Yosemite Hydroclimate Network: Distributed Stream and Atmospheric Data for the
Tuolumne River Watershed and Surroundings

Jessica D. Lundquist¹, Jim Roche², Harrison Forrester², Courtney Moore³, Eric Keenan¹,
Gwyn Perry¹, Nicoleta Cristea¹, Brian Henn¹, Karl Lapo¹, Bruce McGurk⁴, Daniel R. Cayan⁵,
and Michael Dettinger⁶

¹Department of Civil and Environmental Engineering, University of Washington, Seattle, WA

²National Park Service, Yosemite, CA

³Northwest Hydraulic Consultants, Seattle, WA

⁴McGurk Hydrologic, Orinda, CA

⁵Scripps Institution of Oceanography, La Jolla, California

⁶United States Geological Survey, Reno, Nevada

Corresponding author:
Jessica Lundquist
Department of Civil and Environmental Engineering
University of Washington
201 More Hall, Box 352700
Seattle, WA 98195, USA
Email: jdlund@u.washington.edu
Key Points

- Half-hourly discharge and water temperature data are described and provided for 2002-2015 in 8 subbasins of the Tuolumne River, CA.
- Daily natural flows are described and provided for the inflow of the Tuolumne River to the Hetch Hetchy Reservoir for 1970 to 2015.
- Meteorological data are provided.

Index Terms

Streamflow, temperature, hydroclimatology

Research Significance

This dataset provides a unique opportunity to understand spatial patterns and scaling of hydroclimatic processes in complex terrain and can be used to evaluate downscaling techniques or distributed modeling.
Abstract

Regions of complex topography and remote wilderness terrain have spatially-varying patterns of temperature and streamflow, but due to inherent difficulties of access, are often very poorly sampled. Here we present a dataset of distributed stream stage, streamflow, stream temperature, barometric pressure, air temperature, and relative humidity from the Tuolumne River Watershed in Yosemite National Park, Sierra Nevada, California, U.S.A. for water years 2002 to 2015, as well as a quality-controlled meteorological forcing time series for use in hydrologic modeling. This paper describes data collected using low-visibility and low-impact installations for wilderness locations and can be used alone or as a critical supplement to ancillary datasets collected by cooperating agencies, referenced herein. This dataset provides a unique opportunity to understand spatial patterns and scaling of hydroclimatic processes in complex terrain and can be used to evaluate downscaling techniques or distributed modeling. The paper also provides an example methodology and lessons learned in conducting hydroclimatic monitoring in remote wilderness.
1. Introduction

Mountains are the water towers of the world, with high elevations and complex topography in often protected, wilderness locations. These regions are critical to understand scientifically and yet challenging to observe and monitor. Here we provide a set of distributed measurements of streamflow, water temperature, air temperature, and relative humidity spanning a period of over 10 years in the Tuolumne River Watershed, Yosemite National Park, Sierra Nevada, California, U.S.A. These data could be used for distributed hydrologic modeling, for evaluation of remote sensing products, for testing atmospheric downscaling techniques. Lessons learned from the Tuolumne network can hopefully provide an example of how to establish a similar network in another mountain location.

a. Basin Overview

The upper Tuolumne River Watershed was made famous by John Muir’s “first summer in the Sierra” in 1870 (Muir 1911) and became protected as part of Yosemite National Park in 1890. The summer headquarters of the Sierra Club from 1912 to 1973 were located in Tuolumne Meadows beside the river (O’Neill 1984), and the watershed drains to the Hetch Hetchy Reservoir behind the O’Shaughnessy Dam, which was initially constructed in 1923, completed in 1934, and provides hydropower and drinking water to the city of San Francisco and other cities on the San Francisco peninsula. The study area encompasses more high elevations (focus area from 2600-4000 m) and covers a larger total area (over 1000 km²) than most research basins in the western U.S. (e.g., Reynolds Creek (Reba et al. 2011); the Southern Sierra Critical Zone Observatory (Hartsough and Meadows 2012); Kings River Experimental Watersheds (Hunsaker et al. 2012); Senator Beck (Landry et al. 2014)). The location provides both opportunities and challenges. The Tioga Road
(California Highway 120), the highest pass over the Sierra Nevada at over 3000 m, provides road access during the summer months only, and many wilderness sites are accessible only by foot. The natural granitic bedrock of the region provides well-controlled, stable stream channels in many locations. The wilderness setting preserves the natural characteristics of the drainage but also requires unique installation practices in order to comply with wilderness regulations, which are detailed further below.

