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Chair of the Supervisory Committee:
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Department of Mechanical Engineering

Controlled flight of insect scale ( 100 mg) Micro Aerial Vehicles (MAVs) has to date required off-

board sensors and computation. Achieving autonomy in more general environment will require

integrating sensors such as a camera onboard, but this is a challenging task because of the small

scale as the component mass and computation must be minimized.

In this work we present the design and fabrication of a low-weight camera 26 mg mounted on

a flapping wing insect scale aerial and ground robot. We trained a Convolution Neural Network

(CNN) with the images captured by the camera to classify flower and predator images. We show

that feedback from the CNNs classification can command the robot to move toward flower and

away from predator images. Our results indicate that these computations can be performed using

low-weight microcontrollers compatible with the payload and power constraints of insect-scale

MAVs. We also perform preliminary optic flow based position estimation experiments with the

low weight camera. Many desired capabilities for aerial vehicles, such as landing site selection

and obstacle detection and avoidance, are ill-defined. This work shows that Computer Vision (CV)

and CNNs, which have previously been deployed only on larger robots, can now be used on insect-

scale for such tasks.
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Chapter 1

MOTIVATION AND PREVIOUS WORK

Autonomous flight control of insect scale MAVs has thus far required using external motion

capture cameras and computation [2]. This limits the flight to be only within the arena. To

make the robot compatible with a diverse set of environments, sensors and computation should be

brought on-board. As robot size decreases, the low resolution of Global Positioning System (GPS),

which is 1–10 m at best, makes it impractical for flight control. Vision sensors provide a better

alternative because they do not have these constraints and are low-weight. They have previously

been used successfully in GPS-denied environments on rotating-wing aircraft for navigation and

guidance [3–6], autonomous mapping [7], and feature based stereo visual odometry [8]. So far

this has not been achieved at an insect scale in full 3-D due to difficulty in down-scaling all the

components. Previous work at insect scale demonstrated an integrated camera, but robot motion

was constrained to one degree of freedom along guide wires [2].

Here we are interested in achieving full visual flight control at insect scale, which starts with

a characterization of our physical robot. The University of Washington (UW) RoboFly is a 75 mg

flapping wing robot shown in Fig. 1.1 [9–11]. It is designed and fabricated at the Autonomous

Insect Robotics (AIR) Laboratory at the University of Washington, Seattle. It is fabricated using a

Diode Pumped Solid State (DPSS) laser to cut an 80 mm thick carbon fiber composite which is then

folded into shape. It uses bimorph piezo actuators for flapping its wings at high frequency (140

Hz) for generating the required lift. The RoboFly can perform aerial as well as ground locomotion

by flapping its wings, due to lowered center of mass as compared to earlier versions of the insect

robots [12].

Because of its scale, angular acceleration rates of the RoboFly are much higher than for larger

drones [13] . For example, a 0.5 kg quadrotor-style helicopter, the Ascending Technologies X-3D,
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Figure 1.1: The insect scale robot (UW RoboFly) with the fully fabricated flight weight camera
mounted on it. The Pinhole setup has a focal length of 2 mm and and pinhole diameter of 0.1 mm
(top). Close up view of the flight weight camera (bottom).

can perform angular accelerations up to approximately 200 rads/s2 for performing multi-flip ma-

neuvers [14], while a much smaller quadrotor, the Crazyflie 2.0 at about 30 g can do so at a higher

angular acceleration of 500 rads/s2 [15]. By comparison, UW RoboFly can achieve approximately

1400 rads/s2 and 900 rads/s2 around the roll and pitch axes respectively [12]. A light weight visual

sensor compatible with these speeds is needed to perform flight control.

