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ABSTRACT 

 

 

 

 

Inhalation of Vehicle Emissions in Urban Environments 

 

by 

 

Julian David Marshall 

 

Doctor of Philosophy in Energy and Resources 

University of California, Berkeley 

Professor William W Nazaroff, Chair 

 

 

This dissertation explores the relationship between motor vehicle emissions and 

the human inhalation intake of these emissions. Motor vehicles are ubiquitous to urban 

areas throughout the world. In most urban areas, vehicle emission are a significant 

contributor to air pollution problems. Inhalation of vehicle emissions has been shown to 

cause a number of adverse health effects. Better understanding of the relationship 

between emissions and inhalation will aid in designing effective strategies to reduce air 
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pollution health effects. Understanding the emission-to-inhalation relationship is also 

important for estimating the total health impacts attributable emissions from a specific air 

pollution source, such as motor vehicles in a specific city. 

Three objectives of his dissertation are (1) to quantify the emission-to-inhalation 

relationship in a way that is useful to other air quality and health researchers and to policy 

analysts; (2) to employ a variety of analytic approaches, in order to understand better the 

relative strengths and weakness of each approach; and (3) to demonstrate that the 

conclusions one draws from air quality analyses may depend on whether one uses as the 

figure-of-merit inhalation of air pollution, as is done for analyses in this work, or other 

common air quality metrics such as mass emission rate, ambient concentrations, or 

concentration at the location of the maximally exposed individual. 

The methods employed here include several data analysis and modeling 

approaches. The data analyses incorporate a range of inputs, including results from air 

dispersion models of varying sophistication, tracer-gas experiments, and “tracers of 

opportunity” (gases that are emitted primarily by one source or source category). The 

inhalation model that I develop in Chapter 6 simulates the movement of people through 

an urban area, tracking the individual or population inhalation rate during simulated 

activities (e.g., shopping, driving, cooking).  

The specific research topics considered in this work are as follows. In the first 

portion of this dissertation (Chapters 1 – 5), I generate estimates for a summary 

inhalation metric, called intake fraction, for vehicle emissions in urban areas. In the 

second portion (Chapters 6 – 7), I first develop a mobility-based GIS inhalation model for 
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urban air pollution, and then, separately, consider how changes in urban population and 

land area would influence population inhalation of private passenger emissions. 

Intake fraction is the fraction of emissions from some source that are cumulative 

inhaled by an exposed population. As an example of how intake fraction values might be 

used, the health effects attributable to an emissions source or source category can be 

estimated as the product of the mass emission rate, the intake fraction (mass inhaled per 

mass emitted), and the toxicity (impact per mass inhaled). Intake fraction values will, in 

general, vary over time and among source categories, source locations, and pollutants. 

Intake fraction can be used as a potential basis to rank sources when prioritizing emission 

control strategies. All else being equal, the public health benefit per amount of emission 

reduced would be larger for an emission source with a large intake fraction than for a 

source with a small intake fraction.  

In Chapter 1, I provide background and framing for the research. In Chapter 2, I 

explore the use of intake fraction. This chapter gives examples of how and why intake 

fraction varies among sources; discusses how this variability may be exploited to increase 

the health effectiveness of air pollution policy; and, illustrates types of intake and intake 

fraction analyses one might carry out, depending on the information available.  

In Chapter 3, I provide an estimate of the intake fraction for nonreactive vehicle 

emissions in California’s South Coast Air Basin (SoCAB). This estimate incorporates 

several inputs, including (1) measured ambient concentrations of benzene and carbon 

monoxide (CO), two pollutants that are primarily emitted by motor vehicles; (2) US 

Census data indicating population densities throughout the SoCAB; (3) time-activity 

pattern data indicating the amount of time people spend indoors, outdoors, and inside 
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vehicles; (4) microenvironment factors for benzene and CO, which indicate how 

concentrations may differ in specific microenvironments as compared to the nearby 

ambient concentration; and (5) the time-varying population-average breathing rate. The 

annual average intake fraction for nonreactive gaseous vehicle emissions in the SoCAB is 

estimated as 48 per million, with an uncertainty of ~ 33%. This value means that 48 g of 

emissions are collectively inhaled by the population per million g emitted. 

The SoCAB is an important case study, in part because of its large population size 

(~15 million people, or 1 in 19 US residents). It is also atypical of US urban areas 

because of its high population density (~860 person km-2) and because of the typically 

poor air dispersion owing to relatively frequent low inversion heights. In Chapter 4, I 

estimate the central tendency and main range for the intake fraction of vehicle emissions 

in urban areas throughout the US. I employ three independent approaches. First, I use a 

one-compartment mass-balance model of an urban area to combine meteorological data 

on wind speed and mixing heights with demographic data on urban population and land 

area. Second, I use a statistical model that relates observed ambient concentrations of 

carbon monoxide (CO) to motor vehicle emission factors for CO. Third, I evaluate model 

input and output for the US EPA’s National-scale Air Toxics Assessment (NATA), the 

EPA’s main nationwide air dispersion and exposure model. These approaches incorporate 

measurements and models, and range in analytic complexity from straightforward to 

sophisticated. There is broad consistency among the results that these approaches yield. 

Combining the results of these three investigations, I estimate that the population-

weighted annual-average mean intake fraction for nonreactive gaseous vehicle emissions 

in US urban areas is ~ 14 per million, with a confidence interval of ~ 50%. This value is 
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about three times lower than the intake fraction value of 48 per million estimated for the 

SoCAB. 

These annual average intake fraction values (48 per million for the SoCAB and 14 

per million for the mean value among US urban areas) represent fleet-wide average 

values. The intake fraction of emissions from a specific vehicle or class of vehicles will, 

in general, differ from this fleet-wide average. For example, all else being equal, the 

intake fraction of nonreactive vehicle emissions will be higher if a vehicle operates and 

emits pollution near population centers (e.g., neighborhood delivery trucks) than if it 

operates and emits pollution along rural highways. Another reason why intake fraction 

may differ among vehicles is “self-pollution,” which occurs when a portion of the 

emissions from a vehicle migrate to inside that vehicle. Experiments were conducted by 

others, wherein a tracer gas (SF6) was injected at a known flow rate into the exhaust 

manifold of a school bus, and at the same time concentrations of SF6 were recorded 

inside the bus. Six buses, representing a range of vehicle ages, were tested with windows 

open and closed, along actual school bus routes in the SoCAB. In Chapter 5, I analyze 

results from these tracer gas experiments to estimate children’s school bus self-pollution 

intake fraction, i.e., the fraction of a school bus’s emissions that are inhaled by students 

riding on that bus. The average value across the six buses and all bus runs is 27 per 

million; values were higher with windows closed rather than open, and for older rather 

than newer buses. When considering the emissions from a specific bus, the mass of 

pollution collectively inhaled by students on that bus is comparable to, and in many cases 

greater than, the mass of pollution collectively inhaled by all other residents in an urban 

area.  
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In Chapter 6, I develop a GIS-based inhalation model for the SoCAB, and 

investigate the importance of mobility on estimated inhalation rates for several air 

pollutants. This investigation represents a new and promising approach for inhalation 

intake analyses. The four main inputs to the model are (1) spatially and temporally 

disaggregated estimates of ambient concentrations of specific air pollutants; (2) geo-

coded time-location-activity survey data indicating individuals’ location (latitude and 

longitude) throughout the day; (3) microenvironment factors, which account for 

differences between the estimated ambient concentration and the exposure concentration 

attributable to outdoor pollution in locations such as indoors, outdoors, and in-vehicle; 

and (4) breathing rates, which vary by age, gender, and activity level. Model output is the 

estimated inhalation intake rate (µg d-1) for each modeled pollutant and each simulated 

person-day. Results indicate that mobility influences daily intake rates by less than a 

factor of two for most individuals. I also explore how inhalation intake rates differ among 

ethnic and income groups. For the five pollutants considered in this chapter, differences 

in median intake rate vary by 10 – 60% among the four ethnic groups considered (White, 

Hispanic, African-American, and Asian/Pacific Islander). 

In Chapter 7, I explore the impact of urban population and land area on inhalation 

intake of vehicle emissions. Changes in population density can impact emissions, owing 

to changes in average daily distance traveled per person, and also intake fraction, owing 

to changes in the proximity between people and emissions. The main research question I 

consider in this chapter is the following: if increasing population density reduces 

emissions but increases intake fraction, does per capita inhalation intake of vehicle 

emissions increase or decrease with increasing population density? The research 



 7

approach employs a one-compartment mass-balance model as an archetypal 

representation of a hypothetical urban area. This approach clarifies underlying 

relationships, aids in elucidating causal connections, and permits the problem to be 

analytically tractable. I find that the impact of population density on inhalation intake of 

vehicle emissions depends on how much emissions change in response to a change in 

population density (the “density-emissions elasticity”). To use infill development (i.e., 

increase population density) to reduce inhalation of vehicle emissions, urban planners 

must strive to achieve large magnitude density-emissions elasticity values, so that vehicle 

emissions are significantly reduced by density increases. 

In Chapter 8, I provide a summary of this dissertation, suggestions for future 

research, and concluding remarks. Overall, this dissertation presents new information and 

new ways of thinking about the relationship between vehicle emissions and inhalation of 

these emissions. The tools developed and results presented may be useful in health risk 

assessment, in policy and economic analyses such as cost-benefit and cost-effectiveness 

analyses, in considering the goals and impacts of transportation and land-use planning, 

and in designing effective intervention strategies to reduce the health effects of 

atmospheric pollutants. The emerging field of exposure science has developed tools, 

metrics, and approaches that are ready to be integrated more fully into air quality research 

and management. I make several specific suggestions are made for future investigations. 