The Tuolumne River drainage is fairly typical of the central to southern Sierra Nevada, with its high and cold drainages, winter-precipitation-dominated climate, steep terrain, rapid snowmelt seasons, and relatively thin soils. The area contributing to the Tuolumne River as it enters Tuolumne Meadows is about 186 km², and the area contributing to Hetch Hetchy Reservoir is about 1181 km² (Figure 1). The Tioga glaciation (about 10,000-60,000 years ago) removed most sedimentary material, leaving broad U-shaped valleys, polished domes, and steep headwater cirques (Huber 1987). Today two relatively small glaciers, Lyell and Maclure, contribute to the Lyell Fork of the Tuolumne and remain as remnants from the Little Ice Age about 2500 years ago (Basagic and Fountain 2011). Approximately 90% of the drainage is underlain by intrusive rocks (chiefly granodiorite; National Park Service (NPS) records of test well drilling), which erode slowly and interact little with the streamflow (Huber, 1987). The underlying granodiorite bedrock in the basin allows us to assume minimal losses to the deep groundwater system, which is a major source of uncertainty in hydrologic observations and modeling in many other locations. The highest third of the Dana Fork sub-basin is underlain by metavolcanic and metasedimentary rock, which tends to be more highly fractured than granodiorite and may result in more subsurface flow than other basin areas. Soil depths are typically 1 m or less, with
maximum recorded depths of 3 to 5 in flat meadow locations (Lowry et al. 2011), which is consistent with reported values (Natural Resources Conservation Service, 2006). Precipitation falls primarily as snow (>90% snow for the watershed above the Tuolumne River at Highway 120 in most years), with normal annual peak stream discharge typically occurring in May or June due to snowmelt. Approximately 50% of the drainage area above the Tuolumne River at Highway 120 lies between 2800 and 3300 m elevation, with 25% above and 25% below this range. The dataset here includes stream stage, water temperature and discharge at half-hourly timesteps for water years 2002 to 2015 from a number of sub-basins contributing to this watershed, as well as point and distributed meteorological data (Figure 1; Table 1). We also include daily inflows calculated from the water balance at Hetch Hetchy Reservoir.

b. History of the Yosemite Hydroclimate Monitoring Network and unique research results to date

In summer 2001, a group of researchers from Scripps Institution of Oceanography decided to be “high-altitude oceanographers” and began installing pressure transducers in the area’s streams and temperature sensors in the area’s trees. The goal was three-fold – to better understand fine-scale variation in hydroclimatic variables at high elevations (Lundquist et al. 2003), to understand how diurnal cycles in streamflow varied through a watershed system (Lundquist 2004; Lundquist et al. 2005), and to explore the extent to which deployment of numerous, new and inexpensive monitoring instruments—in tandem with a few traditional high-quality measurement stations -- might support greater overall hydrometeorological data coverage in a complex terrain (Bales et al. 2006).
locations were chosen to sample basins with varying elevation ranges, slopes, and aspects, while also considering practicalities, such as access. The most distant site from the road (Lyell Fork below Maclure) samples the basin headwaters immediately downstream of two glaciers, which are a critical source of water in late summer.

With the exception of sites adjacent to the road, the entire study area is in federally designated wilderness, where any instrument installations must comply with the Wilderness Act of 1964 (Public Law 88-577) and the National Environmental Policy Act (NEPA) of 1970 (Public Law 91-190). These laws require that installations have the minimum possible impact to the environment, including minimal visibility to wilderness visitors. For this reason, weirs, which are typical in other research catchments, were not used. Instead, installations were designed to be nearly invisible to park visitors desiring a wilderness experience, while still meeting research and operational needs for high data quality, such as providing the Park with essential information for management of floods, water withdrawals, and long-term change (Lundquist and Roche 2009). All sites were developed in close partnership between university researchers, the United States Geological Survey (USGS), and the National Park Service (NPS).

Initial years of stream stage data revealed patterns in the timing of how water travels through a snow-fed mountain system. Sometimes a rapid temperature increase causes the onset of spring melt to occur simultaneously across all elevations (Lundquist et al. 2004), although when a similar increase occurs earlier in the year, melt is delayed in north-facing basins because the sun is lower in the sky (Lundquist and Flint 2006). Diurnal cycles in streamflow occur in all of these basins, but the hourly timing of peak flow is controlled by different processes in basins of different sizes (Lundquist and Dettinger
2005; Lundquist et al. 2005). Initial years of air temperature data demonstrated how
mountain temperatures often do not vary linearly with elevation but still have
topographically-predictable spatial patterns (Lundquist and Cayan 2007; Lundquist et al.
2008). Similarly, patterns of relative humidity (dewpoint temperature) are more complex
than those typically represented in empirical equations based on elevation, but can be
captured well by high-resolution atmospheric models (Feld et al. 2013). As years went on,
rating curves were developed, and estimated discharge values were used as boundary
conditions for simulations of groundwater levels in Tuolumne Meadows (Lowry et al. 2010,
2011) and for hydrologic model evaluation (Cristea et al. 2013; Hinkelman et al. 2015) and
precipitation evaluation (Henn et al. 2015).

