Metrics for Quantifying and Comparing Markers Used for Treatment Selection

November 22, 2010

Holly Janes and Margaret Sullivan Pepe
Fred Hutchinson Cancer Research Center

with
Patrick Bossuyt and Bill Barlow
Many Roles for Biomarkers

- surrogate outcomes
- early diagnosis of disease (EDRN)
- prognosis
- treatment selection (predictive) (prescriptive)
A Motivating Example

- most women with ER+ breast cancer are treated with chemotherapy but likely only a subset benefit
- Oncotype DX is an RT-PCR assay on 21 genes: 16 cancer related, 5 reference
- Oncotype DX useful for guiding the decision to have chemotherapy
- MammaPrint is another candidate marker
Not Targeted Therapy
A Common Approach to Evaluating a Treatment Selection Marker

- is the marker predictive of response among subjects treated?
- not adequate

Marker equally prognostic on both treatments

Marker not prognostic on treatment but useful for treatment selection
A Common approach to Evaluating a Treatment Selection Marker

- is treatment effective among marker positive patients?
- not adequate for evaluating *the marker*
History of Oncotype DX

- developed as a *prognostic* marker for women not receiving chemotherapy (Paik 2004)

- evaluated as a treatment selection marker
 - for node negative breast cancer (Paik et al 2006)
 - for node positive breast cancer (Albain et al 2010)
NSABP Trial (Paik et al 2006) Node Negative Breast Cancer

A

![Graph showing Proportion Distant-Recurrence Free for all patients across years with RS categories.](image)

B

![Graph showing Proportion Distant-Recurrence Free for RS=low across years.](image)

C

![Graph showing Proportion Distant-Recurrence Free for RS=med across years.](image)

D

![Graph showing Proportion Distant-Recurrence Free for RS=high across years.](image)
Breast Cancer Intergroup Study (Albain et al 2010)
Node Positive Breast cancer

A 10 years

Disease-free survival event by 10 years (%)
The Paradigm

- biospecimens collected prospectively before treatment in a RCT
- retrospectively blinded evaluation of stored specimens
- PRoBE design for prognostic biomarkers extended to address treatment (Pepe et al JNCI 2008)
Simulated Data for Illustration

- Randomized trial with 3,000 participants
- Comparing no treatment \((T = 0)\) vs. treatment \((T = 1)\)
- 1,500 subjects each arm
- Response is 5-year disease-free survival \((R)\)
- Chemotherapy is marginally effective:

\[
P(R = 1|T = 1) = 79\% \text{ vs } P(R = 0|T = 0) = 76\%
\]

- Two markers measured at baseline on all trial participants:
 - \(Y_1\) has performance similar to Oncotype DX
 - \(Y_2\) has better performance
Proposed Descriptive: Marker by Treatment Predictiveness Curves

- response rate as a function of marker percentile and treatment

• useful for guiding individual treatment decisions
• percentile scale shows % patients that opt to forego chemotherapy
• useful for comparing markers
Estimation

- \(P(R = 1|T, Y) \) versus \(F(Y) \) \(T = 0, 1 \)

- extension of predictiveness curves for prognostic markers
 \(P(R = 1|Y) \) versus \(F(Y) \)

- Huang, Pepe, Feng (Biometrics 2007) combine fitted risk model \(P_{\hat{\theta}}(R = 1|Y) \) with empirical \(\hat{F}(Y) \) using cohort data
More Estimation (Huang and Pepe)

- nested case-control data
 - select on the basis of $R = 1$ and $R = 0$ for measuring Y
 - relevant also for Treatment Selection Markers
- semiparametric efficient estimation (*Biometrika* 2009)
- nonparametric estimation (*Statistics in Medicine* 2010)
Estimation Accommodating Covariates

• how does the marker perform in subpopulations?
 e.g. node+ versus node− patients
 e.g. younger versus older patients

• covariate specific predictiveness curves (*JRSS C* 2010)

• accommodates matching controls \((R = 0)\) to cases \((R = 1)\) in regards to covariates (and treatment)
Summary Index

- \(\hat{P}[\text{response}|\text{use of marker}] = \int \max(\hat{P}C_{T=1}(v), \hat{P}C_{T=0}(v))dv \)
- for comparing markers
- for discovery work
% 5-year DFS
80 (78,82)

using marker

- CI and inference using the bootstrap (for now)
- p-value < 0.001
Interactions

- are not sufficient
- interactions do not quantify performance

- same interactions but different performance possible
Combining Markers

- multiple markers may be available
 - Oncotype DX is a combination of 21 markers
 - combine MammaPrint and Oncotype DX together

- add marker to existing clinical information
 - age, nodal status,
How to Combine Markers?

- \(P(R = 1|\text{use of marker}) \) is maximized by the rule

\[
\text{Treat}(Y) : P(R = 1|T = 1, Y) > P(R = 1|T = 0, Y) \Rightarrow T = 1
\]

otherwise \(\Rightarrow T = 0 \)
Example

$$\text{logit} P(R = 1 | T, Y) = \alpha_0 + \alpha_1 T + \alpha_2 Y + \alpha_3 TY$$

$$P(R = 1 | T = 1, Y) > P(R = 1 | T = 0, Y) \iff \alpha_1 + \alpha_3 Y > 0$$

- optimal marker combination = $\sim\alpha_3 Y$
- interaction of Y and T
Cost-Benefit Analysis Framework

- treatment selection marker needed if treatment has positive and negative effects
- chemotherapy
 - positive effects: tumor response
 - negative effects: toxicity
- how to put positive and negative effects on the same scale?
- composite outcome “any bad event”
 - e.g., Oncotype DX “disease free survival”
- more generally: assign costs and benefit values
- Expected benefit replaces $\text{Prob}(R = 1)$
Expected Benefit with Use of Marker (B)

$C =$ cost of treatment
$C_1 =$ additional cost for those who respond in the absence of treatment
$B_0 =$ benefit for subjects that do not respond in the absence of treatment

$$B(Y) = P(R = 0| T = 0, Y)B_0 - P(R = 1| T = 0, Y)C_1 - C$$
When Costs and Benefits of Treatment do not Vary with Y

$$B(Y) = P(R = 0|T = 0, Y)B_0 - P(R = 1|T = 0, Y)C_1 - C$$

- prognostic marker can serve as treatment selection marker if it is adequately prognostic
- prognostic score is the right function for combining markers
- Gail (JNCI 2009) used the Gail model for breast cancer risk as a treatment selection marker assuming uniform costs and benefits
- Oncotype DX is a prognostic score but costs and benefit of treatment may vary with components of it
Further Work

1. Visual displays for multiple markers
2. Evaluation of Incremental value
3. Extensions of the PRoBE design: selection of cases and controls; matching; sample size
4. Cost-Benefit Analysis Methods
5. Meta-analysis
6. Observational studies