For example, the diurnal profile of population breathing rate is important for determining 

daily inhalation intake of air pollution, yet there is little information available from which 

to estimate this parameter. Previous research has explored the influence of urban 

population density on distance traveled by private passenger vehicles. Given the 
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importance of diesel emissions to air quality and health, this same parameter should be 

estimated for diesel vehicles.  
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Chapter 1:  Introduction 

 

This dissertation explores human inhalation intake of motor vehicle emissions in 

urban environments. This chapter highlights the motivation for studying these topics, 

provides background information that frames this investigation, and outlines the flow of 

ideas contained in the remaining chapters.  

The scope (and the title) of this work is comprised of three themes: urban 

environments, vehicle emissions, and inhalation. I begin by considering each of these 

themes. 

 

Urban environments 

Human societies are rapidly becoming more urbanized (United Nations, 2004). 

Currently, over 90% of global population growth occurs in urban areas. The global 

population is on a cusp, with approximately an equal number of urban- and rural-

dwellers. By 2008, this balance is expected to tip, after which urban populations will 

exceed rural populations.  

The US urban population has outnumbered the rural population since 1919 (US 

Census, 2003). Today there are about 4 urban residents per rural resident. About half or 

more of the US population lives in metropolitan areas with more than one million people 

each.  
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In general, delineating the precise boundaries of an urban area is somewhat 

arbitrary. Political entities, such as cities, towns, and counties, have clear boundaries, but 

often researchers want to classify areas as urban or rural based on geographic attributes 

such as population density rather than political boundaries. The US Census offers a 

definition based on population density: boundaries of urban regions “encompass densely 

settled territory, which consists of (1) core census block groups or blocks that have a 

population density of at least 1,000 people per square mile and (2) surrounding census 

blocks that have an overall density of at least 500 people per square mile” (US Census, 

2004a). 

Understanding the increasing degree of urbanization and its consequences is a 

topic of significant research by urban sociologists, demographers, and economists. Urban 

populations are growing because of natural population growth (i.e., birth rates exceed 

death rates) and because of rural-to-urban migration. Two hypotheses explaining the 

latter trend are (1) employment opportunities may be greater – or perceived to be greater 

– in urban areas than in rural areas; and (2) after evaluating the amenities (e.g., social 

interactions, educational opportunities), disamenities (e.g., crime, crowding), and 

standard of living in urban versus rural areas, individuals may prefer living in urban areas 

(Renkow and Hoover, 2000; Sato and Yamamoto, 2005). The relative importance of 

these two factors will, in general, vary over time and among societies and individuals 

(Colwell et al., 2002; Spilimbergo and Ubeda, 2004; Tacoli, 1998). Factors attracting 

employers to urban areas include agglomeration economies and access to labor, markets, 

and transportation infrastructure (Cohen and Paul, 2005; Mori and Nishikimi, 2002). 
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Urban environments are important to study for several reasons. Because a large 

fraction of people live and will live in urban areas, urban environments represent the 

conditions facing much of humanity as a whole, both now and even more so in the future. 

Many environmental insults occur in urban areas, because this is where much of human 

activity and anthropogenic emissions occur. Urban environments are important to air 

quality and health research because a significant fraction of air pollution that can affect 

health is emitted and inhaled in urban areas.  

 

Motor vehicles and vehicle emissions 

Mobility – the ability to travel when, where and how one wishes – is an integral 

aspect of modern society, and a cornerstone of the liberties afforded all citizens in free 

societies. Societies existed for millennia without motor vehicles, yet it is difficult to 

image modern society without vehicles, or, more broadly, without freedom of mobility. 

The freedom offered by vehicles captures the imagination, as exemplified by the 

following urbanist vision from The Radiant City: 

“The cities will be part of the country; I shall live 30 miles from my office 
in one direction, under a pine tree; my secretary will live 30 miles away 
from it too, in the other direction, under another pine tree. We shall both 
have our own car. We shall use up tires, wear out road surfaces and gears, 
consume oil and gasoline. All of which will necessitate a great deal of 
work... enough for all” (Le Corbusier, 1967). 
 

The myriad of benefits offered by motor vehicles are difficult to fully quantify. How does 

one evaluate the benefits of travel: of visiting friends and relatives; of pursuing one’s 

livelihood; of obtaining food and medicine from around the globe; and, of partaking in 
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social activities such as shopping, entertainment, and dining? Motor vehicles have 

transformed our society in a way unmatched by most technologies.  

The benefits and freedoms enjoyed by car owners, combined with rising 

affluence, has caused per capita car ownership and use to skyrocket (Abu-Eisheh and 

Mannering, 2002; Dargay and Gately, 1999; Riley, 2002). In the US, the number of 

licensed motor vehicles (230 million) outnumbers not only the number of licensed drivers 

(191 million), but also the number of people of driving age (16 and older; 224 million) 

(US DOT, 2003a). As one measure of the importance of mobility, consider the annual 

energy consumption for transportation. In the US, transportation consumes ~100 MJ 

person-1 d-1 (http://www.eia.doe.gov). (Among the four energy consumption sectors – 

residential commercial, industrial, and transportation – in the US, transportation is second 

in size after industry, accounting for ~27% of energy consumption.) This value of 100 MJ 

person-1 d-1 is about ten times the typical energy consumed as food per person per day. 

Walking consumes ~0.21 MJ km-1 (Ackermann et al., 1998), so if a person were to 

expend 100 MJ walking, she would travel ~480 km. (Traveling 480 km in 24 hours 

would mean averaging 4.8 minutes per mile, a pace that is maintainable in running by 

world-class athletes for at best a few hours. For example, the world record for a marathon 

is a few minutes over 2 hours, corresponding to an average pace of 4.7 minutes/mile.) 

Considering travel by bicycle yields an analogous result: At ~0.13 MJ km-1 by bicycle 

(Ackermann et al., 1998), expending 100 MJ d-1 cycling would involve traveling ~780 

km d-1, a rate achievable only by a few world-class athletes 

(http://www.ultracycling.com). Thus, motor vehicles allow us to expend an amount of 
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energy not only that we do not wish to expend ourselves, but also that most people are 

not physically capable of expending. Clearly, the benefits of vehicles are large. 

Yet, there are costs to our transportation system as well. Safety is a major 

concern, with traffic collisions causing death and serious injury. Ease of travel allows 

people to chose to live in the suburbs, but the resulting urban form may foster feelings of 

isolation rather than of community (Putnam, 2001). Freeways are noisy and a nuisance to 

the communities they disrupt. Cities designed to be efficient for the movement of cars are 

not necessarily pleasant places to live and work. The prospect of a city of several million 

people achieving Le Corbusier’s integrated urban/rural vision seem implausible in the 

foreseeable future. A practical limitation is motor vehicle congestion, which is an issue 

for urban areas around the world. A study of 75 urban areas in the US estimated the total 

annual cost of congestion at $70 billion, or $520 per person (Texas Transportation 

Institute, 2003). 

Transportation systems deleteriously impact human health and the environment in 

several ways. Wetlands are paved over to build new roads. Rainwater runoff, washing 

over roads and parking lots, carries to local water bodies vehicle pollutants such as fuel, 

lubricating oil, and tire and brake dust. Petroleum exploration and drilling disturbs 

wilderness environments. Road construction and vehicle manufacture consumes 

significant amounts of materials and energy. 

One important impact of transportation systems is the health impact attributable to 

human inhalation of vehicle emissions. In the US, about 126 million people, or 44% of 

the total population, live in areas where atmospheric concentrations of one or more 

criteria pollutants exceed the National Ambient Air Quality Standards (US EPA, 2003b). 
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Atmospheric concentrations of criteria pollutants in California’s South Coast Air Basin 

(SoCAB), which includes Los Angeles, exceed these air quality standards approximately 

one out of three days (CARB, 2005). 

Vehicle emissions are a significant contributor to urban air pollution throughout 

the world (Faiz, 1993). Vehicle emissions include criteria pollutants, such as carbon 

monoxide and particulate matter; species that react to form criteria pollutants, such as 

nitrogen oxides (NOx) and volatile organic compounds (VOCs), both of which can lead to 

ozone and particulate matter formation; and several hazardous air pollutants, such as 

benzene and butadiene. The portion of total year-2002 emissions in the US National 

Emission Inventory that are attributable to transportation sources is 77% for CO, 54% for 

NOx, and 44% for VOCs (US EPA, 2003c).  

Exposure to traffic emissions has been shown to cause a variety of acute and 

chronic health impacts (Brook et al., 2004). For example, maternal exposure to vehicle 

emissions is associated with adverse birth outcomes such as low birth weight and 

premature birth (Wilhelm and Ritz, 2003). Chronic exposure to traffic exhaust is 

associated with leukemia and other childhood cancers (Feychting et al., 1998; Knox and 

Gilman, 1992; Pearson et al., 2000; Savitz and Feingold, 1989). There is an association 

between exposure to traffic and onset of a myocardial infarction within the subsequent 

one to three hour period (Peters et al., 2004). Vehicles contribute significantly to 

population exposure to particulate matter (PM), which has been associated with lung 

cancer and premature mortality (Dockery et al., 1993; Laden et al., 2000; Pope, 2000; 

Pope et al., 2002; Pope et al., 1995). A study of ambient concentrations and attributable 

risk in California’s South Coast Air Basin found that mobile sources contribute almost 
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70% of the estimated lifetime ambient air pollution cancer risk (Morello-Frosch et al., 

2001). Quantifying the emission-to-inhalation relationship is important for better 

understanding air pollution health effects and for designing effective mitigation 

strategies. 