The stream network led to new real-time monitoring sites within the basin (Fig. 1).
Beginning in water year 2007, the City and County of San Francisco Public Utilities
sponsored installation of an official USGS streamflow gaging station in the Tuolumne River
just above its inflow to the Hetch Hetchy Reservoir (measuring stage, discharge, water
temperature, turbidity and conductivity, and accessible in real-time as USGS gage
#11274790 at waterdata.usgs.gov). Fall Creek, which drains to the Hetchy Hetchy
Reservoir from the north, has historic USGS discharge data (water years 1916 to 1983,
USGS gage #11275000) and was reinitialized in 2009 as the FHH site in the
cdec.water.ca.gov data system. More recently (in water year 2014), another real-time
station, corresponding to the Tuolumne River at Highway 120 site provided here, was
established with stage measurements and discharge estimates available at the TUM site in
the cdec.water.ca.gov data system.
Due to its high elevation and greater-than-average extent of meadows, the Tuolumne River basin has also been a focus of many snow remote sensing studies, including evaluations of snow cover extent (Rice et al. 2011; Raleigh et al. 2013) and snow water equivalent reconstruction (Rittger et al. 2011; Bair et al. submitted). From water years 2013 to present, the watershed has been a focus of the NASA Airborne Snow Observatory Campaign to use LiDAR to map snow depth at high resolution to aid in forecasting inflow to the Hetch Hetchy Reservoir (Painter et al. submitted) and was included in pilot flights of the HyspIRI suite of instruments (http://hyspiri.jpl.nasa.gov/airborne).

c. Outline of this paper

Here we describe an archived and publicly-available dataset for 7 stream locations, 1 reservoir, and 62 meteorological locations in the vicinity of the upper Tuolumne River Watershed. Section 2 details the measurement methods and quality control applied, and section 3 describes the basins and their streamflow characteristics. Section 4 offers conclusions and describes applications.

2. Datasets

a. Flow into Hetch Hetchy Reservoir

Full natural flows into the Hetch Hetchy Reservoir were determined on a daily basis through careful consideration of recorded reservoir releases and water levels for water years 1970 to 2015. The uncertainties associated with reconstructed flows are considered to be similar to those of standard streamflow observations (\(\sim \pm 10\%\)).
Aside from the reservoir, the basis for each record is a pressure transducer anchored to the bottom of the stream channel by either a concrete form or a wilderness stilling tube (see supplemental material here and/or in Lundquist et al. 2009). Data processing included the following: 1) remove data from times when instruments were not in the water; 2) link timeseries data measured by different instruments at the same location (most instruments were swapped with a new self-recording instrument each summer); 3) subtract barometric pressure to obtain a timeseries of water level; 4) use manual stage measurements to adjust the water level timeseries to correct for instrument relocation or drift; and 5) flag or remove obviously erroneous measurements due to ice jams and/or instrument malfunction. The stage obtained from anchored pressure transducers is less reliable than that for stilling tubes because these anchors were sometimes moved by the river at high flow and by field personnel when instruments were replaced. Care was taken to correct for these movements by adding appropriate offsets to the original timeseries, but depending on the availability of manual observations for quality control checks, some errors may remain. The supplemental material ("Overview of the Tuolumne River Streamgauging Sites and Data Processing (pdf)") and site metadata files included with the dataset detail when and where this may be an issue.

During recent years, some sites were monitored with a vented pressure transducer in a stilling tube. These pressure sensors have a tube exposing them to atmospheric pressure as well as total stream pressure and do not require separate processing to remove atmospheric pressure, leading to smaller observational uncertainty. Table 2 details the
various instruments and installation types, and quantifies expected measurement uncertainties. Although the early measurement system (a pressure sensor in a concrete anchor) were the easiest to install and had the minimal visual impact to the park wilderness, the improved data accuracy from the stilling tube and vented pressure transducer systems more than compensates for the extra installation footprint and effort (~2% error in discharge from this method compared to ~15% error, see Table 2).

c. Stream Discharge

Manual discharge observations were taken during the months of May through September each year. Most measurements were made by wading with an AA or pygmy meter (following methods of Rantz et al. 1982a), although acoustic doppler sonar (Oberg and Mueller 2007), dye-dilution (Rantz et al. 1982b, Ch 7), and salt-dilution (Moore 2004a, 2004b, 2005; Hudson and Fraser 2005) methods were also used at high flows. Methodologies were tested by taking repeat measurements within the same hour at the same location. During these tests, measurements fell within 5-10% of each other, which can be considered the accuracy of an individual manual discharge measurement reported here.

