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Abstract. A solution is proposed for the important problem of testing for interaction
in factorial experiments when Gaussian assumptions are violated. The proposed rank
test can be implemented with existing statistical pagéages and provides a fix-up for the
flawed rank transform procedure. Simulation results suggest that the test is valid for the
small and moderate sample sizes typically found in practice when error distributions are
symmetric or moderately skewed. The procedure has advantages over standard analysis
of variance in the presence of outliers or when when error distributions are heavy tailed.
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1. Introduction

Analysis of variance is a powerful tool for exploring causal relationships among
variables in multifactor experiments. The simplest mathematical models for re-
sponses observed in such experiments are additive. That is, the aggregate effect
of the factors being studied is a sum of the effects of the individual factors.
More complex models include nonadditive effects, or interactions. An important
statistical problem is that of testing for the presence of interactions. Such tests
can reveal complex relationships among the factors not adequately explained by
the additive model.

It is well-known that statistical procedures such as analysis of variance, which
are optimal under the assumption of a Gaussian probability model, can be sen-
sitive to the violations of the Gaussian assumption or to the presence of outliers.
Such procedures involve sample means which are notoriously ill-behaved when
outliers are present or when distributions of observations are heavy tailed. The
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consequences of this can be particularly devastating when using analysis of
variance to test for interactions in multifactor experiments. Spurious effects due
to violations of assumptions can mask themselves as interaction effects lead-
ing researchers to postulate more complicated structures than warrented by the
underlying model. \

Rank tests have long been valued as alternatives to Gaussian theory meth-
ods when Gaussian assumptions are violated. While such tests have long been
available for single factor experiments or for multiplifactor experiments with
additive effects, the development of corresponding procedures for multifactor
experiments with interactions has lagged behind. This is due in part to com-
putational complexities of various proposed methods and in part to lack of
concensus on which methods should be developed. Sen (1968) proposed a class
of rank order tests in two-way layouts which solve in the two-way setting the
problem posed here but which have never been computationally implemented
in the standard statistical packages. Draper (1988) reviewed rank-based robust
methods which could also be used in this context, but again such methods have
lagged in implementation.

Among the rank based procedures for multifactor experiments presently in use,
the one that appears to have gained the most popularity is the rank transform
method proposed by Iman and Conover (1981). In this method, the analysis
is carried out by replacing original observations with their respective ranks,
computing parametric tests on these ranks (typically an analysis of variance), and
referring the values of the test statistics so obtained to the usual table of critical
values. It’s popularity comes from the fact that it can be implemented in most of
the standard statistical packages by simplying ranking data, which most packages
do, and applying standard methods to the ranked data. For instance, this is a
procedure recommended by IMSL (1987) for two and three factor experiments.

Theoretical results (Iman, Hora, and Conover, 1984) suggest that the rank
transform procedure provides asymptotically valid tests for analyzing experi-
ments when additive effects are present. Simulation studies (Conover and Iman,
1976, and Iman, 1976) carried out in a connection with a 4 x 3 factorial design
seem to show that the rank transform procedure is also valid for analyzing exper-
iments with interaction. These authors have concluded that the rank transform
tests are competitive with Gaussian theory tests under Gaussian assumptions and
may enjoy considerable power advantages over such tests when observations are
taken from non-Gaussian distributions.

Unfortunately, the evidence for the validity of the rank transform procedure
applied to factorial experiments with interaction comes from rather incomplete
simulation studies. Blair, Higgins, and Sawilosky (1987) were among the first
to raise questions about the limitations of this methodolgy. Subsequent work
by Sawilosky, Blair, and Higgins, (1989), Akritas (1990, 1991), and Thompson
(1991) have further shed light on the potential undersirable behavior of the rank
transform method when nonadditive effects are present. The underlying reason
for the flaw is simple. When nonlinear transformations such as the rank transform
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are made on a set of data, interaction structures that exist in the original data
may or may not exist in the transformed data. That is, interaction may exist in
the transformed data but not in the original data, or vice versa. As a result, there
is no justification for the general applicability of the rank transform procedure
in factorial experiments with interaction although there may be special cases
where it is appropriate.

The procedure proposed here combines the notion of alignment of the data as
set forth by Sen (1968) with the rank transform method of Iman and Conover.
Applied by Higgins, Tashtoush, and Blair (1990) in the context of agricultural
experimentation, the procedure is quite general and can be applied to balanced
factorial experiments of all dimensions in completely random designs and in
split-plot repeated measures experimental designs. Section 2 of the paper focuses
on our recommended procedure in completely randomized designs with two-
way factorial treatment structures. Section 3 investigates modifications of the
recommended procedure using robust estimates of location. Section 4 discusses
applications to other designs.