The ways in which current and future transportation systems satisfy transportation 

demand will have significant implications for air quality. Because transportation 

emissions are a significant contributor to urban air pollution, the technologies and 

infrastructure that make up the current and future transportation system will likely impact 

overall air quality in most urban areas. Conversely, the air quality impacts of motor 

vehicles are one of several factors that influence transportation planning decisions. 

Because transportation is one of the main aspects of urban air quality management, 

efforts to improve air quality are one of a few key motivators for transportation planning.  

Historically, significant reductions in vehicle emissions are attributable to 

technical advances, including catalytic converters, on-board diagnostics, inspection and 

maintenance programs, and fuel reformulation. In designing strategies to meet air quality 

objectives, one would reasonably expect that technology can and should play an 

important role. At the same time, technical fixes are not always available, nor are they 

necessarily the easiest, most reliable, or least expensive solution. Ideas for ways to 

improve the transportation system may come from a variety of other fields as well, 

including economics, transportation planning, political science, business, and sociology.  
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Inhalation  

In contrast to many other types of environmental contamination such as 

groundwater pollution, there is no “remediation” of urban air pollution. Once pollution is 

emitted to urban air, there is no practical way to actively remove a significant fraction of 

that pollution. Instead, one can only wait for removal by natural processes such as 

advection and wet and dry deposition. Improving urban air quality occurs by reducing 

emissions. Because the typical residence time of air in an urban area is less than one day 

(see Chapter 4 and Appendix I of Chapter 3), emission reductions lead to improvements 

in urban air quality literally overnight. In general, it is not considered practical to 

eliminate all emissions. An important air quality policy goal, then, is effective 

prioritization of emission reductions. There are many sources of emissions in a typical 

urban area, and policy makers are tasked with choosing which sources to control and by 

how much. Because the most important reason for regulating urban air pollution is to 

protect public health, health impact is should be a very important factor for prioritizing 

emission reductions. Much of the research in this dissertation investigates analytic tools, 

data analysis techniques, and models to help prioritize emission reductions in terms of 

their potential for health benefits. 

Inhalation intake of air pollution is a better proxy than mass emissions or ambient 

concentrations for the health impacts of a specific emission source. Yet, air pollution 

regulations in the U.S. focus on limiting emissions and controlling ambient 

concentrations. For example, the Clean Air Act regulates criteria pollutants based on 

ambient concentrations, as given by National Ambient Air Quality Standards (NAAQS), 

and hazardous air pollutants based on emission control technologies. There is the 
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potential for air pollution policy to be more effective at improving public health by 

focusing some attention on limiting intake or health impacts rather than simply restricting 

emissions or ambient concentrations. (In understanding the policy implications of the 

results I present in this dissertation, one should recognize that environmental policy is not 

always 100% rational or even coherent. Decisions are based not only on scientific 

understanding, but also on a number of factors including costs, public opinion, and 

politics. My dissertation can help inform policy decisions, even recognizing that such 

decisions result from a variety of inputs.) 

The health effects attributable to an air pollution source or source category, such 

as a power plant or motor vehicles, may be estimated as the product of three terms: 

emissions (mass emitted per time), intake fraction (mass inhaled per mass emitted), and 

toxicity (health impact per mass inhaled). In conducting a health risk assessment for 

motor vehicle emissions, using this paradigm, vehicle emissions can be determined by 

laboratory testing and by on-road remote sensing. Intake fraction can be estimated using 

air dispersion models, biomarkers, tracer gas experiments, and “tracers of opportunity” 

(i.e., exploiting measurements of pollutants that are primarily emitted from motor 

vehicles). Intake fractions depend on the size of the exposed population, the proximity of 

that population to the emission sources, and the persistence of pollutants in the 

environment. Toxicity and other dose-response information can be determined in a 

laboratory by exposing animals, cells, or humans to pollutants, or based on 

epidemiological studies of “real world” human exposures. This dissertation explores 

intake fraction. It also explores attributable intake, which can be determined as the 

product of emissions and intake fraction. 
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Dissertation outline 

The remaining chapters in this dissertation are organized as follows. Chapters 2-5 

focus on intake fraction, while Chapters 6 and 7 explore intake. Chapter 2 provides an 

overview of the intake fraction metric, including how it is calculated and how it could be 

used in formulating air pollution policy. Chapters 3, 4, and 5 estimate intake fraction 

values for specific situations: Chapter 3 focuses on vehicle emissions in California’s 

South Coast Air Basin; Chapter 4 covers vehicle emissions in urban areas throughout the 

U.S.; and, Chapter 5 investigates the issue of school bus self-pollution, which refers to 

exhaust from a school bus migrating to inside that bus. 

People are mobile. Chapter 6 describes the methods and results for a Geographic 

Information System (GIS) inhalation assessment for the South Coast that accounts 

explicitly for the movement of people within an urban area during each day. Chapter 7 

investigates how urban population and land area influence population intake of vehicle 

emissions. At issue is whether changes to urban population density can reduce 

transportation emissions and/or inhalation intake of these emissions. The investigation in 

this chapter uses an idealization of a hypothetical urban area. Chapter 8 provides a 

summary, suggestions for future research, and conclusions. 

In terms of the spatial scale of analysis, Chapter 3 begins at a logical starting 

place for investigating urban air pollution: a single urban area. Chapter 4 considers a 

larger scale, investigating many urban areas. Chapter 5 considers a narrower scale, 

focusing on a specific vehicle type (school buses). Chapters 6 and 7 return to the scale of 

a single urban area to explore various aspects of urban-scale inhalation modeling 
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(Chapter 6) and to investigate broadly the role of urban-scale planning goals (e.g., sprawl 

versus infill) on inhalation of vehicle emissions (Chapter 7).  

The main disciplines underlying this dissertation are air quality engineering, 

environmental health, and urban planning. These disciplines arose to solve complex sets 

of problems facing society, mainly in urban environments. Their objectives, and the 

broad objectives of this dissertation, include understanding how systems work and also 

how to propose and evaluate potential solutions to urban environmental concerns. While 

most of the research in this dissertation quantifies and documents current conditions, 

there is a secondary emphasis on predicting how things may change in the future and on 

suggesting opportunities for effective policy interventions. 
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Chapter 2: Overview of intake fraction and its use in air-

pollution policy 

 

Introduction 

The effectiveness of air quality regulations is sometimes evaluated in terms of 

changes in emissions rates. Indirectly, the effects of such reductions may be observed 

through changes in air concentrations as measured at ambient monitoring stations. 

Regulators commonly assume that decreases in ambient air concentrations cause 

commensurate decreases in human exposure. However, this is not necessarily the case, 

because personal exposures can vary substantially from what ambient air monitors 

indicate. For example, concentrations of pollutants from motor vehicles are higher in 

vehicles than in ambient air. As another example, exposure concentrations from second-

hand cigarette smoke (also called environmental tobacco smoke, ETS) are significantly 

higher if the cigarette is smoked indoors rather than outdoors, even though the indoor and 

outdoor releases would yield comparable attributable concentrations at an ambient 

monitoring site. The intake fraction is orders of magnitude greater for indoor releases 

than for outdoor releases of primary pollutants (Lai et al., 2000). 

This chapter presents ideas about how to prioritize emission reductions based on 

their effectiveness in reducing exposures. One might consider, for example, the location 

of the emissions source, the surrounding population densities, and the factors affecting 

dilution of the emissions. This approach contrasts with a more typical approach in 
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common regulatory practice, which would evaluate emissions based on mass emitted or 

based on the contribution to concentration measured at an ambient monitor. 

Because intake fraction is a relatively new idea, the use and implications of intake 

fraction values have not been fully explored in the literature. This chapter aims to help fill 

this gap. This chapter describes in broad brush many aspects of intake fraction, including 

typical values and how the use of intake fraction in policy analyses may depend on what 

information is available. Throughout this chapter, specific examples are used to illustrate 

ideas, but these examples are not intended to be exhaustive. 

 

Background 

 As highlighted in Chapter 1, an important air quality policy goal is effective 

prioritization of emission reductions. There are many sources of urban air pollution in 

each urban area, and policy makers are tasked with choosing which sources to control 

and by how much. Because the most important reason for regulating urban air pollution is 

to protect public health, environmental health impact should be an important factor when 

prioritizing emission reductions.  

 One way to estimate the environmental health impact of a pollution source or 

source class is as the product of three terms: emission rate (mass per time), intake fraction 

(mass inhaled per mass emitted), and toxicity (health impact per mass inhaled). In the 

ideal situation, one would know all three terms for all major emission sources. However, 

as I describe below, one can make effective prioritization decisions without complete 

information. This chapter focuses on understanding and using the second term in this 
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relationship (intake fraction). In many cases, there is a complex or non-linear relationship 

between health and these three factors. Such nonlinearity is discussed below. 

There are several advantages to presenting exposure analyses in terms of intake 

fraction. Intake fraction is a tangible concept that can increase understanding and 

improve intuition about exposure assessments. As an exposure assessment metric, intake 

fraction can be used as a diagnostic tool to help corroborate empirical and modeled 

exposure assessments, and it can be used to summarize the importance of various 

transport and exposure pathways for each chemical being studied. Intake fraction is an 

excellent metric for technical and nontechnical researchers to understand exposure 

assessment results. Policy makers want to make progress towards efficiently and 

effectively reducing human exposure to hazardous air pollutants, and the intake fraction 

is a valuable metric for understanding how reductions in emissions relate to reductions in 

intake. 