Rating curves were developed to relate stage to discharge for each stream, and best estimates of 95% confidence intervals are provided. Where channel geometry information was available, we combined hydraulic information with stage and discharge measurements following the methodology of LeCoz et al. (2014). This method begins by using the hydraulics of the study site to determine a range of meaningful values for the unknowns in the equation.
For example, the Manning-Stickler equation \(c \sim 1.67 \) can be applied to steady-state, uniform flows in a rectangular channel, and the rectangular weir equation \(c \sim 1.5 \) can be applied at low flows with a downstream section control. Thus, site surveys and hydraulics were used to create a first guess (Bayesian priors) for the rating curve, and then the manual discharge measurements, with their associated uncertainty (10%), were used in a Bayesian Markov-chain monte-carlo framework to update those rating curves to determine the best fit curve and the associated 95% uncertainty (see details in LeCoz et al. 2014 and in the supplemental material). The methodology was used to determine the best-fit break point between water levels where the rating curve became subject to a downstream section control, and different equations were used for discharge within the two ranges. In cases where water entered the flood plain at high flows, a third equation was added (see supplemental material). Rating curves and associated uncertainty from this methodology were compared with a single rating curve equation and confidence bounds determined by a log-transform least-squares fit to the manual stage-discharge observations (see supplemental material). The best fit curve for the two methodologies was very similar at all stations, but the 95%-confidence intervals for the least-squares methodology were, in general, much tighter at low flows and wider at high flows than the corresponding 95%-confidence intervals determined from the Bayesian methodology. We report the Bayesian confidence intervals in the dataset because they more realistically represent low-flow uncertainty, which is critical to represent fairly since low flows are important to many park management decisions (e.g., when the campground or lodge would need to be closed).
Due to the seasonal timing of manual measurements, which were taken between May and September, we are most confident of the calculated streamflow values during the summer (Moore et al. 2014). Both higher and lower flows are associated with lower confidence. Users are advised that due to the limited access and lack of control structures, uncertainties are larger than one would expect at a typical USGS gauge station (see discussion of errors associated with shorter-term gauges in Birgand et al. 2013), but the 95% confidence intervals are provided to help indicate this uncertainty. All site surveys and manual measurements are provided so that users may examine and/or recalculate the rating curves or conduct additional uncertainty analysis (e.g., Coxon et al. 2015).

d. Barometric pressure

Because most of the stream instruments record absolute pressure, which is the weight of both the water and the atmosphere above them, barometric pressure records were used to remove the effects of atmospheric pressure fluctuations. One timeseries was created using local barometric pressure recorded by Solinst Barologgers and by Hobo Water Level Loggers at a variety of locations (see supplemental material and metadata), because atmospheric pressure was close to spatially uniform over this domain. Pressure transducers are sensitive to instrument temperature fluctuations, and this is not always well-compensated for in instrument software (Freeman et al. 2004). Therefore, care was taken to cross-compare instrument records at times when multiple records were available and to select the instrument subjected to the minimum diurnal air temperature fluctuations at any given time. When possible, this was an instrument in a dry groundwater well because temperature oscillations were muted by the overlying soil. The
temperatures recorded by each instrument are provided in case users would like to
develop their own further temperature compensation algorithms.

e. Standard meteorological forcing data

Hourly temperature, relative humidity, incoming shortwave irradiance, and wind speed
data for water years 2003 to 2015 were derived from data collected at the California
Department of Water Resources (CA DWR) snow pillow site at Dana Meadows (Figure 1
and see supplemental material). Shortwave irradiance was corrected for snow
accumulating on the radiometer dome following the methodology of Lapo et al. 2015.
Short data gaps (< 2 days in length) were filled with shortwave interpolation (see
acknowledgements for link to code), while longer gaps were filled by estimating shortwave
according to the MTCLIM methods detailed in (Bohn et al. 2013). Daily accumulated
precipitation was measured with a weighing gage at the Tuolumne Meadows snow pillow
site. Based on the Parameter Regression against Independent Slopes Model (PRISM; Daly
et al. 2008), Dana Meadows (Figure 1) typically received 1.3 times the amount of
precipitation as Tuolumne Meadows, and this ratio was verified by comparing snow
accumulation rates at the two sites (Cristea et al. 2013). In order to provide meteorological
forcing representative of a single site, as is required for many hydrologic models, the Dana
precipitation was estimated using this multiplier. Daily precipitation was assumed to occur
uniformly over all hours of the day. Years when a tree was growing in the middle of the
Dana Meadows snow pillow were excluded from the snow water equivalent data series
(Lundquist et al. 2015). Longwave irradiance was not measured. However, an estimate of
incoming longwave is provided, using the Prata (1996) and Deardorff (1978) algorithms, as recommended in Bohn et al. (2013).

