Superstructures of self-assembled cobalt nanocrystals

Youhui Gao a)
Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 1-1 Katahira, 2-Chome, Aobaku, Sendai 980-8577, Japan

Yuping Bao and Michael Beerman
Department of Materials Science and Engineering, University of Washington, Box 25212, Seattle, Washington 98195

Akira Yasuhara and Daisuke Shindo
Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 1-1 Katahira, 2-Chome, Aobaku, Sendai 980-8577, Japan

Kannan M. Krishnan
Department of Materials Science and Engineering, University of Washington, Box 252120, Seattle, Washington 98195

(Received 27 October 2003; accepted 25 February 2004)

Uniform three-dimensional superstructures of spherical cobalt nanocrystals are produced by the interplay between dipolar interaction and applied magnetic field. An anomalous low-temperature magnetic behavior is observed, indicating that uncompensated surface spins become ordered below 10 K, as evidenced by the presence of two magnetic phases that superimpose in hysteresis loops as compared to measurements at 20 K. The approach discussed here provides a framework for applications such as high-performance mesomagnets, microelectronic and magnetic devices fabrication, and can be extended to other nanocomposite materials fabrication if cobalt particles can act as carriers for other nanoparticles. © 2004 American Institute of Physics.

Engineering nanocrystal NC materials are of vital interest in fundamental and technological studies in the field of condensed matter. 1–4 A variety of lithography techniques and chemical synthesis have been utilized to produce nanocrystals with controlled size and composition as building blocks of these materials. The combination of chemical synthesis and self-assembly is the most attractive technique among them because it produces small structure units at scales beyond the spatial limits of other techniques, and precisely engineers structures on the nanometer scale over large regions. Interest in this technique is increasing by virtue of its potential for the fabrication of microelectronic and magnetic devices, which require very uniform two- (2D) or three-dimensional (3D) organization of NCs. Motivated by ultrahigh-density magnetic recording, high quality magnetic NCs 5–10 have been successfully synthesized by solution-phase metal salt reduction. However, due to the long-range dipolar interaction combined with localized interactions, such as van der Waals attraction and steric repulsion, organizing 3D superstructures of magnetic NCs is very challenging. 11 In this letter, we demonstrate the self-assembly behavior of superparamagnetic cobalt NCs in applied magnetic fields, and thereafter produce uniform grain-like superstructures by depositing the NCs in a magnetic field. The findings suggest that it may be possible to prepare mesomagnets and magnetic quantum devices by self-assembly of NCs.

Cobalt NCs are synthesized by rapid pyrolysis of cobalt carbonyl in an inert atmosphere. Details of the preparation have been described. 11, 12 The size distribution and particle shape are controlled by varying the surfactant, its concentration and the reaction temperature. From an observation of high resolution transmission electron microscopy (TEM), it is found that the crystal structure of spherical particles is ϵ-Co, a metastable cubic structure isomorphous with β-Mn, while the structure of the disk-like particles is hcp-Co. A surfactant coating layer (≈2 nm in thickness) separates particles and passivates them against oxidation. Figure 1 shows typical 2D self-assembled patterns of cobalt NCs with differ-

FIG. 1. Two-dimensional self-assembled arrays of monodispersed cobalt nanocrystals: (a)–(c) 3, 6, and 17 nm spherical particles, respectively; (d) 5×20 nm nano-disks.
A monodispersion of 6 nm NCs is diluted to 10% by toluene, and then deposited on carbon-coated TEM grids at room temperature. A magnetic field ranging from 0.0 to 5.0 kOe is applied during solvent evaporation. The evaporating time is over 30 min. TEM images of 3D self-assembled ar-
sions of small particles have long term stability attributed to the weak dipolar interaction. This stability is indispensable to producing uniform superstructures on larger scales.

A monodispersion of 6 nm NCs is diluted to 10% by toluene, and then deposited on carbon-coated TEM grids at room temperature. A magnetic field ranging from 0.0 to 5.0 kOe is applied during solvent evaporation. The evaporating time is over 30 min. TEM images of 3D self-assembled ar-
sions of small particles have long term stability attributed to the weak dipolar interaction. This stability is indispensable to producing uniform superstructures on larger scales.

A monodispersion of 6 nm NCs is diluted to 10% by toluene, and then deposited on carbon-coated TEM grids at room temperature. A magnetic field ranging from 0.0 to 5.0 kOe is applied during solvent evaporation. The evaporating time is over 30 min. TEM images of 3D self-assembled ar-
sions of small particles have long term stability attributed to the weak dipolar interaction. This stability is indispensable to producing uniform superstructures on larger scales.

A monodispersion of 6 nm NCs is diluted to 10% by toluene, and then deposited on carbon-coated TEM grids at room temperature. A magnetic field ranging from 0.0 to 5.0 kOe is applied during solvent evaporation. The evaporating time is over 30 min. TEM images of 3D self-assembled ar-
sions of small particles have long term stability attributed to the weak dipolar interaction. This stability is indispensable to producing uniform superstructures on larger scales.

A monodispersion of 6 nm NCs is diluted to 10% by toluene, and then deposited on carbon-coated TEM grids at room temperature. A magnetic field ranging from 0.0 to 5.0 kOe is applied during solvent evaporation. The evaporating time is over 30 min. TEM images of 3D self-assembled ar-
sions of small particles have long term stability attributed to the weak dipolar interaction. This stability is indispensable to producing uniform superstructures on larger scales.

