Warm-up. If the position of an object is given by \(s(t) = \cos(\pi t/4) \) for \(0 \leq t \leq 10 \). Find its velocity, speed, and acceleration at time \(t \).

Moving through space works the same way except position, velocity, and acceleration become vector quantities.

<table>
<thead>
<tr>
<th>Motion in a plane</th>
<th>Motion through space</th>
</tr>
</thead>
<tbody>
<tr>
<td>(s(t)) is position</td>
<td>(\mathbf{r}(t)) is position</td>
</tr>
<tr>
<td>(s'(t) = v(t)) is velocity</td>
<td>(\mathbf{r}'(t) = \mathbf{v}(t)) is velocity</td>
</tr>
<tr>
<td>(s''(t) = v'(t) = a(t)) is acceleration</td>
<td>(\mathbf{r}''(t) = \mathbf{v}'(t) = \mathbf{a}(t)) is acceleration</td>
</tr>
</tbody>
</table>

Example Find the velocity, speed and acceleration of a particle with the given position function.

\[\mathbf{r}_1(t) = t \mathbf{i} + t^2 \mathbf{j} + 2 \mathbf{k} \]
\[\mathbf{r}_2(t) = t \sin t \mathbf{i} + t \cos t \mathbf{j} + t^3 \mathbf{k} \]

Of course, we can use integrals of vector functions to work backwards and find a position vector given information about velocity (or acceleration.)

Problem. Find the velocity and position vectors for a particle with acceleration \(\mathbf{a}(t) = 2 \mathbf{i} + 6t \mathbf{j} + 12t^2 \mathbf{k} \) provided \(\mathbf{v}(0) = \mathbf{i} \) and \(\mathbf{r}(0) = \mathbf{j} - \mathbf{k} \).
All of mechanics can be filtered through the lens of vector functions. \(\mathbf{F}(t) = m\mathbf{a}(t) \).

Problems.

1. What force is required so that a particle of mass \(m \) has the position function \(\mathbf{r}(t) = t^3\mathbf{i} + t^2\mathbf{j} + t^3\mathbf{k} \)?

2. A force with magnitude 20 N acts directly upward from the \(xy \)-plane on an object with mass 4 kg. The object starts at the origin with initial velocity \(\mathbf{v}(0) = \mathbf{i} - \mathbf{j} \). Find its position function and its speed at time \(A \) projectile is fired with an initial speed of 500 m/s and angle of elevation 30°. Find (a) the range of the projectile, (b) the maximum height reached, and (c) the speed at impact.

Sometimes it is useful to resolve the acceleration vector into two components

- one in the direction of motion (i.e. in the direction of the tangent vector)
- one in the direction of the normal.

Recall that \(\mathbf{T}(t) = \frac{\mathbf{r}'(t)}{|\mathbf{r}'(t)|} \)

So \(\mathbf{v} = \) Now differentiate with respect to \(t \).

This leads to \(\mathbf{a} = v'\mathbf{T} + \kappa v^2 \mathbf{N} \).

Example. Find the tangential and normal components of the acceleration vector \(\mathbf{r}(t) = e^t\mathbf{i} + \sqrt{2}t\mathbf{j} + e^{-t}\mathbf{k} \).