\[\textit{f. Distributed temperature and relative humidity}\]

The above-referenced standard meteorological data records have been augmented in the upper Tuolumne drainage and the nearby upper Merced River drainage with widespread deployment and operation of small, inexpensive temperature and humidity sensors. Daily mean, minimum, and maximum temperature data from the 62 stations used in Lundquist and Cayan (2007) are provided for the time period from 31 December 2000 to 1 February 2005. This quality-controlled dataset includes data from Onset HOBO and tidbit loggers placed in evergreen trees, as well as data from area snow pillow stations, coop stations, and RAWS stations, with instrument and site specifications detailed in Lundquist and Cayan (2007, their Table 1 and Figure 1). While evergreen trees provide good shading from solar radiation in general (Lundquist and Huggett 2008), some of the HOBO and tidbit loggers were in solitary trees, which resulted in sunlight striking them at a specific angle and resulted in some unrealistic maximum temperatures. Mean and minimum temperatures were estimated to be accurate to within 1°C. Missing data were not patched, but an analysis of how to best do so is provided in Henn et al. (2013). Raw data are available for many locations at half-hourly timesteps and for a longer period of record (2001 to 2015) but have not been quality controlled and thus are not detailed here.

Daily mean temperature and relative humidity data from 1 October 2002 to 30 September 2005 for the HOBO sites and snow pillow sites mentioned above are provided in the Supporting Information associated with Feld et al. (2013). As with the temperature
data, raw data from the HOBO stations are available at half-hourly timesteps and for a longer period of record (2002 to 2015) but have not been quality controlled and thus are not detailed here.

3. Discussion

 a. Example scientific applications of the dataset

The long timeseries and multiple nested basins lend themselves to answer many scientific questions. In addition to providing insight into summer thunderstorms (e.g., Lundquist et al. 2009) or diurnal cycles (e.g., Lundquist et al. 2005), which rely less on precise magnitudes, the rating curves developed here allow examination of how water masses move through different sections of the watershed at different times of year and during different types of water years. For example, Fig. 2 illustrates half-hourly (a,d) and daily average (b,e) streamflow for a wet year (2010) and a dry year (2014) for the Tuolumne River at Highway 120 and the two upstream river forks that contribute to it: the Lyell Fork at Twin Bridges (which drains about 60% of the area upstream, all granodiorite) and the Dana Fork (which drains about 40% of the area upstream, including more metamorphic and sedimentary rocks). Also shown is discharge from the Lyell Fork of the Tuolumne below Maclure Creek, which isolates just the headwaters of the Lyell Fork, draining both the Lyell and Maclure Glaciers and making up only 8% of the area contributing to the Tuolumne at Highway 120. In 2010 there were issues with ice jams in the early season, where the estimated discharge at the Lyell Twin Bridges site is higher than the estimated discharge at Tuolumne 120 just downstream. These high values are likely due to ice formations blocking water flow and causing local flooding. In both years, the early spring
flows originate mainly from the Lyell Fork (with more than 60% of flows at Tuolumne 120 originating from the Lyell Fork). By the time of peak runoff, 40% or more of discharge originates from the Dana Fork, so that it is now contributing proportional to its area, if not more so. As flows decline, the relative contribution of discharge from the Dana Fork decreases, while the contribution from the Lyell Fork, particularly that originating from the glaciers above Lyell below Maclure, increases. This general pattern occurs every year. However, the timing of this trade-off, when Lyell below Maclure contributes more water than the Dana Fork, despite its smaller area, depends on the water year. In 2010 the switch occurred in mid-July (Fig. 2c), while in 2014, it occurred in mid-June (Fig. 2f). Summer thunderstorms temporarily decrease the relative importance of the glacier-fed Lyell below Maclure (Fig. 2 d,e,f). Also apparent are the times when contributions from the upstream sub-basins exceed 100% of flow at Tuolumne 120. This may be due to incorrect estimates for one or more of the rating curves (these differences fall within the 95%-uncertainty bounds), or may be due to streamflow infiltrating in the meadows and restoring local groundwater reserves (e.g., Loheide and Lundquist 2009; Loheide et al. 2009).

b. Lessons learned from fieldwork: balancing trade-offs when installing in a wilderness environment

Lessons learned from the Yosemite Hydroclimate Network may be useful to inform installations of similar hydroclimate networks in other wilderness locations. Ideally, individual installations must be robust and inexpensive, be easy to construct and install in remote regions, and need infrequent site visits. When putting a streamgage into wilderness or other protected area where installation impacts such as visibility must be
considered, one should consider 1) the time period of interest for monitoring (longer-term requires a more robust installation), 2) accessibility and feasibility of measuring high flows, 3) potential ice-jamming impacts (south-facing bedrock lined channels are more robust than meadow locations), 4) vented vs. unvented pressure transducers and impacts to data quality/resolution (see Table 2), and 5) stability of the installation (see Table 2). Reference elevations, such as benchmarks, staff gages, or tapedown measurements are also critical to detect and correct for instrument movement or drift.