The term “intake fraction” was first introduced in the literature in 2002 (Bennett 

et al., 2002). However, there is a much longer history of the idea of quantitatively relating 

pollutant emissions to inhalation intake, as reviewed by Evans et al. (2002). Smith and 

colleagues have explored policy implications of intake fraction and related concepts (e.g., 

Smith, 1995; Smith, 2002; Smith and Edgerton, 1989). Although not yet large, the 

literature on intake fraction is diverse, addressing primary and secondary pollutants (Levy 

et al., 2003), inhalation and other intake pathways (MacLeod et al., 2004), and varied 

sources such as motor vehicles (Evans et al., 2002), power plants (Evans et al., 2002; 

Levy et al., 2003), and dry cleaners (Evans et al., 2000). 
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Intake fraction should be understood as a metric, not as a method. Like emissions 

and concentrations, it can be determined using several methods. Broadly, there are two 

approaches for quantifying the emission-to-intake relationship: models and 

measurements. During the past several decades, much work in air-quality engineering has 

developed and used these approaches to understand emission-to-airborne concentration 

relationships. The methods developed and the results obtained can also be used to inform 

the emission-to-intake relationship. 

 

What is intake fraction? 

 Intake fraction summarizes in a compact and transparent form the quantitative 

relationship between emissions and inhalation of those emissions. Intake fraction is 

useful in connecting emissions to effects because mass inhaled is a better indicator of 

potential adverse health impacts than either mass emitted or airborne concentration. 

 More generally, the emission-to-effects relationship involves a series of causally 

related steps. As illustrated in Figure 2-1 (adapted from Smith, 1993), emissions are 

diluted, transported, and/or transformed to generate the pollutant concentrations that 

people breathe. Human contacts with concentrations constitute exposures, and inhalation 

of pollutants results in intake. Pollutant transfer into the body of an exposed individual 

leads to doses to organs and other physiological targets, which in turn can elevate the risk 

of adverse health effects. Intake fraction quantitatively summarizes an important portion 

of this chain of events by describing as a single number the emission-to-intake 

relationship.  
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 Intake fraction can be determined through several different methods. 

Investigations that generate intake fraction results can range from straightforward to 

complicated, and can depend on modeling, experimental measurement, or both.  Simple 

intake fraction calculations, when performed similarly across different sources, can in 

many cases produce reasonably accurate estimates of relative levels of inhalation 

exposure. 

 Intake fraction for a primary pollutant is the total mass inhaled from an emission 

source, divided by the total mass emitted from that source:  

 

emitted masspollutant 
inhaled masspollutant  fraction  Intake =     (2-1) 

 

The emission source evaluated in the denominator can be a single emitter, such as an 

industrial stack, or a broad source class, such as motor vehicles. When considering an 

entire population, the value of the numerator would be the cumulative pollutant mass 

inhaled by all exposed individuals. When considering a subpopulation or an individual, 

the value in the numerator would be the pollutant mass inhaled by that subpopulation or 

individual. Intake fraction depends primarily on three types of parameters: those that 

influence dilution, such as meteorology; those that reflect the proximity of people to the 

emissions, such as population density; and those that reflect persistence of a pollutant in 

the atmosphere, such as pollutant removal rates. Therefore, intake fraction tends to vary 

with location and may also vary with time. For example, if two emission sources emit the 

same mass of a pollutant, but one source is in a densely populated urban area while the 
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other is in a rural area, the first source will have a higher associated intake fraction 

because there are more people in the vicinity of the emissions. On the other hand, intake 

fraction for ground-based ambient pollutant releases is smaller during periods of rapid 

mixing and dispersion, such as sunny and windy days, than during stagnant atmospheric 

conditions. 

 One important attribute of intake fraction is that it can be applied to multiple 

pollutants from a source, rather than only to specific pollutants. That is, if two pollutants 

are emitted from the same source and have the same transport and transformation 

characteristics, then their intake fraction values will be the same, even if their chemical 

composition and mass emission rates are very different. A second important attribute of 

intake fraction is that it can be applied to multiple sources. That is, pollutants from 

different sources or source classes can have similar intake fraction values if governing 

factors (e.g., size of the exposed population; proximity between emissions and exposed 

population; environmental fate and transport characteristics) are similar. As more studies 

of intake fraction are completed, a compendium of intake fraction results can be 

developed that would provide useful guidance on expected values for similarly situated 

sources not yet assessed. 

Air pollution includes both primary and secondary contributions. Primary 

pollution refers to species that are in the same chemical form when inhaled as when 

emitted. Secondary pollutants are formed in the atmosphere from gaseous precursors. The 

meaning of an intake fraction value, for example as defined in Equation 2-1, is 

unambiguous for primary pollutants. In contrast, since the chemical form of a secondary 

pollutant is different as inhaled than as emitted, the definition of intake fraction for 
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secondary pollutants requires a more detailed specification. If one were interested, for 

example, in exposure to secondary particulate matter originating from nitrogen oxide 

emissions from combustion sources, then the intake fraction might usefully be defined as 

the attributable mass of particulate oxidized nitrogen inhaled per unit mass of nitrogen in 

NOx emitted. Tracking a specific chemical element from source to receptor when 

specifying the intake fraction of a secondary pollutant can assist in preserving across 

different pollutant forms important characteristics of the source-receptor relationship that 

are central to the intake fraction metric. This approach of tracking a specific element 

when estimating intake fraction is possible for some pollutants, such as particulate nitrate 

(where nitrogen emissions could be tracked), but not for other pollutants, such as ozone. 

Ozone is formed in the atmosphere from a complex series of reactions involving nitrogen 

oxides (NOx) and reactive organic gases (ROG). The chemical structure of ozone is three 

oxygen atoms (O3), but these atoms cannot meaningfully be traced back to a specific 

emission source: oxygen (O2), which comprises 21% of the atmosphere, is available to 

form ozone whenever reactions with NOx and ROGs occur. Further development of the 

idea of incremental reactivity (i.e., the change in ozone concentration attributable to a 

change in precursor emissions) (Martien et al., 2003) may yield a meaningful basis for 

quantifying ozone intake fractions. 

 

Typical intake fraction values 

Population intake fraction values for air pollutants vary over several orders of 

magnitude, depending on characteristics of the release environment and the pollutant. 

Typical values for some important release categories are known, as presented in Figure 2-
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2. For outdoor releases in urban areas, intake fraction values are typically in the range 1 – 

100 per million. An intake fraction of one per million means that for every million grams 

emitted, one gram is collectively inhaled by the exposed population. This intake fraction 

value also means that to reduce inhalation intake by one gram through emission control 

would require reducing emissions by one million grams.  

Emissions that are not inhaled eventually degrade or otherwise leave the 

atmosphere. A common degradation mechanism for anthropogenic air toxics is attack by 

a hydroxyl radical (OH). The rate of decay depends on the concentration of hydroxyl and 

other reactive compounds and on the reactivity of the emitted species. A few pollutants 

do not degrade in the troposphere. These pollutants may mix throughout the troposphere 

via advection, and then migrate via molecular diffusion and weak air currents to the 

upper stratosphere, where degradation occurs via ultraviolet radiation. Air pollutants can 

also be removed from the atmosphere via wet and dry deposition to land and water. There 

can be rapid degradation on vegetation surfaces, in soil, and in surface water for 

deposited pollutants. Some emissions enter ecosystem food chains, which is especially a 

concern for bio-accumulative compounds. 

 For a single species, intake fraction values may be different for secondary and 

primary components. For example, because almost all secondary PM is in the fine mode, 

the intake fraction could be large because the particles are highly persistent. At the same 

time, however, secondary PM does not exhibit the same proximity effect that primary PM 

does, because secondary PM takes time to form from precursor emissions. In addition, 

the conversion from precursor emissions to secondary PM is incomplete, further reducing 

the intake fraction. For example, consider secondary ammonium nitrate particles. Nitric 
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oxide (NO) emissions are oxidized in the atmosphere to nitrogen dioxide (NO2), and then 

to nitric acid (HNO3). If the nitric acid encounters ammonia (NH3), the two species can 

react to form particle-phase ammonium nitrate (NH4NO3). In general, only some portion 

of NO and NH3 emissions ultimately form PM, which reduces the intake fraction of 

secondary PM associated with NOx emissions. The effect of the factors above on intake 

fraction will vary among areas and over time. Evans et al. (2002), studying conditions 

throughout the US, found that intake fraction values for power plants and urban and rural 

vehicle emissions were between one and two orders of magnitude less for secondary PM 

than for primary PM. 

 

Determining intake fraction 

This dissertation analyzes results from both models and measurements. Models to 

calculate intake fraction range from simple, one-compartment representations of an urban 

area, to complex, three-dimensional urban airshed models or multi-compartment regional 

multimedia fate models. Measurements include tracer gas experiments as well as 

utilization of “tracers-of-opportunity” (i.e., chemical compounds that act as a 

“fingerprint” for an emission source).  

The following factors are likely to be important when estimating intake fraction 

for urban emissions: 

� population density and the size and location of the exposed population relative to 

the source;  

� meteorological conditions controlling atmospheric transport and dispersion, such as 

wind speed and mixing height, and pollutant release height;  
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� pollutant persistence, which depends on the rate of removal mechanisms such as 

deposition; and, 

� the presence of simultaneous indoor releases (e.g., self-pollution), if any. 

 

The use of intake fraction in policy decisions 

 This section highlights several ways that the intake fraction could be used to assist 

in making air pollution policy decisions. The way that one might use intake fraction in 

such decisions depends in part on the availability of information. I describe below how 

intake fraction can provide useful information in a policy decision, depending on what 

information is available. I then provide specific examples of the use of intake fraction to 

prioritize emission reductions. 