2. The aligned rank transform in two-way completely random designs

Alignment is a procedure applied in multiparameter models for removing the
effect of “nuisance” parameters when testing for the effects of parameters of in-
terest. For instance, in a randomized complete block design data may be aligned
to remove the effect of blocks in testing for the effect of treatments (I.ehmann,
1975). In the aligned rank transform procedure, data are aligned, ranked, and
then analyzed using an appropriate parametric procedure. In this section, the
aligned rank transformation procedure is defined and its properties investigated
for a balanced two-way completely randomized design.

2.1 The aligned rank transform procedure

The mathematical model is

Yijg = p+ i + B+ (af);; + €ijk

wherei=1,...,r, j=1,...,¢c, k=1,...,n, and the €;;’s are i.i.d. random
variables with mean 0 and common standard deviation o. The «;’s and B;’s
will be referred to as row effects and column effects, respectively, and (af3);;
is the interaction effect. To align data in testing for interaction, an adjustment
factor is subtracted from the Y;j’s to remove the row effects and column ef-
fects so that the resulting data will depend only on the («f3);;’s and the €;;’s.
The adjustment factors proposed here are based on the usual estimates of u,
a;, B, and (af);; under the following restrictions: ), a; = 0, Ej Bj =0,
>iaB; = Zj(a,B)j = 0. These estimates are: ft = Y.., & = Y. — Y.,
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Table 1. Simulated type I error rates for aligned rank transform procedure CRD with
4 x 3 factorial treatment structure test for interaction, @ = .05 and .01. 1000 simulated
data sets

Number of observations per cell

a=.05 a = .01
Error distribution 2 5 10 2 5 10
Gaussian 065 .064 .054 .012 .011 .008
uniform .070 .065 .053 .019 .013 .009
df =3 048 .050 .045 .011 .008 .006
exponential* .065 065 .052 .020 .015 .007

* two-parameter exponential u =0, o =1

Bi=Y,-Y ,aB;=Y; Y, —Y,; +7.. The aligned data for testing for
interactions have the form

ABijp =Y — (p+ &+ B)=Yiu—Yi. =V +7...

To apply the aligned rank transform to test for interactions, the AB;;’s are
ranked, and the ranked data are analyzed with the analysis of variance procedure.
The F-ratio involving the interaction mean square is used as the test statistic. The
critical values or p-values for the test statistic are taken from the F' distribution.
The mean squares for row and column effects are ignored. Similar procedures
can be applied to test for row and column effects in the presence of interaction.

2.2 Type I error and power

While the aligned rank transform test for interaction is not distribution free, it
appears to be a robust procedure in the sense that critical values can be ade-
quately approximated by those of the F distribution. Table 1 contains simulated
Type I error rates for the aligned rank transform procedure in a 4 x 3 factorial
treatment structure in which critical values for the tests were determined from
the F distribution with @ = .05 and .01. The study is based on 1000 repetitions
of the sampling experiment with sample sizes for the cells being 2, 5, and 10.
The error distributions were Gaussian, uniform, Student’s ¢t with 3 degrees of
freedom, and exponential to represent both light and heavy tailed distributions
and skewed distributions. It is clear that the nominal Type I error rates of 5 %
and 1 % are maintained for all practical purposes with the aligned rank transform
procedure. Similar results were obtained for the two by two factorial treatment
structure.

Extensive simulations were carried out to determine the power functions of the
aligned rank transform test, and the results obtained were what one has come
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Table 2. Maximum power advantages attained by AOV and aligned rank procedures
CRD with 4 x 3 treatment structure test for interaction, & = .05, 1000 simulated data
sets E(Y11x) = E(Y33k) = co; E(Y13i) = E(Y316) = —co; E(Yijx) = O, other

Number of observations per cell

Error distribution 2 5 10
Gaussian AR .012 .000 .001
AOV .047 035 026
uniform AR .017 .000 .002
AQOV 052 070 .088
tdf =3 AR .044 .144 193
AOQOV .000 .000 .000
exponential AR .068 176 323
AOV 011 .000 .000

to expect of rank tests. For light tailed, symmetric distributions, the analysis
of variance procedure has a modest power advantage over the aligned rank
transform procedure, generally less then .10 at the maximum. On the other hand,
for heavy tailed distributions or skewed distributions, the aligned rank transform
procedure is superior to analysis of variance, and the power advantages can be
substantial with maximum power advantages often in the .15 to .30 range.

