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Peat, Marwick, Mitchell & Co., Management Consultants 

Summary 

This paper reviews the reasons for transforming data, the ways of developing a suitable transformation and the 
various transformations that are to be found in the literature. It also discusses the various problems involved in 
presenting results in the original variable when the analysis has been performed on the transformed variable. 

1. Reasons for using Transformations 

The standard statistical techniques associated with the linear model have been developed with 
the following basic assumptions : 

(a) additivity - that is to say the main effects combine linearly to "explain" the observations, 
(b) 	constant variance - that is the observations are assumed to have a constant variance 

about their varying means. Explicitly this means that the variance is independent of both 
the expected value of the observations and the sample size, 

(c) normality - that is to say the observations are assumed to have a normal distribution. 
The first assumption is important in the interpretation of the data; it is not an assumption 

which is always necessary for estimation or testing of hypotheses though in many circumstances 
it will be necessary to ensure identification of the parameters. The assumption of constant 
variance is usually made because it simplifies the estimation techniques. With it, Least Squares 
Estimators are also Minimum Variance Unbiased Linear Estimators (LSE = MVULE). 
Without it, a weighted least squares analysis gives the MVULE's (Kendall and Stuart, 1961). 
The third assumption is critically important in the testing of hypotheses, for the normality of 
the observations leads to comparatively simple and standard testing procedures which have 
been thoroughly investigated and, more importantly, leads to distributions which have been 
tabulated. 

There are many cases in practice where these assumptions are known, or believed, not to 
hold. The statistician then has the option of either developing new theory or of bending the 
situation so that one or more of the assumptions are met, or nearly met. Transforming the data 
in one way or another can result in one or more of the assumptions being tenable. 

Kruskal(1968) ranks the order of importance of the assumptions as: 
1. Additivity. 
2. Constant variance (homogeneity). 
3. Normality. 

Tukey (1958) has suggested that the same data may be analysed several times over using 
different transformations depending on the purpose of the particular stage in the analysis of 
the data. Other authors, Box and Cox (1964) and Draper and Hunter (1969), have indicated 
methods of finding transformations which simultaneously satisfy, or nearly satisfy, the three 
assumptions. This can usually be done so long as one does not press too hard for any one of 
them (Kendall and Stuart, 1966). The robustness of the usual linear model procedures means 
that only a little is lost if the assumptions are not exactly met (Kendall and Stuart, 1966). 



2. Notation 

It  is convenient at this early stage to give the notation that will be used throughout the paper. 
The data or variable as it arises naturally will be denoted by x, with E (x) = 9 and V (x) = (p2. 
(E (.) is the expected value and V (.) the variance.) The transformed data will be represented 
by 5, with E (5) = p and V (5) = a2.It will usually, but not always, be assumed that 5 has a 
normal distribution. 

The relationship between x and 5 can be expressed in two ways: 

the transformation function g (.), with 5 = g (x), 
the inverse function, f (.), with x =f (C), 

where g (.) =f -I( . ) .  In some cases it will be necessary to make f or g depend explicitly on 
a parameter, w. For example, the transformation, gw (x) = xw. If more than one parameter is 
required, subscripts will be used. In the context of the linear model, either x or c may be the 
dependent variable, but in either case z, if necessary subscripted, will denote the independent 
variable(s). 

It must be pointed out that for some g (.) the corresponding f (.) may not be known exactly 
or even up to a scalar multiple. Consider, for instance, the practice of transforming the original 
data into normal scores. In this case whilst the transformation carrying x into c is known, it is 
impossible to recover x given c. 

Sample estimators of p and a 2  will be based on a sample of n independent observations, 
l,, t2 ,  ..., t,, typically identically and normally distributed. In this case 

E - (p) = j2 -N (p, A202) 
and 

E-' (a2) = b2 = S/v, 

where s / ~ ~ - x ~  (.) is the linear operator "the minimum variance unbiased (v). Here E-' 
estimator of ". Let 0 E O be a parameter in the general parametric space O and let t be the 
MVUE of 0, then the linear operator E-'  is defined by t = E- '  (8). L2 defines the variance of 
p as a multiple of the variance of the random variable 5, i.e. V (j2) = L2a2. 

3. Developing the Transformation 

This section is concerned with the choice of the function g (.), or equivalently f (.). What 
methods are available, given a sample of data or a theoretical situation, to lead the statistician 
to the most suitable transformation? In other words, given some knowledge about x (its 
distribution, a sample of values x,, ..., x, etc.) how can the statistician find c = g (x) such that 
one or more of the three basic assumptions is more tenable? 

3.1 Constant variance 

Suppose x is such that its variance, a2,is a function of its mean, p. Specifically let +2 = D2 (9) 

and g (x) is to be chosen so that V (5) = c, say. In other words, the dependence of the variance 

on the mean is to be removed. In general, however, this is impossible and one is satisfied with 


v (5) = v (g ( 4 )  = c (1+O (R-')) ,  
where R is some known constant which is large enough for R-' to be negligible. By a well- 
known approximate argument, e.g. Kendall and Stuart (1966), it can be shown that g (x) 
should be chosen so that 



Although this result is approximate, its validity or otherwise can be tested if the theoretical 
distribution of x is known. If V (5) is not quite constant then it may be possible to improve on 
g (x) by further analytical work, e.g. Anscombe (1948). Alternatively, if an analytical expression 
is available to describe the non-constancy of V (5) then Hotelling (1953) points out that the 
variance stabilizing technique may be applied a second time or more. 