We show the design and fabrication of a low-weight camera with a 2-D vision sensor integrated

onto the RoboFly. It has a pixel resolution of 64 × 64 and a weight of 26 mg. It is used to classify

images as predators or flowers, and the robot’s motion is determined based on the classification

feedback. The image classification is performed using a CNN. Neural networks have been shown to

match human performance in image recognition [16] and also perform better than other classifiers

[17]. Our approach minimizes layers and features of the CNN to reduce computation so that it

is compatible with limited on-board computation capability owing to limited battery power and

weight constraints of insect scale. We also try preliminary optic flow based position estimation

experiments with a test camera similar to the low eight camera’s specifications. Ultimately our

goal will be to use this camera for flight control. Here we use our robot’s ability to move on the
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ground as a first step to validate our sensors and algorithms.

In section II, the fabrication and interface of the low weight camera is discussed. Analysis

of the CNN classification task performed using the camera is provided in section III. Section IV

describes the optic flow experiments performed with the test camera.
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Chapter 2

FABRICATION AND INTERFACE

The camera consists of a bare die vision sensor, the circuits that interface the data from the

vision sensor to a development board, and a pinhole lens. The vision sensor is manufactured by

Centeye Inc. (Whiteoak model, Washington, DC), and is designed specifically for the use in insect-

scale flight control. It consists of a 64 × 64 pixel array of 12.5 µm sized photo-diodes that capture

light intensity values. A 5-wire interface provides power, control/reset commands, and an analog

pixel reading. We use a pinhole lens to eliminate the mass of an ordinary lens. Fig. 1.1 shows the

RoboFly with the camera mounted on-board and Fig. 1.1 shows a closeup view of the camera.

The RoboFly shown in Fig. 1.1 consists of several structural and functional components such

as airframes, transmissions, actuators and wings. In this design, the airframe and transmission are

all assembled from a single laminate in order to improve the accuracy and precision of folds. With

the help of specially designed folding, this design limits the error to only the rotation about the

folding axis. The details about the folding procedure involved are presented in

2.1 Camera Fabrication

A layout of the camera is shown in Fig. 2.1 and the step by step fabrication process is shown in Fig

2. The vision chip is adhered to a flexible printed circuit board made of copper-clad FR4 plated

with gold. The printed circuit was fabricated by first electroplating copper-clad FR4 with gold and

then ablating these metals using DPSS laser. We connected the pads on the chip to the substrate

using a ball bonder and a 25 µm gold wire. Gold wires are used as they provide good corrosion

resistance and high thermal conductivity. The gold plating provides better bondability for gold

wires.
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Figure 2.1: Diagram of the fully fabricated camera. The vision chip is adhered to an FR4 sheet that
has been patterned with isolated pads of gold plated copper. Gold wire bonds connect the vision
chips to the pads. A pinhole lens is mounted over the pixel array on the vision chip to focus light
rays.

Figure 2.2: steps: i) A copper clad FR4 sheet is plated with a 0.5 micron layer of gold. ii) A DPSS
laser is used to ablate the gold plated copper layer into pads. iii) The vision chip is adhered to the
substrate. iv) The pads on the chip are connected to the pads on the substrate using wire bonding
technique. v) A pinhole lens is adhered onto the pixel array.



6

2.2 Pinhole Setup

The pinhole lens was cut using the DPSS laser from a 50 µm thick stainless steel shim and folded

into shape as shown in Fig 2.3. The inner surface of the pinhole lens was painted black to avoid

reflections from the steel surface.

Figure 2.3: Pinhole folded from steel shim

After folding the shim to the desired cubical shape, the edges were covered with black paint to

eliminate light entering through the gaps on the edges. The height of the lens determines the focal

distance, and we used the following formula for determining the optimal pinhole diameter for a

given focal length

D = 2
√

λF (2.1)

where, D is the optimal pinhole diameter, F is the focal length of pinhole setup, and λ is the

wavelength of light (500 nm).

Initially, a pinhole setup of 2 mm focal length was fabricated for which the optimal diameter

given by Eq. 2.1 is 0.01 mm. This diameter does not allow enough light to pass through and

thus we increased the diameter to 0.1 mm for allowing light at the cost of image sharpness. We

performed the experiments with this setup. Next, we fabricated a setup with 4 mm focal length

with 0.1 mm pinhole diameter. This has an optimal diameter very close to 0.1 mm and gives better
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Figure 2.4: A black image of a butterfly printed on a white sheet(left), image captured by the flight
weight camera with the pinhole setup of 2 mm focal length (middle), image captured by the flight
weight camera with the pinhole setup of 4 mm focal length (right). The 2 mm focus pinhole setup
has a wider field of view compared to the 4 mm focus pinhole setup

image sharpness. This setup has narrower field of view compared to the previous setup. Fig. 2.4

shows the images taken with the two pinhole setups.