4. Conclusions: Uniqueness and Application

Spatially-distributed measurements are needed to understand how variations in slope, aspect, elevation, soil type, vegetation, etc. influence surface processes, and these are critically important in areas of high elevations and complex terrain, such as those monitored with this dataset. For example, land surface climatic feedbacks and the magnitude and timing of snowmelt runoff depend critically on the spatial heterogeneity of snow depth and melt rates [Anderton et al., 2002; Blöschl and Sivapalan, 1995; Giorgi and Avissar, 1997; Liston, 1999; Luce et al., 1998]. Current hydrologic models often get approximately the right answers for the wrong reasons, and model improvements can only come about through detailed checks against carefully distributed observations [Kampf and Burges, 2007; Seyfried and Wilcox, 1995]. In many cases, hydrologists still struggle to determine the dominant processes at different spatial scales, and even qualitative observations of spatial patterns can prove invaluable in analyses [Blöschl, 2001].
The Tuolumne watershed has been the focus in situ distributed hydrological and meteorological measurements for over 10 years, which provides a useful dataset to explore distributed modeling and process representations at multiple scales.

5. Acknowledgments

The installation, maintenance, and quality-control of these sites and data has involved the work of many dedicated individuals. In addition to the co-authors we thank Brian Huggett, Larry Riddle, Heidi Roop, Josh Baccei, Julia Dettlinger, Fred Lott, Andrey Shcherbina, Steve Loheide, Chris Lowrey, Douglas Alden, Edwin Sumargo, Reuben Demirdjian and many more. Funding for data processing, and hence this publication, came from the National Science Foundation, CBET-0729830, and NASA Grant-NNX15AB29G. All data are currently available here, http://depts.washington.edu/mtnhydr/data/yosemite.shtml, and at CUAHSI (http://data.cuahi.org), and are permanently housed in the University of Washington Research Works Archive at http://hdl.handle.net/1773/35957. The solar radiation data timeseries were quality controlled using the code provided here, https://github.com/Mountain-Hydrology-Research-Group/moq, and the shortwave interpolation algorithm is available here, https://github.com/klapo/shin. We thank Jerome Le Coz for help setting up BaRatin and applying it to our sites. The code for BaRatin can be obtained by contacting the Jerome Le Coz, as detailed in Le Coz et al. (2014).
6. References

Anderton, S.P., S. M. White, and B. Alvera (2002), Micro-scale spatial variability and the
timing of snow melt runoff in a high mountain catchment, *J. Hydrol.*, 268, 158-176.

Bair, E. H., K. Rittger, J. Dozier, and R. E. Davis (2016), Validating snow water equivalent
reconstruction using Airborne Snow Observatory measurements in the Sierra Nevada,

Bales, R., Molotch, N., Painter, T., Dettinger, M., Rice, R., and Dozier, J. (2006), Mountain
hydrology of the western US: Water Resources Research, 42, W08432,

conditions for short-term projects: Uncertainties associated with the use of stage-

Proc.*, 9, 251-290.

and Forest Met.*, 176, 38-49. doi: http://dx.doi.org/10.1016/j.agrformet.2013.03.003

framework for discharge uncertainty quantification applied to 500 UK gauging stations,

Landry, C. C., K. A. Buck, M. S. Raleigh, and M. P. Clark (2014), Mountain system monitoring at Senator Beck basin, San Juan Mountains, Colorado: A new integrative data source to

Lowry, C., J. Deems, S. Loheide II, and J. D. Lundquist (2010), Linking snowmelt derived recharge and groundwater flow in a high elevation meadow system, Sierra Nevada Mountains, California. Hydrological Processes, 24, 2821-2833.

Lundquist, J. D. and J. Roche (2009), Climate change and water supply in western national parks, *Park Science*, ISSN 1090-9966.

Muir, J. (1911), *My First Summer in the Sierra*, Dunwoody, GA: Norman S. Berg, Publisher.

7. Tables

Table 1: List of stream sites, locations and data availability, all geographic coordinates use NAD 83 datum. Order matches supplemental material, from upstream to downstream. *Some sites are also locations of USGS water quality monitoring, and their USGS site ID numbers are referenced.