Where, on the other hand, only a sample is available and there is no knowledge of the 
distribution of x ,  then even the function D~ (0) is not known. In such cases, the mean and 
variance of x in separate groups of observations can be calculated and an empirical relationship 
derived. This is discussed in Fisher and Mather (1943) and Quenouille (1950). Using this 
method, the approximation is more hazardous than that derived analytically but nevertheless 
often gives satisfactory results. In either case the real justification for the transformation 
derived is that, as Tippett (1934) says, it works. 

Section 4 will illustrate the use that has been made of this approach. 

3.2. Additivity 
Tukey (1949) and Moore and Tukey (1954) derived a simple test, based on the residuals 
calculated from a standard analysis of the original data, showing whether or not the hypothesis 
of additivity is tenable. The latter paper, and this work has subsequently been developed by 
Anscombe (1955, 1961), Elston (1961), and Anscombe and Tukey (1963), showed how an 
estimate could be made of the transformation necessary to restore additivity to the data. The 
class of transformations considered was restricted to the class 5 = xw so that these papers were 
concerned with estimating w. 

3.3. Cornish-Fisher Expansions 
Several important distributions occurring in statistics depend on some variable n in such a way 
that as n tends to infinity the distribution tends to normality. For large n this is often an 
acceptable approximation, but for smaller n, Cornish and Fisher (1937, 1960) have developed 
the transformation 

5 = bo+b,x+b2x2+b3x3+ ..., 

where the b's are of order n-* or smaller and are functions of the cumulants of the original 
distribution. 

The non-normality of x usually shows itself most clearly in x having a skewed distribution. 
If 5 = gw (x) is the class of transformations under consideration, w is often chosen to minimize 
a measure of skewness, e.g. the third standardized moment of 5. 

Curtis (1943) gives a careful mathematical discussion of the limiting normality of many of 
the standard transformations to be described in section 4. 

3.4. Johnson's Transformations 
Johnson (1949) considered the general family of transformations 

where y ,  6, p, q are parameters at choice and g is some convenient function. For practical 
purposes it is desirable that g (.) should not depend on any other parameters and that it should 
be a monotonic function. The parameters and the function g must be chosen so that 5 is normal 
or approximately so. 



Johnson examines three types of system 

(i) The lognormal system: g (x) = log (x) 

(ii) The SBsystem: g (x) = log -

(iii) The S, system: g (x) = sinh" (x). 

Other systems are of course possible but the variety of shapes given by these three types is very 
great and does, for example, cover the shapes given by the Pearson system of curves. 

3.5. Box and Cox 
If the statistician is prepared to restrict his attention to the power class of transformation 
functions 

g w  (XI= xw, 
then Box and Cox (1964) have developed a powerful method of estimating w in order that 5 
is simultaneously normal, of constant variance and is explained additively by the appropriate 
treatment effects. Moreover, in their paper they develop a method of testing the hypotheses of 
normality, homogeneity and additivity. 

The Box-Cox method does, however, require sophisticated computer calculations and 
Draper and Hunter (1969) have suggested a simpler approach. It is based on plotting against w 
simple statistics, e.g. Levene (1960), calculated from the standard analysis of the transformed 
data for differing values of w. Turning points in the graphs indicate appropriate values of w. 

3.6. Other Approaches 
Blom (1954) derives a transformation of the binomial distribution that gives the Cornish- 
Fisher expansion the property that the term measuring "skewness" is as small as possible. 
The application of this principle leads to a differential equation which contains the desired 
transformation as a solution. He subsequently shows that all the transformations used hitherto 
in the literature for stabilizing the binomial and related variables can be developed from this 
common viewpoint. He thus confirms theoretically the observed result that transformations 
inducing constant variance also commonly produce normality. Kendall and Stuart (1966) 
point out that they do not produce optimum normalization. There is always a need to com- 
promise on the conflicting requirements of the three assumptions. 

4. The Transformations 

The literature indicates 19 transformations in general use. Some are special cases of each other 
but they are quoted individually because they have a separate and important identity. All are 
used to make one or more of the three assumptions more tenable. 

4.1. Power Transformation 

5 = (x +wJW2 w, f 0 

=log(xiw,)  w2=0. 

To avoid the discontinuity at w, = 0,this may equivalently be written as 

= log ( x i  w,) w, = 0. 

Tukey (1957) and Dolby (1963) have studied the characteristics of the family of transformations 
generated by this equation. Moore (1957) has considered the necessary values of w, and w2 



required to induce normality in 5 and the transformation is the starting-point of the methods of 
Box and Cox (1964). Turner, Monroe and Lucas (1961) discuss the maximum likelihood esti- 
mation of the parameters and Healy and Taylor (1962) give a table to facilitate fractional 
power transformations when w ,  = 0 and w2 is a multiple of 0.2. 