2.3 Interface

Fig. 2.5 shows a block diagram of the closed loop connection of the overall system that controls

the RoboFly. Copper wires interface the chip to a development board with ARM Cortex M0+

Figure 2.5: The block diagram of the interface of the RoboFly with the flight weight camera
mounted on it. The camera captures the images and transfers it to the host PC via a development
board. The host PC performs the necessary computation and provides the control commands to
a Target PC. The Target PC provides corresponding signals to the piezo actuators for the robot’s
motion.
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micro-controller. The board is programmed to retrieve the pixel values using an analog to digital

converter with 16-bit resolution. The values are sent to MATLAB running on a PC (Host PC) using

USB serial communication for visual analysis. For situations in which a high frame rate is desired,

such as during aggressive flight maneuvers, the chip also allows for only sampling a subset of

the pixels, by quickly incrementing the selection register past the other pixels. The analog values

are stored as an array in MATLAB, and converted to normalized gray-scale values which can be

displayed and processed further using in-built MATLAB functions. High level commands are sent

to a second PC running Simulink real-time, which generates signals for the piezo actuators.
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Chapter 3

CNN IMAGE CLASSIFICATION

To demonstrate the use of the camera to control the insect robot, we implemented an image

classification task using a CNN. Using a neural network learning method for classification helps

in countering image noise and serves as a test case for tackling ill-defined identification tasks for

which they are suited [19] [20]. Pictures of three different flowers and predators were placed in

front of the camera. The pictures were captured using both the pinhole setup. We first used the

images captured with the pinhole setup of 2 mm focal length and performed the experiments as

explained in the experiments section. A shallow CNN with just one convolution layer was used for

classifying the images into two classes, either predators or flowers. The layers of the CNN are as

follows,

1. A 2-D image input layer that receives a raw captured image as an input to the CNN.

2. A convolution layer of stride length 1.

3. A Rectifier Linear Unit (ReLU) layer as the activation function.

4. A maximum pooling layer with a 2 × 2 window and a stride length of 2.

5. A fully connected layer with outputs equal to number of classes.

6. A softmax layer for normalising the outputs from the fully connected layer.

7. A classification layer that classifies the image as a flower or predator.

Next, the pictures were captured with the setup of 4 mm focal length. The captured pictures are

as shown in Fig. 3.1 and Fig. 3.2. The same CNN layers were used for the classification. With this
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Figure 3.1: Black images of the three flowers used as the samples for classification task printed
on a white sheet (top). The corresponding images of the flowers as captured by the camera with
pinhole setup of 4 mm focus, and used for training the CNN (bottom)

Figure 3.2: Black images of the three predators used as the samples for classification task printed
on a white sheet (top). The corresponding images of the predators as captured by the camera with
pinhole setup of 4 mm focus, and used for training the CNN (bottom)
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setup, we get higher test classification accuracy than the previous one (95% vs 85%) using fewer

learned filters (5 vs 50).

We also used the 4 mm focal length pinhole setup to classify our dataset into 6 classes (3

different flowers and 3 different predators). The subsequent sections give details of the training

and test classification accuracy of the CNN for this task.

3.1 Training the CNN

The CNN was trained with black images printed on a white sheet. A light source was placed in

front of the sheet and the reflection of the image was captured by the camera. The gray-scale

imagery reduces the number of channels required for the CNN thereby decreasing the computation

to a third of what it will take for a RGB image. Each image was captured by varying illuminations

and light source angles. The obtained images were also rotated to different angles to overcome

rotational variance. A total of 1080 images were generated as training data. The images were

taken in the raw form without any filters for noise correction and used for training the CNN. The

CNN was trained using back propagation [21] with stochastic gradient descent algorithm with a

learning rate of 0.001. All the operations were performed in MATLAB using the Neural Network

toolbox. Another set of 360 images of the same flowers and predators were captured and used

as test data for testing the accuracy of the CNN. Fig 3.3 shows the training and test classification

accuracy for different number of learned filters for window sizes of 3, 4 and 5.