 

How intake fraction can be used depends on available information and the policy 

question  

 The health impact attributable to an emission source can be expressed as the 

product of emissions, intake fraction, and toxicity. However, there are many situations in 

which one can use intake fraction to assist in setting priorities for emission control 

without full information about emissions and toxicity. For example, each of the next four 

paragraphs presents a situation wherein different pieces of information are available. In 

each case, I assume that there are two emission sources, and that the policy question at 

hand is to prioritize between these two sources as the target of emission reductions. I 
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further assume here that the pollutant of concern exhibits a linear, no-threshold dose-

response relationship. 

1. When all three terms – emissions, intake fraction, and toxicity – are known, one 

can estimate the overall health impact from the two sources. The emission source 

with the higher health impact would be identified as a higher priority for control. 

If information about the costs of control technologies is also known, then one 

could prioritize emission reductions based on a cost-effectiveness analysis. In this 

case, one could seek to maximize the reduction in adverse health effects per unit 

cost (Smith, 1995; Smith and Edgerton, 1989). 

2. When only emissions and intake fractions are known, one could prioritize 

emission source reductions based on total emissions, but using the intake fraction 

values as multipliers. This approach is useful when comparing two sources of a 

specific species. For example, if the intake fraction is two times greater for 

emission source A than for emission source B, an emission reduction of 1 kg from 

A could be given the same policy “priority” as an emission reduction of 2 kg from 

B. In application to particulate matter, this approach implicitly assumes that — in 

the absence of information to the contrary — all particulate matter should be 

treated as equally toxic, regardless of its source. Under this assumption, inhalation 

intake becomes a suitable proxy for adverse effect. 

3. When only intake fractions and control costs are known, one can carry out certain 

cost-effectiveness analyses. For example, if control costs per kg emitted are the 

same for emission sources A and B, but the intake fraction is larger for A, then the 

control cost per kg inhaled is less for A than for B. All else being equal, 
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controlling emissions from A would be a higher priority than controlling 

emissions from B. 

4. Finally, when only intake fractions are known, one can compare sources that are 

similar in other ways. For example, comparing natural-gas power plants in 

different locations, one could prioritize for control the emissions location with the 

higher intake fraction.  

 

Using intake fraction to prioritize among emission sources 

Several examples are presented below of how intake fraction might be used to 

prioritize among emission sources, based on attributes of the emissions or the 

environment. These comparisons are summarized in Table 2-1. 

 

Urban versus rural emissions. Intake fraction depends in part on the proximity 

between an emission source and the population. All else being equal, urban emissions 

tend to have a higher intake fraction than rural emissions because of the closer proximity 

of urban sources to large numbers of people. The intake fraction difference between 

urban and rural areas can be greater than an order of magnitude, indicating that the 

location of emissions can significantly influence the public health impact of those 

emissions. For example, based on one-compartment model results in Chapter 4, the 

intake fraction is estimated to be ~5 times larger in a moderate-sized city such as 

Sacramento, California, than in a small city such as Chico, California, owing to 

differences in the population and size of the urban area. The difference in intake fraction 
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for emissions in Sacramento as compared to a typical rural area would be even greater 

than a factor of 5.  

When comparing two emission sources, a full analysis of intake fraction and 

health impacts would require air dispersion modeling and geographic information about 

where people live. The one-compartment model approach, discussed in more detail in 

Chapter 4, suggests that an estimate of the difference in intake fraction between two 

situations can sometimes be made based on the difference in linear population density, 

which is the urban population divided by the square root of the urban land area. Thus 

linear population density could be used in a first-level analysis to “weight” emissions. To 

illustrate, because of differences in linear population density (given in Table 4-1), 

reducing emissions by a certain mass amount per year is expected to yield about 5 times 

the cumulative public health benefit if it occurs in Sacramento than if it occurs in Chico.  

 

Time-of-day and time-of-year. Meteorology varies diurnally and seasonally. 

Low wind speeds and low mixing heights tend to increase the intake fraction for ground-

level emissions, as compared with high wind speeds and high mixing heights. For 

example, using Gaussian plume dispersion modeling, Lai et al. (2000) found that 

atmospheric stability class can affect short-term intake fraction by as much as an order of 

magnitude. Wind speed and direction may influence intake fraction by a similar amount. 

 Meteorological patterns also affect long-term average intake fraction values. For 

example, results presented in Chapter 3 indicate that the intake fraction for motor 

vehicles in the South Coast Air Basin is about 2 times higher in winter than in summer. 

The main reason for this trend, explored in Chapter 4, is that mixing heights tend to be 
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higher in summer than in winter. This same seasonal trend has been observed to be 

common in cities throughout the United States. Diurnal meteorological patterns, with 

lower mixing heights during the night than during the day, suggest that intake fractions 

are higher for emissions that occur at night and in the early morning rather than during 

the middle of the day. 

 Household wood stove smoke is an example of an emission source for which time 

patterns in emissions are likely to have an important influence on intake fraction. Because 

stoves operate more at night than during the day, and in winter rather than during 

summer, their intake fraction is higher than would be the case if they did not exhibit 

diurnal or seasonal emission patterns. 

 

Stack height. Just as the geographic location in the horizontal plane of an 

emission source influences those emission’s proximity to people and, thus, the intake 

fraction, so too does stack height. Tall stacks loft pollution high into the air, often 

reducing the intake fraction because of the significant dilution that occurs by the time the 

plume reaches the ground. (Because pollutants released from a tall stack take time to 

reach the ground, high attributable concentrations may occur significantly downwind of 

the release location. Population density may be significantly higher or lower downwind 

of the release than near the release.) Evans et al. (2002) calculated intake fractions for 

emissions from 40 power plants in the US, and found that stack height can make an order 

of magnitude difference in intake fraction. Lai et al. (2000), using a Gaussian plume 

model to analyze hypothetical stack emissions, reported similar results.  

 



 26

On-road sources. People in urban areas typically spend some time in or near 

vehicles each day. For example, focusing on urban diesel PM emissions, one can use 

published data to estimate the typical intake fraction differences between on-road sources 

and other sources. Supporting calculations for this paragraph are in the appendix for this 

chapter. Recent measurements for diesel suggest a factor of 4 – 14 difference between in-

vehicle and nearby ambient concentrations (Fruin et al., 2004). The result is that the ~6% 

of time (80 minutes per day) people spend on average in vehicles (Klepeis et al., 2001) 

would contribute ~25 – 54% of total exposure to diesel PM, rather than 6% (Appendix, 

line 5d).  This range of values matches the range of 28 – 55% obtained from a more 

detailed analysis by Fruin et al. (2004).  If it is assumed that 25% of diesel PM emissions 

are from on-road sources (CARB, 2000c), then on-road sources contribute ~39 – 63% 

(rather than 25%) to total diesel PM exposure (Appendix, line 6c). On average, on-road 

sources are estimated to contribute between 1.9 and 5.1 times more diesel PM inhalation 

per unit emissions than other sources (Appendix, line 8). Thus, from an exposure 

standpoint, on-road diesel particle emissions should be given a “weighting” of ~1.9 – 5.1 

relative to off-road diesel sources. The width of this range reflects uncertainty in diesel 

PM concentrations in vehicles relative to those in the ambient environment. For 

comparison, the appendix presents similar calculations for benzene, a pollutant for which 

in-vehicle and ambient concentrations are more certain, and for which the corresponding 

intake “weighting” for on-road sources is estimated to be ~1.3. This weighting value is 

lower for benzene (~ 1.3) than for diesel PM (~ 1.9 – 5.1) in part because outdoor 

benzene, unlike outdoor diesel PM, is assumed to penetrate the building envelope without 

loss. 
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Self-pollution. Combustion sources typically possess an exhaust system to 

deliver emissions to ambient air. The exhaust manifold of a car conducts effluents from 

the engine to the tailpipe; wood stoves emit their waste gases through a chimney that runs 

from the fireplace to the rooftop. Generally, exhaust systems work well but not perfectly, 

and a small fraction of emissions may enter the indoor or in-vehicle environment. Such 

leaks lead to a condition known as “self-pollution.” 

 Intake fractions for pollutants that enter occupied buildings or vehicles are much 

higher than intake fractions for outdoor air emissions. For example, consider a one-

compartment model applied to a single household. Assuming three people occupy the 

household, a building volume of 350 m3, and an air exchange rate of between 0.2 h-1 and 

2 h-1, the intake fraction for an indoor release of a conserved pollutant is between 0.3% 

and 3% (i.e., between 3,000 per million and 30,000 per million) (Lai et al., 2000). These 

values are 50 – 500 times greater than the intake fraction estimated in Chapter 4 for the 

Los Angeles Metropolitan Area using the one-compartment model (60 per million) and 

800 – 8000 times greater than the similar estimate for Chico, California (4 per million).  

An approximate estimate of the intake fraction in vehicles can be derived using 

the same approach used by Lai et al. (2000) for a household. Typical values for a vehicle 

are 1.6 individuals per vehicle (US DOT, 2003b), an air exchange rate of ~ 36 h-1 (Hayes, 

1991; Johnson, 2002), and an interior volume of 2.5 – 3.5 m3 (Johnson, 2002). (Air 

exchange rates in vehicles vary by more than an order of magnitude, depending on 

factors such as the vehicle speed, wind speed, window position (open or closed), and vent 

position (open or closed). The air exchange rate of 36 h-1 represents the best estimate for 
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typical conditions in vehicles (Johnson, 2002).) These values yield an intake fraction of 

1.0% – 1.4%, which lies within the range estimated for the indoor intake fraction, 0.3% – 

3%. 