Transformations 4.2 to 4.5 are special cases of this family of transformations. 

4.2 Reciprocal Transformation 
5 = x-'. 

This transformation is often an entirely empirical one based upon reducing extreme skewness. 
It sometimes turns out that x-I, and not x itself, more nearly satisfies the three basic assump- 
tions. It has almost always been used where 5 = x-' has a definite physical meaning and where 
the probability of the random variable being less than or equal to zero is negligible. For 
example, data on the failures of a machine may be collected as either "intervals between 
failures" or "the number of failures per unit time". One of these may not be approximately 
normal but the other, its reciprocal, may well be. 

It can be seen from the results given in section 3.1 that if 

then 

is the appropriate variance stabilising transformation. 

4.3. Logarithmic Transformation 

5 = log, (x -I-w). 

This transformation arises in three ways. In the first place there is a specific distribution, called 
the lognormal distribution, which represents remarkably well, for instance, the distribution of 
income over the population of a country. If 5 is normal, then x is said to be lognormally 
distributed. Aitchison and Brown (1957) present a full account of its uses and of methods 
available to estimate the parameters of the lognormal distribution. 

Other authors have empirically suggested using the logarithmic transformation as a means 
of making the data at hand conform more nearly to the three assumptions, for example 
Bartlett and Kendall (1946), Anscombe (1948), Kleczowski (1949), Moore (1958) and Healy 
(1967). It is one way of reducing the skewness of a distribution but it is less severe than that of 
the reciprocal transformation. 

The third way in which the logarithmic transformation arises is in stabilising the variance. 
If 

V (x) = D2 (0) K 8' 

or equivalently the standard deviation of x is proportional to 8, then g (x) = log (x) is the 
appropriate variance stabilizing transformation. 

4.4 Square Root Transformation 

5 = (X + w)+ 
This transformation is used where x has a Poisson distribution, with mean 8, and it arises as a 
result of finding, in the standard way, a transformation which makes V (5) independent of 8. 
It appears to have been used in the early 1930s, see for example Tippett (1934), with w = 0. 
Bartlett (1936) considered the problem in more detail and suggested putting w = +. However, 



Anscombe (1948), using results by Johnson, showed that w = # was optimal for variance- 
stabilization. In this case 

where y, and y, are the standard third and fourth moments of 5, measuring respectively 
skewness and kurtosis. These compare with y ,  = @and y, = 8-' for the original Poisson 
variable, x. 

In more recent work, Kihlberg, Herson and Schotz (1967) have concluded from an extensive 
computer study that w = 0.386 is optimal for most values of 8, though for small 8, 8 c2, w = 
is better. Indeed for small 8 it is difficult to choose a single value of w to stabilize the variance 
of 5 at t and Freeman and Tukey (1950) were led to the related compound transformation 

5 = J X +  Jx+l. 
This transformation, sometimes known as the chordal transformation, more nearly stabilizes 
the variance 5 for all values of 8. 

The square root transformation, 5 = JS,has also been used where x has a X2 distribution 
with v degrees of freedom. Fisher (1925) showed that 5 was approximately distributed as 
N (m,1) and that this provided one way of extending the published X2 tables. 

In another application of this transformation, Smith, Adderley and Bethwaite (1965) found 
it could be usefully employed in analysing rainfall data. 

4.5. Cube Root Transformation 
5 = x+. 

Fisher's approximation to the x2 distribution using the square root transformation is not 

entirely satisfactory and Wilson and Hilferty (1931) developed the result that 5 = -(:7 is 
\ ,  

approximately N , where X-X' (v). Haldane (1937) refined this approximation 

but Garwood (1936) and ~ e r r i n ~ t o n  (1941) showed empirically that the Wilson-Hilferty 
approximation was adequate for almost all practical purposes and better than Fisher's square 
root transformation. 

The square root and cube root transformations have a further use in common as Howell 
(1965) found that the cube root transformation can also be usefully employed in analysing 
rainfall data. 

4.6. The ar  tanh Transformation 
4: = ar tanh (x). 

The distribution of the product moment correlation coefficient, r, from a bivariate normal 
distribution is not easily tabulated and Fisher (1920) suggested, and in Fisher (1921) demon- 

strated, that 5 = ar tanh (r) is approximately N ,where p is the population 
n-3 

correlation coefficient. It can be derived by applying the variance stabilizing technique of 



section 3.1 to the approximate variance of r ,  V (r) L w.Hotelling (1953) discusses this 
n 

transformation in detail and derives a more refined transformation using the techniques of 
section 3.1 a second time. 

Quenouille (1948) has suggested using the ar tanh transformation when r is a serial correla- 
tion, but on investigation found it unsatisfactory. Kendall, in the discussion of Williams (1967), 
raised the possibility of applying the ar tanh transformation to canonical correlations. 

4.7. Arc sin Transformation 

5 = arc sin (x). 

This transformation must not be confused with what in section 4.8 is called the angular 
transformation, 5 = arc sin (&). The names "arc sin" and "angular" have been used incon- 
sistently in the literature. 