A monodispersion of 6 nm NCs is diluted to 10% by toluene, and then deposited on carbon-coated TEM grids at room temperature. A magnetic field ranging from 0.0 to 5.0 kOe is applied during solvent evaporation. The evaporating time is over 30 min. TEM images of 3D self-assembled ar-
sions of small particles have long term stability attributed to the weak dipolar interaction. This stability is indispensable to producing uniform superstructures on larger scales.

A monodispersion of 6 nm NCs is diluted to 10% by toluene, and then deposited on carbon-coated TEM grids at room temperature. A magnetic field ranging from 0.0 to 5.0 kOe is applied during solvent evaporation. The evaporating time is over 30 min. TEM images of 3D self-assembled ar-
sions of small particles have long term stability attributed to the weak dipolar interaction. This stability is indispensable to producing uniform superstructures on larger scales.

A monodispersion of 6 nm NCs is diluted to 10% by toluene, and then deposited on carbon-coated TEM grids at room temperature. A magnetic field ranging from 0.0 to 5.0 kOe is applied during solvent evaporation. The evaporating time is over 30 min. TEM images of 3D self-assembled ar-
sions of small particles have long term stability attributed to the weak dipolar interaction. This stability is indispensable to producing uniform superstructures on larger scales.

A monodispersion of 6 nm NCs is diluted to 10% by toluene, and then deposited on carbon-coated TEM grids at room temperature. A magnetic field ranging from 0.0 to 5.0 kOe is applied during solvent evaporation. The evaporating time is over 30 min. TEM images of 3D self-assembled ar-
sions of small particles have long term stability attributed to the weak dipolar interaction. This stability is indispensable to producing uniform superstructures on larger scales.

A monodispersion of 6 nm NCs is diluted to 10% by toluene, and then deposited on carbon-coated TEM grids at room temperature. A magnetic field ranging from 0.0 to 5.0 kOe is applied during solvent evaporation. The evaporating time is over 30 min. TEM images of 3D self-assembled ar-
sions of small particles have long term stability attributed to the weak dipolar interaction. This stability is indispensable to producing uniform superstructures on larger scales.

A monodispersion of 6 nm NCs is diluted to 10% by toluene, and then deposited on carbon-coated TEM grids at room temperature. A magnetic field ranging from 0.0 to 5.0 kOe is applied during solvent evaporation. The evaporating time is over 30 min. TEM images of 3D self-assembled ar-
sions of small particles have long term stability attributed to the weak dipolar interaction. This stability is indispensable to producing uniform superstructures on larger scales.

A monodispersion of 6 nm NCs is diluted to 10% by toluene, and then deposited on carbon-coated TEM grids at room temperature. A magnetic field ranging from 0.0 to 5.0 kOe is applied during solvent evaporation. The evaporating time is over 30 min. TEM images of 3D self-assembled ar-
sions of small particles have long term stability attributed to the weak dipolar interaction. This stability is indispensable to producing uniform superstructures on larger scales.
providing ideal systems to study spin-dependent electron transport and other magnetic behaviors. Some of them appearing in the arrays of the small particles result in a few of stacking faults.

The magnetic moment versus temperature under a field of 10 Oe is measured after zero-field cooling (ZFC) and after field cooling (FC), as shown in Figs. 4(a) and 4(b). The measurements are carried out along the direction of deposition field. It is found that all ZFC curves peak at the blocking temperature of the 6 nm NCs, $T_B \approx 57$ K. Note that the peaks of the samples deposited in magnetic field are sharper than those deposited in zero field, indicating a uniform spatial distribution of easy axes in addition to a narrow size distribution (standard deviation is less than 5%). The 10 nm particles in the doped samples, which have higher T_B, result in a slight increase in the magnetic moment at elevated temperature. Their large magnetic moments enhance the dipolar interaction and broaden the peaks in the ZFC curves [Fig. 4(b)]. The temperature, T_C, marked by the arrow in Fig. 4(a) where a steep step appears in the FC curve, reflects a transformation of magnetic phase in the 3D superstructures. It is also found that a small ZFC peak appears near this temperature. Attributed to the reduced symmetry of atom environment on the particle surface, a strong surface anisotropy is induced and results in disorder of surface spins. The existence of disordered surface spins is displayed by nonsaturation character of the magnetization as shown in Fig. 4(d). At low enough temperature, however, the surface spins become ordered because the exchange interaction in each particle is domimative. In present study, we associate the ZFC peak at T^* (about 10 K) and the rapid increase of magnetization in FC curve with the “freezing” of disordered surface spins.

A notable reduction of coercivity at low temperature $[178.3 \text{ Oe at } 5 \text{ K, but } 1320.8 \text{ Oe at } 20 \text{ K as shown in Figs. 4(c) and 4(d)}]$ is then obtained, which may be caused by a collective reversal process. Doping 10 nm NCs enhances the transformation temperature by about 10 K because of change of the ratio of surface/volume and the dipolar interactions, while deposition in applied field does not change it obviously.

We have fabricated uniform 3D superstructures of Co NCs by magnetic deposition, which can be readily tailored by the NC size and magnetic field strength. Our method shows great potential for future applications in high-density magnetic recording and high-performance mesomagnets. Furthermore, it can be extended to other NC systems, providing both a model for studying the fundamentals of dipolar interactions and a practical route to fabricate functional nanosized electronic and magnetic devices.

The authors thank D. Givord and A. Pakhomov for helpful discussions. Y.G. is supported by the 21st Century COE program of the Material Research Center, Tohoku University. Work at the University of Washington was supported by NSF/DMR under Grant No. 0203069 and by the Campbell Endowment. Y.B. acknowledges partial support from UW/PNNL Joint Inst. of Nanoscience.

2. D. J. Wales, Science 271, 925 (1996); All the review articles in the February 16 issue of Science, 1996.