Because intake fractions are so much larger for indoor and in-vehicle releases 

than for outdoor releases, even a small amount of self-pollution can significantly increase 

the intake fraction associated with sources like motor vehicle exhaust and residential 

wood combustion. As detailed in Chapter 5, school buses illustrate the high impacts 

possible from self-pollution. Tracer-gas experiments conducted on six buses indicate that 

the self-pollution intake fraction is significant for school buses, to a degree that depends 

on the age of the bus. The self-pollution intake fraction reported in Chapter 5 is 70 per 

million for the oldest bus investigated (model year: 1975), and averages 20 per million 

for the remaining five buses (model years between 1985 and 2002). These values indicate 

that for a school bus operating in the South Coast Air Basin, the cumulative mass of 

pollution inhaled by the roughly 40 students on a bus is similar to the cumulative mass of 

pollution inhaled by all of the other 15 million exposed individuals in the air basin. 

Making the reasonable assumption that the self-pollution intake fraction does not depend 

on the size of an urban area, for buses operating in a small city such as Chico, the 

majority of the inhalation intake of emissions from a school bus might well be 

experienced by the individuals riding that bus. Self-pollution offers the potential to be a 

“low-hanging fruit” for realizing exposure reduction benefits. Addressing bus self-

pollution could markedly reduce the inhalation intake of diesel PM, even before bus 

emission reductions are achieved. 
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Coarse particles versus accumulation mode particles. Accumulation mode 

particles are more persistent than coarse mode particles (Seinfeld and Pandis, 1998). 

Coarse mode particles deposit onto stationary surfaces as a result of gravitational settling 

and inertial impaction, which reduces their characteristic residence time in air. As a 

result, all else being equal, the intake fraction is greater for accumulation mode particles 

than for coarse particles. The fraction of PM that is in the coarse mode is likely to be 

higher for physically generated PM (e.g., wind-blown soil and dust from car tires and 

brakes) than for combustion-generated PM (e.g., vehicle emissions, power plant 

emissions).  

A rough estimate, using a one-compartment model of an urban area and assuming 

settling velocities (units: cm s-1) of 0.03 and 3 for fine (PM2.5) and coarse (PM10-2.5) 

particles, respectively (Seinfeld and Pandis, 1998), indicates that the urban intake fraction 

is ~80% less for coarse PM than for fine PM. This value is derived from Equation 3A-3 

in Chapter 3 Appendix I, and uses (1) the deposition velocity divided by the mixing 

height as an estimate for the first-order rate constant, k, and (2) the value 480 m2 s-1 for 

wind speed times mixing height (i.e., the median x-axis value in Figure 4-4). Deposition 

velocity can vary over a wide range, depending not only on particle size, but also on 

airflow conditions and land surface roughness. This calculation illustrates that deposition 

may be important as a removal mechanism for coarse particles, especially when 

considering a large air basin. (This analysis does not incorporate indoor-outdoor ratios for 

coarse versus fine PM, which influence intake rates. In general, when ambient pollution 

migrates to indoor environments, the fraction of particle mass removed is greater for 

coarse particles than for fine particles. Accounting for this difference would further 
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reduce the intake fraction for coarse particles relative to the intake fraction for fine 

particles.) 

 

Primary versus secondary PM. Evans et al. (2002), studying conditions 

throughout the US, found that intake fraction values for power plants and urban and rural 

vehicle emissions were between one and two orders of magnitude less for secondary PM 

than for primary PM. This large difference is a result of two factors: (1) the greater time 

required for secondary PM to form and the resulting greater dilution that occurs between 

emissions and exposure, and (2) a significant mass fraction of precursor emissions do not 

actually form secondary PM because of chemical equilibrium and kinetic constraints and 

because of loss mechanisms for gaseous precursors. The difference in intake fraction 

between primary PM and secondary PM varies significantly among locations because of 

differences in dilution rates, population proximity, and particle formation rates. The 

findings in Evans et al. (2002) suggest that reducing PM inhalation intake by a specific 

amount would require much greater mass emission reductions if policies target precursor 

emissions that form secondary PM, rather than targeting primary emissions. Even so, 

targeting precursor emissions is still appropriate. For US power production, mass 

emissions of SOx and NOx, which are PM2.5 percursors, exceed primary PM2.5 emissions 

by several orders of magnitude. 

 

Environmental justice 

Understanding and addressing distributional issues related to air pollution 

exposure is an important aspect of air quality management. Air pollution control policies 
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need not only to reduce the total health impact of emissions, but also to ensure that the 

distribution of burden among the population is not unfair or unjust. Throughout most of 

this document, intake fraction is based on the total population intake. However, intake 

fraction can be apportioned by population subgroup, even down to the level of an 

individual. So, for example, if the population is divided into a set of groups, the total 

population intake fraction can be considered as the sum of the partial intake fractions 

associated with each group. One indicator of environmental justice would be the degree 

to which partial intake fractions per capita are consistent among different demographic 

indicators. For example, Heath et al. (2003) considered how intake fraction for an 

electricity generation station depends on the station’s location. They present, for specific 

locations in California, the percentage of the downwind population that is white versus 

non-white, and the percentage of total intake that occurs in the white and non-white 

populations. In 3 of the 5 cases studied, non-white populations are significantly more 

exposed than white populations. For example, for a hypothetical small-scale electricity 

generator (“distributed generation”) located in downtown Los Angeles, 32% of the 

exposed (i.e., downwind) population is non-white, but this population accounts for 69% 

of the total intake (Heath et al., 2003). Chapter 6 of this dissertation considers 

environmental issues related to inhalation of urban air pollutants in the South Coast. That 

chapter considers intake rate rather than intake fraction. 

When considering environmental justice and air pollution, the population could be 

divided into subpopulations using a number of attributes, including ethnicity, gender, 

neighborhood, income, age, and health status. As information emerges about different 

degrees of susceptibility of demographic subgroups to air pollution exposure, intake 
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fraction analyses can be conducted to highlight the levels of exposure that these 

subgroups encounter in relation to other parts of the population. Doing so would enable 

additional control effort to be targeted at protecting those who are most vulnerable to air 

pollution.  

 

Intake fractions and health risk assessments 

The source-by-source approach used in a conventional health risk assessment is 

designed to accommodate a small number of large sources for which the local impacts are 

large. While it is possible to complete a conventional HRA for a situation involving many 

individuals and many sources, this approach becomes less efficient as the number of 

sources and individuals increases. For a distributed source, such as motor vehicles in the 

SoCAB, whose pollution reaches many millions of people, it is important to consider the 

cumulative impact of all vehicles on the entire population. The evaluation of the health 

risks associated with motor vehicles represents a different context from situations 

typically evaluated in a health risk assessment, and evaluating the intake fraction 

represents a useful step in quantifying these risks.  

To use population intake as part of a risk assessment, it would first be necessary 

to convert the units for existing toxicity factors from risk per concentration to risk per 

intake. For example, benzene’s concentration-based unit risk for leukemia is 8.3 × 10-6 

per (µg/m3), meaning that for each 1 µg/m3 increase in the population average lifetime 

benzene exposure will lead to an additional 8.3 leukemia cases per million people so 

exposed (US EPA, 1993). Similarly, each 1 µg/m3 increase in the lifetime exposure for an 

individual will increase the risk (probability) of contracting leukemia by 8.3 per million. 
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This same lifetime of exposure, at an inhalation rate of 12.2 m3 d-1 (Layton, 1993), will 

lead to a lifetime intake of 0.31 g. Thus, the intake-based unit risk is 27 × 10-6 per gram 

(i.e., 8.3 × 10-6 divided by 0.31 g), meaning that each additional 1.0 gram inhaled over a 

lifetime will increase the risk of leukemia by 27 per million. If the dose-response curve is 

linear, with no threshold, then the intake-based unit risk represents the cancer risk 

independent of whether the intake occurs in one individual or many individuals. (This 

assumption is not valid across all possible exposure scenarios. It is mathematical result of 

the common linear no-threshold dose-response assumption, and it may reasonably hold 

for a range of common exposure scenarios.) 

One method for characterizing environmental health risks is in terms of the risk to 

the “maximally exposed individual” (MEI). This approach is common in conventional 

health risk assessments (HRAs). The MEI for a specific source is a hypothetical person 

who spends all of his or her time at the location of that source’s maximum impact. For 

example, for a power plant, the MEI might be a hypothetical person who spends 100% of 

his or her time close to the plant and in the downwind direction. Usually the health risk to 

this hypothetical MEI is significantly larger than the true risk to any real individual. If 

decision makers evaluate emissions sources solely in terms of the risk to a hypothetical 

MEI, then sources that have a large localized impact may be deemed unacceptable, 

whereas sources that have a moderate impact over a large number of people may be 

deemed acceptable. An unintended consequence of this approach is that a single large 

source that yields an unacceptable MEI risk can be deemed more acceptable if it is 

divided into several smaller sources, each with smaller MEI risks. The conclusion – that a 

larger number of smaller MEI risks is acceptable – may be reached even though the total 
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risk to the exposed  population could remain unchanged or even increase through the 

process of splitting a large source into many smaller ones. 

A second method commonly used in a conventional HRA is to identify the 

number of people above a certain concentration or risk level. This method is more useful 

than the MEI approach at capturing the cumulative population burden, but it is still not 

complete. Two sources could have the same number of people above a certain threshold, 

while exposing the above-threshold and the below-threshold populations to very different 

concentrations. In addition, similar to the MEI approach, a single source split up into 

many little sources may cease to expose any individual above a certain level, even if 

doing so does not decrease the total population health burden. 