Typical results obtained in the simulation study are summarized in Table 2.
Power functions for the analysis of variance and the aligned rank procedures
were simulated in a 4 x 3 factorial treatment structure with alternatives of the
form

EX11x) = E(X33k) = co, EX13) = EX310) = —co,

E(Yijx) =0 otherwise,

where ¢ ranged from O to a value sufficiently large for the simulated power
functions to be greater .99. The simulations were based on 1000 repetitions
of the sampling experiment with a = .05. Since it happened in some cases
that the simulated power functions crossed each other (either due to sampling
error in the estimates of power or due to real differences), the maximum power
difference attained by each power function over the other was obtained. These
results are reported in Table 2. For the Gaussian and uniform distributions, the
analysis of variance procedure never had a power advantage greater than .09.
On the other hand, the rank transform procedure enjoyed much larger power
advantages over the analysis of variance procedure when samples were selected
from the exponential distribution and the Student’s ¢ distribution with three
degrees of freedom. In one case the maximum advantage exceeded .30.
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Table 3. Simulated type I error rates for ali gned rank transform procedure robust estimates
of location CRD with 4 x 3 factorial treatment structure test for interaction, a = .05,
1000 simulated data sets

Number of observations per cell

median trimmed mean
Error distribution 5 10 5 10
Gaussian 078 .061 .076 .064
tdf =3 .069 .065 .069 056
exponential .091 075 .080 078

3. Alignment based on robust estimates of location

We investigated alternative methods of alignment based on robust estimates of
location of cell means. In the alignment procedure it is possible to use any
estimate of location in place of a sample cell mean as follows. Let m;; denote
any robust estimate of the E (Yijx). The aligned data then take the form

ABijx =Y — iy — T + L.

The robust estimates considered in this study were the median and the 40%
trimmed mean (20% trimmed from each side). When error distributions are
symmetric and have finite mean, the mean, median, and trimmed mean all es-
timate the mean of the distribution from which samples are taken. However,
this is not the case when the error distribution is skewed. Thus alignment using
robust estimates for skewed error distributions may not be appropriate. Indeed
investigation of Type I error rates showed the robust procedures to give unac-
ceptable inflation in Type I error rates for the exponential distribution. Thus,
we do not recommend the use of robust estimates except in cases of symmet-
ric error distributions. While, for the symmetric error distributions, the Type I
errors tended to be somewhat inflated especially for the smaller sample sizes,
they appear to be close enough to the nominal values for practical purposes.
Simulated Type I error rates are shown in Table 3.

The power advantages of tests based on alignment with robust estimates of
location over those based on alignment with means is modest, with the maximum
advantage being generally less than .07. Given the slight inflation in Type I error
rate for the robust alignment compared to the alignment with means, the real
advantage appears to be even less than this. Typical results are shown in Table 4
for two symmetric distribution, the Gaussian and Student’s 7 with 3 degrees of
freedom.
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Table 4. Max. power advantages of robust alignment over alignment with means, CRD
with 4 by 3 factorial treatment structure, test for interaction, @ = .05, 1000 simulated
data sets E(Y 1) = E(Y33¢) = co; E(Y130) = E(Y310) = —c0; E(Yyj) = 0, other

Number of observations per cell

median trimmed mean
error distribution 5 10 5 10
Gaussian .035 051 027 .047
tdf =3 .062 .043 .062 .032

Table S. Type I error rates for AOV and aligned rank tests with outliers 4 x 3 factorial
treatment structure, two outliers in cell 1,1 with mean x4 = 2,4, 6, other observation
from standard Gaussian distribution five observations per cell, @ = .05, 1000 simulated
data sets

s
TEST 2 4 6
AOV 103 .169 278
AR (mean) .086 114 129
AR (median) 110 113 119
AR (trimmed mean) .092 .087 .100

Another issue of importance is the possibility that outliers may cause the
analysis of variance test to show interaction when no interaction exists. To in-
vestigate this effect, five observations per cell were generated in a 4 x 3 factorial
design with no interaction. All observations were selected from a standard Gaus-
sian distribution except for two observations in cell 1,1 which were generated
from a Gaussian distribution with mean u, u = 2,4, 6, and variance 1, thus
simulating outliers in one cell. What one would hope is that the tests would
not show significant interactions due to the outlier effects. The extent to which
spurious interactions were detected was measured by the inflation in Type I error
rate above the nominal .05 rate.