3.2 Computational Constraints

Implementing neural networks on insect scale robots give us insights into how insect nervous

systems might use visual feedback to control flight, a process that is still not fully understood.

The main constraints are the computational expense when implementing these tasks with on-board

micro-controllers. For future on-board processing, we target an ARM Cortex M4 class processor,

which is available at clock speeds up to 120 MHz in an 8 mg Wafer Level Chip Scale Package

(WLCSP) with 512 kB flash memory and 176 kB RAM (Atmel SAMG5).
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The micro-controller includes Digital Signal Processing (DSP) resources like a 32 bit, 1 cycle

Multiply and Accumulate (MAC) unit. The main multiplication and addition tasks for the CNN

are the convolution layer and the fully connected layer. Other operations include comparing and

storing values in the ReLU and maximum pooling layers. We assume that pre-fetch libraries will be

used for reading operations from flash. Thus we assume 1 cycle each for reading operations from

flash and RAM. This allows us to estimate the number of cycles required for a single classification

with a particular number of learned filters and convolution window size as shown in Eq. 3.1.

L1 = p2×K2× f + p2

L2 = p2× f

L3 = (p/2)2×3× f +(p/2)2× f

L4 = (p/2)2×N× f +(p/2)2× f

Total cycles = L1+L2+L3+L4

(3.1)

where L1, L2, L3, L4 are the cycles required for convolution, ReLU activation, max pooling and

fully connected layers respectively; f is the number of learned filters in the convolution layer; p

is the number of pixels along the side of the square pixel array; K is the convolution window size;

and N is the number of classes in the fully connected layer. This is proportional to the number of

such classifications made per second as shown in Eq. 3.2.

C ∝
(1 sec)× (120×106 MHz)

Total cycles
(3.2)

where C is the number of classifications per second. Fig 3.3 shows the relationship between the

number of learned filters and the number of classifications per second for window sizes of 3, 4, and

5.

We assume that the training will be performed offline. The main on-board storage requirement

is for the weights of the convolution layer and fully connected layer. We assume that we perform
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Figure 3.3: Plots relating the training accuracy, test accuracy and the classifications per second for
various number of learned filters (feature length) for window sizes 3,4 and 5. For all the window
sizes, the training and test accuracy increased upto 5 learned filters, after which they reached an
accuracy of around 99% and 80% respectively. The classifications per second decreased with
increase in number of learned filters.
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Table 3.1: Table with the RAM and Flash Memory requirements for the CNN layers

Layer Flash (kB) RAM (kB)

Convolution Layer 2 0

Max Pooling Layer 0 100

Fully Connected Layer 480 0

Total Memory 482 100

a convolution, ReLU activation and max pooling operation simultaneously and store these into the

RAM memory. Thus the RAM is utilized mostly by the output of max pooling layer. The other

layers do not require significant storage and contribute only towards computation. Table 3.1 shows

that flash and RAM memory used by the three layers for a convolution window size of 5 and 40

number of learned filters are compatible with the target micro-controller. More than 40 learned

filters do not fit into the RAM memory. The weights are assumed to be stored at 16 bits per weight.

3.3 Discussions

From Fig 3.3 we can see that the CNN with number of learned filters of 1 to 4 do not capture all

the features very well, which is evident in the training accuracy. There is a gradual increase in the

test accuracy. For more than 5 learned filters, the CNN captures the features well and has training

accuracy around 99% while the test accuracy reaches 77-80%. Since the amount of training data

is very small, the models tend to overfit after a particular number of learned filters. Getting more

comprehensive training data would provide better performance, but that is not the emphasis for this

work.