** Real-time values available at: http://cdec.water.ca.gov/cgi-progs/queryF?s=TUM

<table>
<thead>
<tr>
<th>Site Code</th>
<th>USGS Site ID*</th>
<th>Site Name</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Basin Area</th>
<th>Elevations</th>
<th>Water Years with Data (X=data available)</th>
<th>Type of installation</th>
</tr>
</thead>
<tbody>
<tr>
<td>HB270</td>
<td>3746401119154100</td>
<td>Lyell below Maclure</td>
<td>37.777</td>
<td>-119.261</td>
<td>15</td>
<td>2940</td>
<td>X X X X X X X X X X</td>
<td>Solinst, Stilling tube</td>
</tr>
<tr>
<td>H03a (NP269)</td>
<td>3752101119195000</td>
<td>Lyell Fork, upstream</td>
<td>37.869</td>
<td>-119.331</td>
<td>109</td>
<td>2640</td>
<td>X X X X X X X X X X</td>
<td>Solinst, Stilling tube; Vented transducer installed 7/16/2015</td>
</tr>
<tr>
<td>H03b</td>
<td></td>
<td>Lyell Fork, downstream</td>
<td>37.869</td>
<td>-119.331</td>
<td>109</td>
<td>2640</td>
<td>X X X X X X X X X</td>
<td>Solinst, anchor</td>
</tr>
<tr>
<td>H02a (NP188)</td>
<td>375233119200401</td>
<td>Dana Fork, lodge</td>
<td>37.876</td>
<td>-119.333</td>
<td>74</td>
<td>2650</td>
<td>X X X X</td>
<td>Solinst, anchor</td>
</tr>
<tr>
<td>H02b</td>
<td></td>
<td>Dana Fork, Bug Camp</td>
<td>37.877</td>
<td>-119.338</td>
<td>75</td>
<td>2640</td>
<td>X X X X X X X X</td>
<td>Solinst, Stilling tube; Vented transducer (6/12/2015-present)</td>
</tr>
<tr>
<td>NP238</td>
<td>375234119211400</td>
<td>Tuolumne 120</td>
<td>37.876</td>
<td>-119.355</td>
<td>186</td>
<td>2600</td>
<td>X X X X</td>
<td>Solinst, anchor</td>
</tr>
</tbody>
</table>

[Note: The table is truncated for readability. The full table is available in the document.]
<table>
<thead>
<tr>
<th></th>
<th>Site Description</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Date</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>H07</td>
<td>Delaney Creek, meadow</td>
<td>37.883</td>
<td>-119.381</td>
<td>16 2600</td>
<td>X X X X X X X X Solinst, Stilling tube</td>
</tr>
<tr>
<td>H01a</td>
<td>Budd Creek upstream</td>
<td>37.873</td>
<td>-119.382</td>
<td>7 2600</td>
<td>X X X X X X X X X Solinst, Stilling tube</td>
</tr>
<tr>
<td>H01b</td>
<td>Budd Creek downstream</td>
<td>37.874</td>
<td>-119.382</td>
<td></td>
<td>X X X X X X X X Solinst, anchor</td>
</tr>
<tr>
<td>H99</td>
<td>Hetch Hetchy Reservoir</td>
<td>37.9708</td>
<td>-119.788</td>
<td>1181 1162</td>
<td>X X X X X X X X X X X X See text</td>
</tr>
<tr>
<td>AF01</td>
<td>Dana Snow Pillow</td>
<td>37.896</td>
<td>-119.257</td>
<td>NA 3000</td>
<td>X X X X X X X X X X X X See text</td>
</tr>
</tbody>
</table>
Table 2. Stream Sensor Instrument Installations: types and accuracy

*Note that the Levelogger Gold reports water level equivalent above the datalogger’s pressure zero point of 95 cm (the Edge models do not have such an offset). ¹Druck was used at Delaney Cr above PCT from 2012-2015; ²Campbell Scientific CS450 was used at Lyell below Maclure 2012-present; Tuolumne at 120 2012-present; Dana at Bug Camp 2014-present; Lyell above Twin Bridges 2015-present.