As the simulated Type I error rates in Table 5 show, none of the tests were
immune from the effects of outliers. For the mean u = 2, tests had Type I
error rates ranging from .086 to .110. As the mean of the outliers increased, the
Type 1 error rate for analysis of variance continued to increase to a value of
278 for u = 6. However, the Type I error rates for the aligned tests stablized
in the range .100 to .129. For the larger values of u, there was somewhat more
inflation for alignment with means while alignment with trimmed means had
somewhat smaller inflation.
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There appears to be some slight advantage in aligning with robust estimates
in terms of power and in terms of controlling the effects of outliers when obser-
vations have symmetric error distributions. However, it is the process of ranking
after alignment that gives the aligned rank transform tests their desirable prop-
erties. Given the ease with which alignment with means can be done, we would
generally recommend this procedure. '

4. Other designs

4.1 Split-plot or repeated measures designs

The model for the split-plot or repeated measures design is given by

Yijk = p+ i+ Su + Bj + (aB)ij + €ijx

where i = 1,...,r, j = 1,...,¢c, k = [,...,n, the §;’s are ii.d. random
variables with mean 0 standard deviation o, the €; ks are i.i.d. random variables
with mean O and standard deviation o, and the §;’s are independent of the
€;jk’s. The a;’s are the whole-plot or between subjects effects and the 8;.’s and
the whole-plot or between subjects errors. The the 8 ;’s are the subplot or within
subject effects, and the ¢; jk's are the subplot effects or within subject error. The
term (af);; is the interaction term.

There are two methods of alignment that may be used. A naive approach
would be to use the same alignment as in the two-way completely random
design (the CRD method). This method is generally not desirable since it does
not remove the effect of the whole-plot error. In the method proposed below,
the effect of the whole-plot error is removed in the alignment process. This
generally leads to a more powerful test especially when the whole-plot error
variance is large in relation to subplot error variance as is often the case. To
test for interactions, whole-plot effects and whole-plot errors are removed by
subtracting the whole-plot means Y;;’s from the observations. Then the subplot
effects are subtracted. Finally, the aligned data are ranked and the usual split-plot
analysis of variance is performed on aligned ranks. As before, sums of squares
for main effects are ignored while the F ratio for the interaction effect is referred
to the F" distribution with appropriate degrees of freedom. The aligned data for
testing for interactions is given by

ABijx (split-plot) = ¥ — Yix — B;
= Yijk - 7,'.]( - ?J +7Y..

Table 6 shows simulated power for the analysis of variance tests and the
aligned rank transform tests using both the split-plot alignment and the naive
alignment for completely random designs. Clearly we see the advantages of the
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Table 6. Simulated power for aligned rank procedures for split-plot designs 4 x 3 factorial
treatment structure test for interaction, @ = .05, subplot sid. dev. o = 1 EX 1) =
—E(¥Ya12) = 1.5, E(Y;x) = O for other { and j, 5 observations per cell, 1000 simulated
data sets

Test statistic

AQV SP/AR CR/AR
Whole plot std. dev. > > 1 2 4
Error distribution
Gaussian 732 716 .695 653 636
uniform 732 703 664 .666 .664
tdf =3 374 512 514 436 373
exponential 756 .824 812 781 745

AOQOV = Analysis of variance test

SP/AR = split-plot aligned rank test

CR/AR = completley random aligned rank test

** AOV and SP/AR not affected by size of whole-plot std. dev.

aligned rank transform method with split-plot alignment in testing for interaction
when error distributions are heavy tailed. The naive alignment also has power
advantages over the analysis of variance when whole-plot error variances are
smaller, but as whole-plot error variances get larger the naive alignment may
lose power.

4.2 Higher order interactions in completely random designs

Interactions in experiments involving higher order interactions can be tested
using the aligned rank transform procedure. To see the pattern, let us re-express
the alignment for the two-way case schematically as follows:

AB;j; = Yjx — (sum of one-way means involving i, j) + overall mean.

For three-way interactions in experiments involving three factors, the alignment
is given schematically as

ABCiju = Yju — (sum of 2-way means involving i, j, k)
+ (sum of 1-way means involving i, j, k)

— overall mean.

The pattern for more than three factors is apparent.
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Tests are carried out by ranking the aligned data and applying n-way analysis
of variance to the ranks, ignoring all tests so obtained except for the test of
interaction of interest.

5. Summary

Although the aligned rank transform tests are not distribution free, they are robust
with respect to the underlying error distribution, and they have many of the
desirable power properties of the common nonparametric tests. The methodology
has wide applicability and may be carried out with standard analysis of variance
programs after data are aligned and ranked which themselves are procedures that
may carried out with ease with many popular statistical packages. Moreover, the
tests do not have the same potential for giving misleading results as the ordinary
rank transform tests when applied to multifactor experiments with interaction.
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