The number of the classifications per second goes down as the number of learned filters in-

creases. The latency of image capture increases the time taken for each classification. Thus there

is a trade-off between the classification accuracy and the number of classifications that can be made

per second. Choosing an optimal classification rate and accuracy is important for high speed tasks
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as mentioned in Chapter 1. The present study is concerned primarily with a system-level proof of

principle that a CNN could be used on an insect-sized robot, and less concerned with the specific

characteristics of our implementation. We therefore leave the analysis of the learned filters for

future work.

3.4 On-Board Image Classification Experiments

Figure 3.4: When the picture of a flower is placed as shown, the trained CNN classified it as a
flower and the robot moved towards it. (left) shows the initial position at time T = 0 s. (right)
shows the final position at time T = 1 s. Forward motion was restricted to 1 s to avoid collision
with the image sheet.

Figure 3.5: When the picture of a predator is placed as shown, the trained CNN classified it as a
predator and the robot moved away from it. (left) shows the initial position at time T = 0 s. (right)
shows the final position at time T = 4 s.
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We also performed a test of the camera mounted on the RoboFly. For these tests, we used an

earlier design of our camera with a 2 mm focal length providing lower accuracy. The insect robot

was placed in front of the images of the flowers and the predators. The onboard camera captured

the images, and the trained CNN classified them.

The robot moved toward the flower images and away from the predator images based on the

feedback provided by the CNN in real-time. Fig. 3.4 shows initial and final time instances of

the insect robot moving forward toward a flower image and Fig. 3.5 shows initial and final time

instances of the insect robot moving backward away from a predator image. Forward motion was

restricted to 1 s to prevent the insect robot from colliding with the image sheet.
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Chapter 4

OPTIC FLOW

Optic flow is the apparentmotion of objects relative to an observer. It can be used to determine

the current direction of travel of a body from the movement of the objects around that body. Studies

such as [27–29], show that optic flow is an important component in insect’s flight.

In computer vision, the shift of an object/pattern in subsequent images is defined as the optic

flow in the image sequence. When images are captured from a moving object, the optic flow in the

images can be used for determining position and velocity of the object.

Optical flow has been used for flight tasks in aerial robotics. It has been used for altitude control

[2], hovering [22–24], and landing [25]. Compared to other techniques such as feature based

visual Simultaneous Localization And Mapping (SLAM), optic flow has far lower computational

requirements. For example, it was shown that a hovercraft robot with fly like dynamics could

visually navigate a 2-D corridor using optic flow in a way that only required 20 KFLOPS [26].

Extensions of this to 3-D should fall within the computational constraints of insect scale.

Several techniques are used to calculate optic flow efficiently such as Lucas Kanade method

[30], Horn Schunck method [31]. In this work we use the simple block matching technique for mo-

tion estimation and optic flow calculations. The details of the techniques and preliminary position

estimation experiment are explained in the following subsections.

4.1 Block Matching

The underlying principle for block matching algorithm is that, blocks of objects or patterns in one

image frame in a image sequence move within the image frame in subsequent images. Thus by

finding the closest matching blocks between subsequent images we can estimate the motion of

objcts in the image sequence.The steps for calculating optic flow of objects/ patterns between two
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subsequent images using this algorithm is as follows.

1. Divide the two image into Macro blocks (MB) of required size.

2. Compare light intensity values of each MB in current image to adjacent MBs in the previous

image using mean squared error or mean absolute error.

3. For every MB in one image compare for s pixels around the MB in the other image and find

closest matching MB.

Step 3 is the most computationally costly step. This step can be performed by searching for

every MB within an area to find the closest match. This is called Exhaustive Search (ES). There

are other techniques such as three step search, diamond search and adaptive rood pattern search,

that reduce the number of computations in step 3.

4.2 Distance Formula

Figure 4.1: Diagram of the distance formula used for estimating the position based on optic flow
from the images captured by the low weight camera.

h1 =
h2×d

X
(4.1)
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where h1 is the object distance and h2 is the pixel distance moved by the object in subsequent

captured image. X is the focal length of the pinhole camera and d is the distance between the

camera and object.