Intake fractions are used to calculate the total population intake, which (for some 

pollutants) may be more closely associated with the cumulative risk to the population or 

with the population disease burden. This focus on cumulative population risk is often not 

included in conventional HRAs. For a compound exhibiting a linear, no threshold, dose-

response relationship, the population’s health risk is directly proportional to the total 

population intake. The use of intake fractions in risk assessments shifts the framework 

from one based on the risk to an individual or group of individuals to one based on the 

risk burden to an entire population or to a subpopulation. 

Intake fractions represent a novel way of quantifying answers to environmental 

health questions. Intake fraction values can be useful for comparing pollutant impacts 

across diverse source categories. For example, using total population intake as a metric 

facilitates comparing motor vehicles to tobacco smoke as sources of exposure to benzene 

(Bennett et al., 2002; Nazaroff and Singer, 2004). Intake fraction could be used to 
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compare environmental impacts of transportation options such as train, bus, automobile, 

and ferry (van Wee et al., 2005). Intake fraction offers a top-down measure that 

summarizes exposure differences among pollutant and source types, accounting for issues 

such as the proximity between emissions and the receptors and the persistence of a 

pollutant in the environment. Nevertheless, the intake fraction does have limitations; 

these are presented in the second subsection below. 

 

Additional uses for the intake fraction  

This dissertation investigates people’s inhalation of air pollution. However, the iF 

can be applied to other media, exposure pathways, or endpoints (MacLeod et al., 2004). 

Intake fractions can be a useful way to organize understanding about the complex 

emissions-to-intake relationship for multi-media, multi-pathway compounds. For 

example, semivolatile organic compounds (SVOCs) are inhaled as air pollution, and they 

are ingested via fruits and vegetables after depositing onto crops (Lobscheid et al., 2004). 

Intake fraction analyses can be constructed that account for multiple exposure pathways.  

Intake fraction is among the many metrics that can be used to compare and 

corroborate model predictions. As I have done in Chapter 3, iFs can be used to pose the 

question of whether additional levels of sophistication in a model or an analysis add value 

or modify the results. Given the increasing cost, complexity, and in some cases potential 

for unseen errors associated with increasingly detailed analyses, iFs can be useful in 

evaluating the level of detail that is appropriate for a specific situation. 
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Limitations to using intake fraction 

Intake fraction represents a particular way of organizing information. As such, it 

is useful in some but not all situations. Here are three important limitations to the intake 

fraction metric. 

(1) Intake fraction is less useful for pollutants with a nonlinear rather than a linear 

dose-response relationship. In regulatory contexts, urban air toxics are typically assumed 

to have a linear dose-response relationship, but there may be cases when one wants to 

consider pollutants that exhibit threshold effects or non-linear dose-response 

relationships. For these pollutants, the intake fraction is still useful for understanding the 

relationship between emissions and inhalation intake. However, quantitatively estimating 

population health impact would require additional information. For example, for a 

pollutant with a linear dose-response relationship, but a threshold below which no health 

damage occurs, a modified intake fraction could be defined which incorporated the sum 

of intake above the threshold rather than total intake. Such potential applications of the 

intake fraction concept have not yet been substantially explored in the literature, nor are 

they addressed in this dissertation. In situations where the dose-response is highly 

nonlinear, population intake fraction may offer little or no useful insight. 

(2) Intake fraction does not preserve information about the time pattern of 

exposure. Dose rate may be an important aspect of the health impact of certain specific 

pollutants. For example, the same dose of carbon monoxide that causes death if inhaled 

over a duration of 30 minutes might cause no impacts if inhaled over a duration of 10 

hours. 



 37

(3) Intake fraction is not used in extant regulations. Specific analyses that are 

required in regulations, such as permitting decisions, may not find intake fraction to be 

useful. (At the same time, when regulators have flexibility in deciding how to meet air 

quality objectives, intake fraction may be useful as one component in a larger analysis.) 

 

Conclusions 

 This chapter introduced the metric intake fraction, and explored how it might be 

used in air quality analyses. Typical intake fraction values for ambient emissions in urban 

areas are in the range 1 – 100 per million, meaning that 1 – 100 g are cumulatively 

inhaled by urban residents, per million grams emitted. Intake fraction values vary over 

time and by location, with values being higher for indoor than for outdoor emissions and 

also higher for urban than for rural emissions. Intake fraction values may be used in 

health risk assessment, cost-benefit analyses, environmental justice analyses, and in 

prioritizing emissions sources in terms of the impact on population inhalation of 

emissions. This chapter provides several examples of analyses and comparison that could 

be done using intake fraction, depending in part on what information is available. The 

chapter also explores attributes of emission sources (e.g., stack height, diurnal timing of 

emissions) that may influence intake fraction. Intake fraction is more applicable when 

considering pollutants with a linear, no-threshold dose-response, and less useful when 

considering pollutants with highly nonlinear dose-response relationships.
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Table 2-1: Summary of intake fraction comparisons 

Comparison Key difference(s) Typical difference in intake fraction values(a) 

Urban versus  
rural emissions 

Population density; proximity 
between emissions and people 

Intake fraction is an order of magnitude larger for a large city than 
for a small city, and an order of magnitude larger for a small city 
than for a rural area (see Chapter 4). 

Summer versus 
winter; night 
versus day Dilution rate; atmospheric 

stability 

Intake fraction is up to an order of magnitude larger for stable than 
for unstable atmospheric conditions (Lai et al., 2000). Intake 
fraction is ~2 times higher in winter than summer (see Chapters 3 
and 4). 

Stack height 
Proximity between people and 
emissions; dilution reduces 
exposures 

Intake fraction is up to an order of magnitude less for a tall stack 
than for a short stack or no stack (Evans et al., 2002; Lai et al., 
2000). 

On-road versus 
off-road 

Proximity between people and 
emissions 

Urban intake fraction is approximately 1.3 – 5 times larger for on-
road sources as for off-road sources. (See calculations in the 
appendix to this chapter.) The comparable difference in rural on-
road versus off-road intake fraction is unknown. 

 
 
 
Self-pollution 

 
 
Outdoor versus indoor or in-
vehicle environment. Reduced 
dilution rate inside a vehicle or a 
building. 

The rate of self-pollution is unknown for many sources. Potentially, 
self-pollution can increase intake fraction by more than an order of 
magnitude. For school buses in urban areas, self-pollution is 
expected to increase intake fraction by a factor of 2 – 10 (see 
Chapter 5). 
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Table 2-1 (Cont.)   

Comparison Key difference(s) Typical difference in intake fraction values(a) 

Coarse versus  
fine particles Atmospheric persistence 

Intake fraction is larger for fine particles than for coarse particles. A 
typical difference is a factor of ~3. (See calculations in this 
chapter.) 

 
Primary versus 
secondary 
pollutants 

Proximity between emissions and 
people; multiple chemical fates 
for species that are precursors to 
secondary PM 

May be one or two orders of magnitude difference, with intake 
fraction larger for primary PM than secondary PM (Levy et al., 
2003). Difference between primary and secondary gaseous 
pollutants has not been explored in the literature. 

Indoor versus 
outdoor 

Persistence of the pollutant in 
people’s breathing zone; dilution 
rate 

On average, indoor intake fraction is two to three orders of 
magnitude greater for indoor releases than for outdoor releases (Lai 
et al., 2000; Smith, 1993; Smith, 2002). 

(a) Except for the row labeled “stack height”, this table focuses on ground-level releases of pollutants. Except for the 
row labeled “primary versus secondary”, this table focuses on conserved pollutants.
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Figure 2-1: Emission-to-health effects relationships. Intake fraction summarizes the relationship between emissions and intake 

(figure after Smith, 1993). 
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Figure 2-2: Typical intake fraction values for various emission situations. Values shown 

are illustrative and approximate, rather than definitive. Based on Lai et al. (2000). 
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Appendix: Calculations involving intake fraction for on-road versus not-on-road 

emission sources 

This appendix presents and discusses calculations regarding the intake fraction of 

diesel PM and benzene emissions from on-road versus not-on-road emission sources. 

Calculations and data sources are given in Table 2A-1. Note that “not-on-road” is not the 

same as “off-road”. The latter term is commonly used to indicate a subset of mobile 

sources (e.g., all-terrain vehicles operating on trails). I use the former term here to 

indicate sources, mobile or not, that are not on roads (e.g., also including an “area” source 

such as small industrial shops). For the purposes of this calculation, it is not necessary to 

distinguish, for example, between off-road mobile and area sources; both are considered 

here as not-on-road sources.  

The table in this appendix contains calculations for both diesel PM and benzene. 

Cigarette smoke and other indoor sources of benzene are significant contributors to total 

population benzene inhalation (Wallace, 1996). This analysis does not consider indoor 

sources because it focuses on exposure to ambient pollution. 

The main input parameters in Table 2A-1 are (1) the portion of emissions that are 

from on-road sources, (2) the percent of time spent in three microenvironments (in-

vehicle, indoors, outdoors), (3) the ratio of in-vehicle concentration to ambient 

concentration, and (4) the ratio of indoor concentrations to ambient concentrations, 

considering only ambient sources. These four parameters are labeled as rows 1 – 4 in 

Table 2A-1. The table presents a range of values for the third input (ratio of in-vehicle 

concentration to ambient concentration), and point estimates for the remaining 3 
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parameters. Here, square brackets (“[ ]”) are used to denote labeled row numbers in Table 

2A-1. 