The arc sin transformation was first suggested by Fisher (1922) and again in Fisher (1930), 
to stabilize the variance of a binomial variate. Unfortunately, whilst the variance of 5, being 

approximately equal to --,1 is almost independent of n, the probability of success, it still 
2n 

depends on the sample size and for binomial variates the angular transformation is more 
suitable. 

Two further uses of the arc sin transformation have, however, been suggested. Jenkins (1954) 
showed that if r is a serial correlation coefficient then the transformation to stabilize the vari- 
ance is 5 = arc sin (r). It also has a limiting normal distribution and although E ( 5 )  is still 
sensitive to p as p+ 1, this sensitivity is not so great as that of the ar tanh transformation sug- 
gested by Quenouille (1948). Secondly, some theoretical work by Hotelling (1953), Harley 
(1956, 1957) and Daniels and Kendall (1958) has considered the problem of the existence of a 
function g (r) such that E (g (r)) = g (p), where r and p are respectively the ordinary (i.e. not 
serial) estimated and population correlation coefficients. It turns out that g (r) = arc sin (r) is 
the unique function satisfying this condition. Sankaran (1958) has suggested a more compli- 
cated version of the arc sin transformation for use with the ordinary correlation coefficient. 

4.8. Angular Transformation 

r = arc sin J(x~wI).
n+w2 

The name of this transformation has often been confused with what has been defined in 
section 4.7 as the arc sin transformation. 

The angular transformation arises out of attempts to stabilize the variance of a binomial 
variate, x, the number of successes. In this case, the standard method of section 3.1 gives 
w, = w, = 0. Fisher (1954) has questioned this approach, preferring additivity as a criterion. 

The history, nature and effectiveness of the transformation is fully discussed in Eisenhart, 
Hastay and Wallis (1947) who consider refinements of it. Early users of the transformation 
had put w, = w, = 0, but Bartlett (1936) suggested that putting w, = 3 and w, = 0 gave 5 
a more stable variance. Anscombe (1948) subsequently suggested the slightly different trans- 
formation 

x + 35 = arc sin J(-)
n+?, 



In this case 

A minor point requiring attention is when x = 0 or n. Bartlett (1947) and Eisenhart et al. (1947) 
suggested, and Ghurye (1949) confirmed, the use of 

< = arc sin Jz x = o 
,-

= 900-arc sin - x = n. 
/ in  

Mosteller and Tukey (1949), following Fisher and Mather (1943), have suggested graphical 
techniques to facilitate the use of the angular transformation. 

4.9. Hyperbolic Transformation 

5 = ar sinh /(X+W').
k + w 2  

This transformation is used to stabilize the variance when x follows the negative binomial 
distribution 

Beall (1942) appears to have been the first to have considered this transformation with 
w ,  = w, = 0.It does in fact follow directly from the use of the variance stabilizing techniques. 
Anscombe (1948) considered the transformation again and suggested putting w ,  = + and 

w, = -2. In this case, for large 8 and constant k/8, V (5) = ;t +0 -- . He also pointed out 
(69 


that 5 = log (x+$k) is a simpler but none the less good transformation. 

4.10. Log log Transformation 
5 = log (-log x). 

In many physical and biological phenomena the probability of a change can be expressed as 

In such cases Finney (1951) and Fisher and Yates (1957) have shown that the log log transfor- 
mation is of value. It has also been considered by Yates (1955) and Naylor (1964) who show, 
as does Kruskal (1968), that it is very similar in effect to other transformations, particularly 
the angular and probit transformations. This transformation has been used in the statistics of 
extremes where the asymptotic cumulative distribution of the smallest value is 

F (x) = l - e ~ p ( - e - ~ )
with 

Y = an (~-x[n)) 
Here x(,) is the nth largest value and cc, is a factor with dimension x-I. A very full account is 
given in Gumbel (1958). 



4.11. Probability Integral Transformation 

5 = S' P (f) dt, 
-m 

where p (x) is the probability density function of x. In this case 5 is uniformly distributed on 
the interval (0, 1) so that this transformation does not induce normality although it does 
stabilize the variance perfectly at V (5) = A.David and Johnson (1948, 1950) and David 
(1950) consider this transformation in some detail for the case where p (x) depends on some 
unknown parameters. The transformation appears to have been first used by Fisher (1932) and 
Karl Pearson (see Pearson, 1938), in combining independent significance tests. 

4.12. Co-ordinate Transformation 

5 = @ - I  ( p (XI), 
whereP (x) is the cumulative distribution function of x and @-I  is the inverse of the distribution 
function of the standard normal distribution. 

This transformation is an application of the preceding probability integral transformation, 
q, = P (x), followed by what might be called the "inverse probability integral transformation", 
5 = @-I (q l )  For this transformation 5 is exactly a standard normal variate but of course, P 
is in general unknown and @-I  cannot be expressed in closed form. However, Kowalski and 
Tarter (1969) show how, using approximations to @-I, for example that of Tarter (1968), and 
using the Fourier estimator of the distribution function discussed in Tarter and Kronmal 
(1968), practical use can be made of the transformation. They use it to transform a variety of 
non-normal distributions to investigate the power of the normal tests for independence. 