Fig 4.1 shows the sketch of the distance formula in Eq 4.1 used for calculating the position of

insect robot using optic flow values obtained from low weight camera. The Z-axis is fixed to a

certain distance (d) and the optic flow is calculated only at the 2-D level for the experiments. For

Figure 4.2: Labelled sketch of the test setup for optic flow experiment

the experiments we fix d =220 mm to mimic the hovering behaviour of insects. We know that x is

the focal length of the pinhole lens which is 4mm. ’h2’, is the distance moved by pattern or object

in the image captured by camera and is equal to the number of pixels moved multiplied by the

distance between the centers of two consecutive pixels in the pixel array (pixel pitch). From the

specifications of the Centeye vision sensor, we get the pixel pitch to be equal to 0.025 mm. Thus

the least motion the camera can capture when placed 220 mm from the pattern or object is 1 pixel

× 0.025 mm which corresponds to h2 = 0.025mm. The distance moved by the pattern relative to
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the camera h1 =1.3 mm. We restrict the motion of the pattern between subsequent motion to be

not more than 8 pixels. This gives a maximum h1 of 11 mm.

4.3 Experiment

We perform 2-D optic flow experiments with a test camera in a motion capture arena. Fig 4.3 shows

the experimental setup and Fig 4.2 shows a labelled sketch of the setup. A micro-manipulator is

used to hold the test camera setup at a distance of 220 mm from the ground level. It is also used to

move the camera for required distances in the X and Y plane. A checkered board pattern is placed

at the ground level facing the camera.

Figure 4.3: Test setup for optic flow experiment

The test camera is moved for specific distances using the micro-manipulator in both X and Y

directions. The motion capture camera is used to get the distance moved by the test camera and this

is used as the benchmark. The test camera also captures the image of the pattern at each step. The

block matching formula is used to find the pixel distance moved. The 64×64 images are divided

into 4 macroblocks. An ensemble of the ES and ARPS algorithm is used to find the pixel distance

moved by each macroblock and an average of these distances are used to give the pixel distance

moved between the images as a whole. This is used in the distance formula to get the relative

distance moved by test camera between two steps.
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Fig 4.4 shows the plot of the distance measured between the steps from both motion capture

cameras and from the optic flow calculations . We see that the optic flow calculations are in line

with the motion capture camera readings. The inaccuracies arise mainly due to the least count

of the optic flow calculations. As mentioned previously, the test camera setup needs the relative

motion of the camera and the pattern to be at least 1.3 mm for perceiving the change. This can be

corrected with a camera with more resolution.

Figure 4.4: Plot of the distance moved by the camera as captured by the motion capture arena
(green) and as calculated from optic flow calculations (red)
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Chapter 5

CONCLUSION AND FUTURE WORK

The work presents the fabrication and interface of a low-weight camera onto an insect scale

robot, the RoboFly. Compared to a previous implementation of a vision sensor on an insect scale

robot [2], the work here increased the resolution (64 × 64 vs 4 × 32) and reduced the weight (26

mg vs 33 mg). The camera is used for implementing visual control tasks. As a demonstration,

image classification using CNN is performed with the images captured by the camera to make the

insect robot recognize a flower and a predator image and move toward or away. We also discusses

the possibility of implementing the computation on board the insect robot. Our results indicate

that current ultra-light embedded micro-controllers are capable of the necessary computation at the

necessary speed. The results can be seen as a step towards performing flight control tasks such as

landing site detection and obstacle avoidance using only components carried on-board. We believe

such tasks, which are hard to explicitly specify, are well-suited to the model-free type of operations

performed by neural networks.

The other component of the work is optic flow based position estimation. We show experiments

to demonstrate how optic flow of patterns in subsequent images captured by low weight camera

can be used to estimate motion of the robot.

Future work will involve implementing a fast control loop for the above techniques. As men-

tioned and Chapter 1, at insect scale the motion of the robots are swift and it is very important to

have a low latency control loop. Thus we have to address the trade off between computational cost

and accuracy for any task we perform on the insect robot.
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