In SI units the classical magnetic moment of a current loop is \(\mu = IA \) where \(A \) is the area of the loop of radius \(r \) and \(I \) is the current.

Then since the current is the charge divided by the period of the motion

\[
\mu = \frac{ev}{2\pi r} \pi r^2 = \frac{emvr}{2m} = \frac{eL}{2m} \frac{L}{\hbar} = \mu_B \frac{L}{\hbar}
\]

where \(L \) is angular momentum \((= mvr) \), \(\mu_B \) is the Bohr Magneton, and \(\hbar \) is Planck’s constant divided by \(2\pi \).

\[
\mu_B = \frac{e\hbar}{2m_e} = 5.8 \times 10^{-5} \text{ eV/Tesla} = 9.27 \times 10^{-24} \text{ J/Tesla}
\]

where \(e \) is the magnitude of the electron charge and \(m_e \) is the electron mass.

The units of \(\hbar \) are eV-seconds. Check that all the units make sense.

We similarly define the Nuclear Magneton using the proton mass.

\[
\mu_N = \frac{e\hbar}{2M_p}
\]

This classical expression can be taken over for the magnetic moment due to the intrinsic angular momentum or spin.

\[
\vec{M}_{\text{spin}} = -g_s \mu_B \frac{\vec{S}}{\hbar} = \gamma \vec{S}
\]

where \(g_s \) is called the “g factor” and is approximately 2 for electrons. It differs from 2 by about 1 part in 1000. The g factors for protons and neutrons are rather different due to their internal structure. \(\vec{S} \) is the spin angular momentum.

For electrons, protons, neutrons, and neutrinos the magnitude of the spin is \(\frac{1}{2} \) in units of \(\hbar \).

The gyromagnetic ratio \(\gamma \) is

\[
\gamma = -g_s \frac{\mu_B}{\hbar} \approx -\frac{2e\hbar}{2m_e \hbar} = -\frac{e}{m_e}
\]

The force on a magnetic moment is an inhomogeneous magnetic field is

\[
F_z = \mu \frac{\partial B}{\partial z}
\]