4.13. Equivalent Deviate Transformation 

J - m  

where h (t) is any specified probability distribution function. This transformation was intro- 
duced by Finney (1949), and is further discussed in Finney (1964a), in connection with bio- 
logical assay work. Other transformations, e.g. the probability integral and the probit, are, 
ignoring additive constants, special cases of this transformation. 

4.14. Probit Transformation 

This transformation was first used by Gaddum (1933) as a normal equivalent deviate, but Bliss 
(1935) decreased the normal deviate by 5 with the object of making the occurrence of negative 
values very rare. This latter transformation is known as the probit transformation. It is used 
where data may be interpreted on the supposition that a normal deviate is linearly dependent 
on some observable concomitant variable, and that an observable frequency is that with which 
this deviate is exceeded in a normal distribution. For example, the frequency with which a 
high jumper clears the bar decreases with the height at which it is placed. 

4.15. Logit Transformation 

In some cases, particularly in biological assay and population growth, the probability of an 



event can be expressed as 

This is the logistic function and the logit transformation can, since the inverse transformation 
is x = 1/(1 +e-c), usefully be used to analyse data generated by it. It is a special case of the 

equivalent deviate transformation when the frequency function, i.e. *I, in this notation, is 
dx 

h ( t )  = 4sechZ t. Since ar tanh (r) = 4log, ,this transformation is also equivalent to the 

ar tanh (r) transformation with r = 2x- 1. The transformation is considered in Cox (1970), 
Finney (1964, 1964a), Fisher and Yates (19571, and Yates (1955, 1961). 

4.16. Legit Transformation 

Intermediate in character between the distributions of probit and logit is the deviate, t ,  

appropriate to gene frequencies, x, determined by selection and diffusion, where x and 
y (= 1 -x) are related to the standard deviate, t ,  by the equation 

Fisher (1950) gave the name "legit" to this transformation. In this paper he also gives the 
necessary tables. 

4.17 Normal Scores 
It  is often necessary to draw statistical conclusions from data giving the rank order of a number 
of magnitudes without knowledge of their quantitative values. Thus in tests of psychological 
preferences, subjects can often express preferences without being able to assign numerical 
values to the force with which the preference is felt. Sometimes also, an experimenter who 
possesses quantitative values may suspect that the metric used is unsuitable for the comparisons 
he wishes to make, so that he may prefer to draw conclusions only from the order of the 
magnitudes observed. 

In either case, after ranking the observations, they are replaced by the corresponding expected 
values of the order statistics in a sample of n from a standardized normal distribution. These 
are the normal scores introduced by Fisher and Yates in the first edition of their Tables 
published in 1938. They are tabulated in Fisher and Yates (1957). 

Fisher and Yates suggested that the normal scores should be used for significance tests 
involving comparisons with ranked data, assumed to be derived from an underlying normal 
distribution. For example, to compare the locations of two samples, the ranks are replaced by 
the corresponding normal scores and, as an approximation, the standard t test is then applied. 

The intuitive basis of this procedure is, of course, that the normal scores provide a good 
reconstruction of the underlying variate values on a standardized scale, the null hypothesis 
being assumed true. This intuitive thinking has been put on a more formal basis by Terry 
(1952) and Hoeffding (1951, 1953) who, amongst other things, show that asymptotically there 
is perfect correlation between the expected values of the order statistics and the variate-values 
they replace. In addition, Chernoff and Savage (1958) showed that for detecting shifts in loca- 
tion of an arbitrary distribution the test based on normal scores has asymptotically a power 
greater or equal to that of the usual large-sample normal test using variate values. In particular, 
if the populations are normal there is asymptotically no loss of power from using normal 
scores rather than variate values. 



4.18. Exponential Scores 
The use of normal scores is only a special case of a more general treatment discussed for 
example by Lehmann (1959, pp. 232-40). Another special case was introduced by Cox (1964), 
who suggested the following procedure for significance tests involving the comparison of 
exponential distributions: rank the observations, replace the ranks by the corresponding 
expected order statistics in sampling from the unit exponential distribution and then calculate 
the usual exponential theory test statistic. The special case of this procedure for the comparison 
of two samples was given by Savage (1956) and Cox (1964) investigates some tests based on 
exponential scores. 

4.19. Monotone Transformation 
In two papers, Kruskal(1964, 1965) gives a computer based method of finding the monotone 
transformation, which after the transformation, minimizes the residual sum of squares, 
suitably scaled. The sum of squares is calculated from an assumed linear model. No parametric 
family and no normality assumption is required. 

5. Transformation of Independent Variables 

So far we have written < = g (x) with E (x) = 8, but there will be many cases where the 
statistician will know that 

8 = a,z, +a,z,+ ...+a,z, 

say, in which the a,, ..., a, are unknown regression coefficients and the z,, ...,z, concomitant 
variables. This situation arises particularly in the construction of models of chemical reactions 
and leads very rapidly to the problem of non-linear optimization discussed, for example, in 
Box and Tidwell (1962). Hill (1966) pointed out that if in addition to x the z's were also to be 
transformed, then all the transformations should be carried out simultaneously and not in 
stages. If the family of transformations is restricted to the class of power transformations, then 
Draper and Hunter (1969) have indicated comparatively simple ways of finding the appropriate 
powers of x and of z,, z,, ...,z,. 