<table>
<thead>
<tr>
<th>Installation Type</th>
<th>Anchored Solinst*</th>
<th>Solinst in Stilling Tube</th>
<th>Vented Pressure Transducer</th>
<th>Barometric Pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Instrument in a PVC pipe inside a concrete anchor, which is cabled to a tree, bridge, or culvert.</td>
<td>Instrument in PVC pipe inserted in vertical pipe attached to the streambed and bank with rebar; with cord for downloading instrument.</td>
<td>Same as stilling tube but with data cord connected to a data logger box (typically hidden in a tree) and another cord open to the atmosphere.</td>
<td>Instrument in a building or in a tree or in a dry groundwater well</td>
</tr>
<tr>
<td>Instrument Used</td>
<td>Solinst Levelogger</td>
<td>Solinst Levelogger</td>
<td>Druck¹ Or Campbell Scientific CS450 PT²</td>
<td>Solinst Barologger</td>
</tr>
<tr>
<td>Instrument Specs/Accuracy</td>
<td>Levelogger Model 3001: 0.1°C temp accuracy, ±0.5 cm pressure/depth accuracy; temperature compensated over the range of -10 to 40°C; drift of 0.1% of the full range (±0.5 cm for a 5 m model, used here).</td>
<td>Levelogger Edge and Gold: Temp accuracy ± 0.05°C Pressure ± 0.05% of FS (for 5 m model, this would be ±0.25 cm); Manufacturer states clock accurate to 1 minute per year, but 20 minutes of drift per year was typically observed in practice</td>
<td>Druck: 0-5 PSI Range, 0.25% accuracy; CS450: 0-7.25 PSI Range, 0.1% accuracy;</td>
<td>Edge: ± 0.05 kPa, with temperature compensation, temperature accuracy ± 0.05°C Gold: 0.01 cm and ± 0.05°C (also has temp compensation); Model 3001 same as 5 m Levelogger.</td>
</tr>
<tr>
<td>Processing steps</td>
<td>1) subtract off</td>
<td>1, 3, and 4</td>
<td>3 and 4</td>
<td>3, and 5) adjust</td>
</tr>
<tr>
<td>required</td>
<td>atmospheric pressure; 2) correct for offsets in instrument location; 3) check for instrument drift; 4) develop rating curve</td>
<td>for temperature dependencies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total error estimates in stage</td>
<td>Up to ± 3 to 4 cm, with ± 2 cm due to summed instrument accuracy and drift for both stream and barometric instruments; and ± 1 to 2 cm more due to uncertainty in instrument location</td>
<td>Up to ± 0.5 cm due to summed instrument accuracy and potential drift</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Note that these are worst case scenarios – errors for most sites are believed to be less.)</td>
<td>Up to ± 2 cm due to summed instrument accuracy and potential drift for both stream and barometric instruments</td>
<td>Up to ± 1 cm due to summed instrument accuracy and potential drift</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Error propagation into estimated discharge</td>
<td>± 0.92 m³ s⁻¹ to ± 1.24 m³ s⁻¹ (14-19%)</td>
<td>± 0.15 m³ s⁻¹ (2%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(using Lyell Fork above Twin Bridges at 0.7 m, typical summer flow, as an example)</td>
<td>± 0.61 m³ s⁻¹</td>
<td>± 0.30 m³ s⁻¹ (5%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pros</td>
<td>Easy installation, lowest visible impact</td>
<td>Low visible impact; stable location and datum</td>
<td>Stable location and datum; lowest processing time required (saves ~8 hours of desk work per year); can reference instrument stage to field datum at each visit</td>
<td></td>
</tr>
<tr>
<td>Cons</td>
<td>Instrument location moves through time; Most processing time</td>
<td>Error increases with atmospheric adjustment; hard to reference</td>
<td>More work required to reduce visible impact (e.g., hiding conduit and annual)</td>
<td></td>
</tr>
<tr>
<td>Required (≈8 hours of desk work per year per site by trained person + ≈2 weeks additional time training for new person);</td>
<td>Instrument reading to field datum while in the field</td>
<td>Battery swap from a hidden battery enclosure; higher instrument cost</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
8. Figures

Fig. 1. Map of all data sites included in this paper. The yellow crosses are temperature sensor locations. The Falls Creek and Grand Canyon of the Tuolumne are USGS gauge locations, and the red squares are streamflow sites included in the archive. The green dots were used to create the meteorological forcing dataset (with precipitation only taken from the Tuolumne site and all other values taken from the Dana Meadows site).
Figure 2. Illustration of dynamic discharge relationships for (a,d) half-hourly flows and (b,e) daily average flows of the Dana Fork, Lyell Fork below Maclure, Lyell Fork at Twin Bridges and Tuolumne at 120. (c,f) Flows at the three higher gages as a fraction of daily flows at Tuolumne 120. Plots show these four subbasins in a cool-wet year (2010, a,b,c) and a warm-dry year (2014, d,e,f). By area, the Dana Fork and Lyell Fork at Twin Bridges make up about 40% and 60% of the Tuolumne at 120 drainage. The Lyell below Maclure monitors just the headwaters of the Lyell Fork, and makes up about 8% of the area contributing to Tuolumne at 120. See text for discussion.