
<td>Open Airways; 4-12 years (Clark et al. 1986; NHLBI 1984a)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>National Heart, Lung, and Blood Institute Information Center</td>
<td>Breathe Easier; adult (Wilson et al. 1993)</td>
<td>Yes (Yes)</td>
<td>No</td>
</tr>
<tr>
<td>P.O. Box 30105</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bethesda, MD 20824-0105</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(301) 251-1222</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allergy and Asthma Network/Mothers of Asthmatics, Inc.</td>
<td>No validated programs</td>
<td>Yes (Yes)</td>
<td>No</td>
</tr>
<tr>
<td>3554 Chain Bridge Road, Suite 200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fairfax, VA 22030-2709</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(800) 878-4403</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>American Academy of Allergy, Asthma, and Immunology</td>
<td>No validated programs</td>
<td>Yes (N o)</td>
<td>No</td>
</tr>
<tr>
<td>611 East Wells Street</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Milwaukee, WI 53202</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(800) 822-ASTHMA [800-822-2762]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>American College of Allergy, Asthma, and Immunology</td>
<td>No validated programs</td>
<td>Yes (N o)</td>
<td>No</td>
</tr>
<tr>
<td>85 West Algonquin Road</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arlington Heights, IL 60005</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(800) 842-7777</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>National Jewish Medical and Research Center</td>
<td>No validated programs</td>
<td>Yes (N o)</td>
<td>No</td>
</tr>
<tr>
<td>1400 Jackson Street</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Denver, CO 80206</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(800) 423-8891</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Discrimination Prohibited:
Under provisions of applicable public laws enacted by Congress since 1964, no person in the United States shall, on the grounds of race, color, national origin, handicap, or age, be excluded from participation in, be denied the benefits of, or be subjected to discrimination under any program or activity (or, on the basis of sex, with respect to any education program or activity) receiving Federal financial assistance. In addition, Executive Order 11141 prohibits discrimination on the basis of age by contractors and subcontractors in the performance of Federal contracts, and Executive Order 11246 states that no federally funded contractor may discriminate against any employee or applicant for employment because of race, color, religion, sex, or national origin. Therefore, the National Heart, Lung, and Blood Institute must be operated in compliance with these laws and Executive Orders.