6. Removal of Transformation Bias 

Whatever the purpose of the transformation, it often raises problems when the analysis of the 
transformed data is complete. For example, in weather modification experiments, the analysis 
of the data may be best carried out in terms of the cube root of the rainfall and will indicate 
whether or not an effect due to "seeding" is present. Suppose the evidence suggests that it is. 
Clearly the estimated magnitude of the effect cannot be presented in terms of "cube-rooted" 
inches of rain. Is it sufficient to merely cube the effect as measured in the transformed variables 
and present this as the MVUE of the effect of cloud seeding? 

Put more generally, we have the transformations g (.), the estimators f l  and b2, and we 
know their distributions. The problem is to find the MVUE of 8, 8. In practice we want more 
than this for it is desirable to put a standard error on this estimate, so that the variance V (8) 
and an estimate of it, P(8), are also required. We should also ideally wish to indicate a confi- 
dence region for 8. Further work in cloud seeding by Howell (1966) and Smith, Adderley and 
Bethwaite (1965) has indicated that the variance may be a more important parameter than the 
mean. This implies that there are situations when we wish to estimate as well as 8. 

Neyman and Scott (1960) considered in general terms the problem of finding the MVUE of 
8. They show that provided f ( 5 )  is any entire function of second order or less, Q and E-' (8)  
exist. A function of a complex variable [ will be called regular in a region if it is analytic and 



single valued there. An entire function (sometimes known as an integral function) is one which 
is regular for all finite 5. The order of an entire function measures the rate of growth of the 
function as 5 increases. All polynomials and exponential function are entire functions. A 
standard reference is Boas (1954). 

A function f (z) is entire of second order if the radii of convergence of the two series 

are infinite where f,") stands for the rth derivative off (z) evaluated at z = a. Neyman and 
Scott (1960) point out this is stronger than that the Taylor Series expansion off, 

f (z) = C " 
-
1 

fo(n) zn 
n = o n! 

is convergent for all real z. If the radii of convergence of (A) are infinite, then the-radius of (B) 
will also be infinite, but the converse is not necessarily true. 

Neyman and Scott go on to show that, when f(z) is entire of second order, 

where T, is such that 

E (TI = E (5') 
Specifically, 

T2, = C (2rj! FZkk[tS (1-2 211r-k  r(u/2) 
k = o (2k)!(r-k)! r(g +r-k) 

and 

That 0 derived in this way is the MVUE estimator of 8 follows from the definition of the Tr's, 
the sufficiency of and b2 for p and a2, and the result of Lehmann and Scheffd (1950) that any 
function of the sufficient statistics is a MVUE of its expectation. Moreover, since (P, b2) are 
complete sufficient statistics, 0 is unique (Lehmann and Scheffd, 1950). 

Schmetterer (1960) has interpreted the results of Neyman and Scott in terms of the solution 
h (p, 8') of the integral equation 

E [ h  (p, b2)] = E (x). 

Kolmogorov (1950) had earlier considered the problem of finding unbiased estimators in 
terms of the solutions of integral equations but he relied heavily upon the results of Blackwell 
(1947) in using sufficient statistics for (p,a2) to turn unbiased but inefficient estimators into 
MVUE's. 

The problem of estimating the variance q5' can also be formulated as an integral equation, 
viz, find h* (P, b2) such that 

E [h* (p, b2)] = E [x - E  (x)12. 

This does not seem a promising way of proceeding because of the non-linearity of the integral 
equation. 



The formula given by Neyman and Scott for 8 is complicated but they point out that four 
commonly used transformations - the square root, logarithm, angular and hyperbolic - are 
linked by a simple differential equation concerning their inverse functions. These functions are 
also entire functions. The equation is 

Table I gives the values of A and B for these four transformations. 
If the transformation is taken after a linear function has been made of the natural or original 

variable, no additional problem arises. Let y be the natural variable with mean, $, and let 
x = cy+d(c # 0). Then 8 = c$+d and 

By the results of Lehmann and Scheffk (1950), $ is the unique MVUE of $. By a similar argu- 
ment no problems arise when considering P(8), P(8) and J2. 

Table I .  The recursive transformations 

z/X 52 2 0 
log^ ( x )  elo% = em 0 m2 

arc sin .\/X sin2 5 2 -4 
arc sinh.\/X sinh2 5 2 4 

Neyman and Scott go on to derive the following results for 8 and 8. 

and 

where 

and I, (u) is the Bessel function of imaginary argument. This series converges very rapidly, 
only a few terms usually being required for adequate accuracy. 

