Post-Doctoral Fellowship: Altered Control in Cerebral Palsy

The University of Washington’s Ability & Innovation Lab has an opening for a postdoctoral fellow. This individual will work closely with a team of engineers and clinicians from UW and Gillette Children’s Specialty Healthcare to better characterize altered neuromuscular control in cerebral palsy using a combination of muscle synergy analysis and dynamic musculoskeletal simulation.

In this research, you will work on an NIH-funded project that aims to (1) quantify whether muscle synergies change after treatment among children with cerebral palsy and (2) use dynamic musculoskeletal simulation to evaluate the functional impact of altered synergies. This research is led by Dr. Kat Steele from UW and Dr. Mike Schwartz from Gillette Children’s Specialty Healthcare.

The mission of the Ability & Innovation Lab is to improve human movement through engineering & design. We take a need-based, human-centered approach to research and work closely with clinicians, patients, and families to identify tools and techniques to improve clinical care and quality of life. More information about our lab and on-going research can be found at: https://depts.washington.edu/uwsteele/

University of Washington is an affirmative action and equal opportunity employer. All qualified applicants will receive consideration for employment without regard to race, color, religion, sex, sexual orientation, gender identity, national origin, age, protected veteran or disabled status, or genetic information. The University of Washington is building a culturally diverse community and strongly encourages applications from women, minorities, individuals with disabilities and covered veterans. All positions are contingent on the availability of funding.

Qualifications:
Applicants should have a PhD in engineering or a closely related field with experience in musculoskeletal simulation, neuromuscular control, computational biomechanics, and/or gait analysis. Strong oral and written communication skills, excellent technical capabilities, and the ability to work as an effective member of a multidisciplinary team is critical for the success of this research. Prior experience with OpenSim, Matlab, C++, and muscle synergy analysis is valuable. However, we place a higher priority on the potential of a candidate to perform excellent research and be a highly motivated member of our team.

To Apply:
Applicants should provide (1) a cover letter clearly describing your interest and relevant background in this project, (2) a CV, (3) copies of two representative publications, and (4) contact information for three references. Applications must be submitted via email to Keshia Peters at rumbek@uw.edu. Review of applications will begin immediately and continue until the position is filled. To ensure full consideration, applications should be received by December 31, 2015. The desired start date is between January - September 2016. Please address all questions to Dr. Kat Steele, kmsteele@uw.edu.