Problem 1.

In the well \(\psi_1(x) = A \sin kx \)

in the barrier \(\psi_2(x) = B e^{-qx} \)

From boundary conditions at \(x = L \)

\(A \sin kL = B e^{-qL} \) and \(kA \cos kL = -Bq e^{-qL} \)

Then \(\tan kL = -k/q \) and \(B = A \sin kL e^{qL} \)

If \(E = V/2 \) then \(k = \sqrt{\frac{2mV/2}{\hbar^2}} \) and \(q \) is the same.

\(k = q \) implies that \(\tan kL = -1 \) and therefore

\(kL = 3\pi/4 \) and \(L = \frac{3\pi}{4k} \)

\(V = 2 \text{ eV} \) and \(E = 1 \text{ eV} \). Then

\[
k = \sqrt{\frac{2mc^2(1 \text{ eV})}{(hc)^2}} = \sqrt{\frac{10^6}{200^2}} = 5 \text{ nm}^{-1}
\]

Then \(L = \frac{3\pi}{4k} = 0.47 \text{ nm} \).

Problem 2.

When \(qa >> 1 \) the transmission is small.

We have to approximate the hyperbolic sin for large \(qa \).

Then \(e^{-qa} \) is very small and the square of the hyperbolic sin

becomes \(\sinh^2 qa \approx \frac{1}{4} e^{2qa} \)

The approximate expression given in the problem then follows.

Problem 3 from HW VII.

This problem was worked out in detail in class.

In the well the solution is of the form \(\psi_1(x) = \sin kx \). (it must be 0 at \(x = 0 \).)

In the limiting case for a bound state the slope of this function at \(x = L \) is zero. Normally

the slope must be negative to match a falling exponential in the barrier region.

\(\sin kx \) having zero slope means that \(kL = \frac{\pi}{2} \)

In the limit of being “just” bound the energy \(E = V \) so that \(k = \sqrt{\frac{2mV}{\hbar^2}} \) and \(L = \frac{\pi}{2k} \)

As an example set \(V = 40 \text{ MeV} \) and the mass as 1000 MeV.

We then find that \(L \) is approximately \(10^{-13} \text{ cm} \). (roughly the nuclear size).