It follows from these results that the bias of the crude estimator, f (P),  of 8 is 



It can be seen that the absolute value of this bias is always a monotonic decreasing function of 

L2. This implies, by recalling that A2 measures the precision (in terms of 02) with which p is 


estimated, that the larger the sample size L2 = - or the better the experimental design ( 9 
(A2 is smaller than for a less efficient design)' the worse the bias of the crude estimated f (b). 
Thus if the analysis of the data is incorrect and no correction is made to allow for the bias in 
the inverse transformation, some of the advantages of a large sample or an efficient design will 
be lost. 

There are of course many transformations whose inverse function is an entire function but 
which is not a solution to the recursive condition of Neyman and Scott. In these cases the 
more general results of Neyman and Scott must generally be used. For some simple trans- 
formations, e.g. the cube-root transformation, an expression for 8 can be easily obtained by 
simple manipulation of the known expressions for the moments of the normal and chi-square 
distributions. 

It is interesting to note that the results of the Neyman and Scott indicate a theoretical diffi- 
culty with the reciprocal transformation, < = llx. In this case 8 = E (x) = E (115) does not 
exist so that it cannot be estimated. 

However, Box (1971) has suggested defining the pseudo expectation, 8', of x as 

8' = PE (x) = lim d< 

and following Ghurye and Olkin (1969) this can be estimated unbiasedly as 

Barton (1961) has given the necessary expression for the unbiased estimator of the normal 
density so that 8' can be calculated. 

In Hoyle (1968) consideration is given to q5', 6' and v(8) and it is shown that, provided 
f (.) is restricted to the class of entire functions of second order or less, exists and that 

and v(@ are MVUE's. Expressions for these functions are given for the square root, cube 
root, logarithmic, angular and hyperbolic transformations. 

The results for the logarithmic transformation have also been considered by Finney (1941), 
Sichel (1951-2) and Meulenberg (1965). 

Goldberger (1968), Heien (1968) and Bradu and Mundlak (1970) have considered a more 
general problem concerning the logarithmic transformation and the log normal distribution. 
They consider the case of x = eal ' i+ . . .+"kZk+" where u- N (0, 02) is the error term. Bradu and 
Mundlak (1970) also discuss P(8) and consider confidence intervals for v (8). 

Yates (1961) considers a related problem involving the use of the logit (or indeed any other 
generally used transformation) in the analysis of quanta1 data in multiway tables. It is pointed 
out that if the constants obtained in the analysis are retransformed directly to percentages 
considerable distortions may occur. It is shown that the ordinary maximum likelihood pro- 
cedure of fitting, using provisional and working values and successive approximation, removes 
this distortion. The result follows from the fact that the weighted mean of a set of percentages, 
with weights proportional to the frequencies, is the maximum likelihood estimate of the mean 
percentage. 

7. Confidence Intervals for 0 

For the class of recursive transformations Neyman and Scott (1960) have obtained the MVUE 
of 8 but it is clearly desirable to have in addition some indication of the variability of 0 and 



in Hoyle (1968) I have discussed estimating the variance of 8. However, it is by no means self- 
evident how this estimate should be used in order to derive a satisfactory confidence interval 
for 8. 

In a series of papers, Land (1969, 1970,1971) has given results and extensive tables enabling 
the exact confidence interval for 8 to be calculated when the logarithmic transformation is 
used. Given the estimated j2 and n2, he shows how to test hypotheses of the form 

for arbitrary /J.The confidence sets defined in terms of these tests are intervals, in the one- 
sided case at least and it also appears, but it has not yet been proved, to be the case for the two- 
sided test. Land goes on to show that exact confidence intervals for functions of the form 
h (p, 02) = k @+Po2), such as the mean of the lognormal distribution, 

h (p, 02) = exp (p+ 02/2), 

and hence for 8 when the logarithmic transformation is used, can be obtained by the above 
method. 

For the single sample model, Land's method is based on the conditional distribution of 

T = ( P - z 8 )  given Z =  [(I- i)62+(fl-loge)2
in I' 


under the null hypothesis, E (x) = 8. The conditional distribution of T given Z = z, when 
E (x) = 8, has the density 

v + l  
p. (t I exp [(v+ I) wt (u + t2)-+I,w)a(v+ t 2 ) -(i) 

where u = n- 1 and w = -32. If t (v, w, a) denotes the ath quantile of this distribution, the 
uniformly most powerful unbiased (UMPU) test of level a of the null hypothesis against the 
alternative E (x)<8 is given by the rule "reject if T < t  (v, w, a)". The optimal two-sided 
tests require different tables of critical values. A level a upper confidence interval for E (x) is 
defined as the smallest value of 8 such that the UMPU level test of H: E (x) = 8 does not 
reject in favour of the alternative E (x) <O. 

Land (1969, 1970) goes on to suggest that approximate intervals for more general functions, 
such as 8 = 8 (p, 02) in the non-logarithmic transformation case, can be obtained by construc- 
ting a confidence interval for a linear function of p and o2 that approximates to 8 (p, 02) in 
the region of interest. 

Kanofsky (1968) has proposed a method of simultaneous confidence intervals for all func- 
tions of p and o. He constructs a trapezoidal-shaped confidence region of level I -a for 
p and o, and for an arbitrary function, h (p, o), defines a confidence set for this function as the 
set of values m such that the curve h (p, o) = m intersects this confidence region. If one is 
interested in a single function, the procedure in general is conservative, but, according to Land 
(1970), it is the only method based on exact distribution theory that has been proposed for a 
general function h (p, a). 

8. Approximate Confidence Intervals for 0 

The usual method has been to rely on approximate confidence intervals for 8 and Land (1970, 
1971) distinguishes between two general approaches, the transformation methods and the 
direct methods. In the transformation methods one essentially transforms the a-level confidence 
interval for p, say ,b, S p 5 PLI, where P {DL5 p 2 P,) = a, into a confidence interval for 8 
and the various methods are concerned with different ways of making the transformation. 
The direct methods on the other hand go directly from an estimate 0 and some measure of its 



variability to an approximate confidence interval for 8. The results in Land (1971) and Hoyle 
(1971) indicate that neither approach is satisfactory for the square root, cube root, logarithmic, 
angular and hyperbolic transformations. 

The best approximate method seems to be that developed by Professor D. R. Cox in which 
an estimate is made of /J = h (8), where h (8) is a monotonic function. An approximate confi- 
dence interval for p, 8, S P j jo, based on approximate or large sample consideration is 
transformed into a confidence interval for 8 by using the inverse function h-I (.).The problem 
comes in identifying a suitable function h (8). Land (1971) has shown that for the logarithmic 
transformation 

p = h (el = log (0) 

is a good choice of h (8). The interval (B,, 8,) is based on the fact that 

1
var (8) = o2{f + -1,

2 (n+l) 
and that /? has approximately a normal distribution. 

In another approach, Mantel and Parwary (1961) have suggested treating the ratio of the 
unrestricted maximum of the likelihood to the maximum of the likelihood under the constraint 
that 8 (p,a2) is equal to some constant, as a chi-square variate with one degree of freedom. 
By using a series of such constants, the range, or ranges, of values consistent with the data can 
be found, thus leading to approximate confidence intervals for 8 (p, 02). Their method was 
developed to apply to functions h (dl, 62, ..., 6,) where the di are parameters of interest but 
their method can clearly be applied to the problem at hand. Their original problem has been 
considered further by Halperin and Mantel (1963), Halperin (1964, 1965) for the case where di 
are means of normal variates. Likelihood theory has also been used by Box and Cox (1964) to 
determine approximate confidence intervals for the parameter of a power transformation. 

A still further approximate approach has been developed in Sichel (1966, 1967) for the 
problem of setting confidence intervals for the logarithmic transformation. In Sichel(1967) the 
exact sampling distribution of 8 is given, but it depends on the values of the unknown para- 
meters p and 02.However, in Sichel(1966) an excellent approximation to it is given from which 
confidence intervals can be computed. It does require, however, the use of a further set of 
tables (for the T-distribution). 

The approximation of Sichel (1966) is that 8 has the approximate density 

where 

and 

This lognormal approximation has mean and variance identical to the mean and variance of 
the exact sampling distribution. p2 is estimated as 

p2 = a2+log, 0 (S2, v) 

leading to the lower confidence limit for the population mean given by Sichel (1966) as 

8, = 8 exp {3p2 -~,p} ,  



where T, is a deviate cutting of a proportion a in the tail of the T-distribution and 

Sichel(1966) has given the exact distribution of Twhich unfortunately depends on the unknown 
population parameter a2.However, the T-distribution is robust against changes in v 2  for 
0.3 s a2 s 1.5, a domain covering many practical applications of the lognormal theory, 
particularly in mining. 

Sichel (1966) gives simple tables of factors by which the estimates 8 must be multiplied to 
obtain approximate confidence limits for the lognormal population mean 8 at nominal con- 
fidence levels a = 0.05,0.10 and 0.95. For these tables the nuisance parameter a2was set equal 
to 0.7. 
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Cet article passe en revue les raisons qui motivent la transformation des donnees, les moyens d'obtenir une 
transformation adequate, et les differentes transformations que I'on rencontre dons la litterature. I1 considere 
aussi les differents problemes qui se posent lorsqu'il s'agit de presenter sur la variable originale les resultats 
d'une analyse effectuee sur la variable transformee. 

Les techniques statistiques standard associees au modele lineaire reposent sur trois hypothbses fonda- 
mentales: additivite, variance constante, et normalite. I1 arrive souvent que la totalite ou certaines de ces 
hypotheses ne sont pas valables, alors qu'elles peuvent &re admissibles sur des donnks transformks. 
Theorie et methodes concernant les techniques qui permettent de determiner la transformation appropriee sont 
dkrites en detail. 

L'article dkri t  19 transformations d'emploi general et on donne les references. Dans la pratique, toutes 
permettent de mieux satisfaire a I'une au moins des trois hypotheses. 

L'article considere aussi les methodes utilisables pour la transposition sur la variable originale non 
transformee des resultats obtenus sur la variable transform&. I1 discute en particulier le probleme de la 
recherche de I'estimateur a variance minimale, de I'erreur type qui lui est associee, et des intervalles de 
confiance. 

La bibliographie comporte 160 references. 
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