The calculations are based on the assumption that ambient concentrations have 

been normalized to 1.0. All concentrations and intakes in the table are expressed relative 

to this (unitless) value. The breathing rate, which is not specified, is assumed to be 

constant over time. 

The first calculation [rows 5a–5d] estimates the portion of population intake 

attributable to in-vehicle exposures [5d]. This value is equal to the in-vehicle intake [5a] 

divided by total intake [5c]. In-vehicle intake [5a] is estimated as the product of time 

spent in vehicles [2a] and the ratio of in-vehicle concentrations to ambient concentrations 

[3]. (Recall that the ambient concentration is assigned a normalized value of 1.0.) Not-in-

vehicle intake is calculated as the time spent indoors times the ratio of indoor 

concentration to ambient concentration, plus the time spent outdoors. Total intake [5d] is 

the sum of in-vehicle [5b] and not in-vehicle intake [5c]. 

The second calculation [6a–6c] estimates intake attributable to on-road and not-

on-road sources. This calculation assumes that all exposures in-vehicle that are in excess 

of ambient concentrations are attributable to vehicles, and that exposures to ambient 

pollution are attributable to vehicles and non-vehicles based on the fraction of emissions. 

The former assumption is robustly valid, almost by definition. The latter assumption is a 

reasonable basis for making these calculations. The intake attributable to not-on-road 

sources [6a] is equal to the portion of emissions that are from not-on-road sources (i.e., 

1.0 minus the portion of emissions that are from on-road sources) times the intake of 

ambient pollution (which is a mixture of on-road and not-on-road sources). The estimated 
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intake of not-on-road pollution by design excludes the higher intake rates in vehicles 

because these are assumed to be attributable to vehicles. This intake of ambient pollution 

is the sum of the time spent in-vehicles, the time spent outdoors, and the product of the 

time spent indoors times that ratio of indoor concentration to ambient concentration. The 

intake attributable to on-road sources [6b] is the total intake [5c] minus the intake 

attributable to not-on-road sources [6a]. The table also gives the portion of total intake 

that is attributable to on-road sources (i.e., the intake attributable to on-road sources 

divided by the total intake) [6c]. 

The third calculation [7a-7b] estimates the relative intake fraction for both on-

road and not-on-road sources. The values presented in this portion of the table are not 

intake fraction values. Rather, intake fraction for the two sources (on-road and not-on-

road) would be proportional to the values given in the table. This approach allows one to 

estimate relative intake fractions. The relative intake fraction for not-on-road sources [7a] 

is the intake attributable to not-on-road sources [6a] divided by the portion of emissions 

from not-on-road sources (i.e., 1.0 minus the portion of emissions from on-road sources 

[1]). The relative intake fraction for on-road sources [7b] is the intake attributable to on-

road sources [6b] divided by the portion of emissions from on-road sources [1]. 

Finally, the fourth calculation [8] presents the ratio of intake fraction values for 

on-road and not-on-road sources. This value is the ratio of the two relative intake fraction 

values presented in the third calculation [7a and 7b]. 

The results in Table 2A-1 indicate that the diesel PM intake fraction is estimated 

to be 1.9 - 5.1 times as high for on-road sources as for other sources. Two reasons for this 

difference between vehicles and other sources are (1) proximity (on average, the in-



 45

vehicle environment is closer than other environments to vehicle emissions) and (2) that 

buildings offer more protection against outdoor PM than do vehicles. There is uncertainty 

in the in-vehicle/ambient concentration ratio, as indicated by the two estimates presented 

above. Values are presented here for benzene as a comparison. There is less uncertainty 

in this ratio for benzene than for diesel PM. While both vehicle benzene and vehicle 

diesel PM have a proximity effect [3], only vehicle diesel PM has a building protection 

effect [4]. The benzene intake fraction is estimated to be 1.3 times as high for on-road 

sources as for other sources. 

There is significant uncertainty in the portion of diesel PM from on-road sources 

versus from off-road sources [1]. If this value were 50% (rather than 25%), then the 

diesel PM intake fraction would be estimated to be 1.5 - 3.0 times as high (rather than 1.9 

- 5.1 times) for on-road sources as for other sources. There is also uncertainty in the ratio 

of diesel PM concentrations in-vehicle versus in ambient air [3]. If this value were 3, as 

employed in Chapter 6, rather than 4, as employed in estimate #1 in Table 2A-1, then the 

diesel PM intake fraction would 1.6 times as high (rather than 1.9 times) for on-road 

sources as for other sources. 
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Table 2A-1: Summary of calculations involving intake fraction for on-road versus non-
on-road emission sources 

  

Input data

1) Portion of emissions that are from on-road sources
References/ 

Notes
benzene 66% (a)
diesel PM 25% (b)

2) Time-activity information for California
The "percent" values, rather than the "minutes/day" values are used below.

minutes/day percent
2a) in-vehicle 80 5.6% (c) 
2b) indoors 1252 86.9% (c) 
2c) outdoors 108 7.5% (c) 

TOTAL 1440 100.0%

3) Ratio of in-vehicle concentration to ambient concentration
estimate #1 estimate #2

benzene 4 4.5 (d)
diesel PM 4 14 (d)

4) 

benzene 100% (e)
diesel PM 67% (f)

Calculations

5) Intake apportioned by receptor location
5a) In-vehicle = (2a) × (3)

estimate #1 estimate #2
benzene 0.22 0.25
diesel PM 0.22 0.78

5b) Not in-vehicle = (2b) × (4) + (2c)
estimate #1 estimate #2

benzene 0.94 0.94
diesel PM 0.66 0.66

Ratio of indoor concentration to ambient concentration, considering only 
ambient sources

Assume the ambient concentration is normalized to 1.0. All concentrations are relative 
to this (unitless) value. Assume a constant (unspecified) breathing rate.
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Table 2A-1 (Cont.) 

 

5c) Total = (5a) + (5b)
estimate #1 estimate #2

benzene 1.17 1.19
diesel PM 0.88 1.44

5d) = (5a) / (5c)
estimate #1 estimate #2

benzene 19% 21%
diesel PM 25% 54%

6)

6a) =(1.0 - (1)) × ( (2a) + (2c) + (2b) × (4))
estimate #1 estimate #2

benzene 0.34 0.34
diesel PM 0.53 0.53

6b) =(5c) - (6a)
estimate #1 estimate #2

benzene 0.83 0.86
diesel PM 0.34 0.90

6c) =(6b) / (5c)
estimate #1 estimate #2

benzene 71% 72%
diesel PM 39% 63%

7) Relative intake fraction

7a) = (6a) / (1.0 - (1))
estimate #1 estimate #2

benzene 1.00 1.00
diesel PM 0.71 0.71

Intake apportioned by emission location (i.e., on-road versus not-on-road 
sources)

Portion of intake 
attributable to on-road 
sources

Attributable to on-
road sources

Sources other than on-
road

The values below are not intake fraction values. Rather, intake fraction for the 
two sources would be proportional to the values below. This approach allows us 
to estimate relative intake fractions.

Portion of total intake 
attributable to in-
vehicle exposures

Attributable to sources 
other than on-road

Assumes that all exposures in-vehicle in excess of ambient concentrations are 
attributable to vehicles, and that exposures to ambient pollution are attributed to 
vehicles and to non-vehicles based on the fraction of emissions.
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Table 2A-1 (Cont.) 

 

  

Notes 

(a) US EPA (1993). 

(b) CARB (2000c). 

(c) Table 6 of Klepeis et al. (2001). 

(d) The bases for the estimates of the ratio of in-vehicle concentration to ambient 

concentration (line 3) are as follows. For benzene, the values of 4 and 4.5 are from 

Chapter 3 and Rodes et al. (1998), respectively. For diesel PM, the values of 4 and 15 

reflect the range of values reported by Fruin et al. (2004).  

(e) Benzene, as a nonreactive gas, penetrates the building envelope without loss or 

removal. Based on mass balance, the long-term average concentration for ambient 

benzene is the same indoors as outdoors. 

(f) Source: Fruin et al. (2004). The value of 0.67 for the ratio of indoor to ambient 

concentrations for diesel PM (Fruin et al., 2004) is consistent with indoor/outdoor 

7b) On-road sources = (6b) / (1)
estimate #1 estimate #2

benzene 1.25 1.29
diesel PM 1.38 3.60

Conclusion
8) Ratio of intake fraction values: on-road sources relative to other sources

=(7b) / (7a)
estimate #1 estimate #2

benzene 1.3 1.3
diesel PM 1.9 5.1
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(I/O) ratios given by Riley et al. (2002) for elemental carbon of 0.73 for a typical 

infiltration ventilation residence, 0.38 for a residence with central air conditioning, 

and 0.63 for an office building with a 40% ASHRAE filter. For example, consider the 

following "back-of-the-envelope" approximation of the average indoor/outdoor 

concentration ratio. In 1999, ~36% of occupied housing units in the Los Angeles-

Long Beach Metropolitan Area had central air conditioning (AC) (US HUD, 2001). 

Assume that (1) this value applies to all residences, (2) AC is used 5 months per year, 

and (3) during these five months, AC is on for 12 hours per day. Based on these 

assumptions, on average (36% × (5/12) × (12/24)=) 7.5% of housing units are using 

central air and the remainder (92.5%) are not. If people spend 1/3 of their indoor time 

in an office (I/O = 0.63), and 2/3 of their indoor time in a residence (I/O = 7.5% × 

0.38 + 92.5% × 0.73 = 0.70), then the occupancy-weighted average I/O ratio for a 

building would be 0.68, which agrees closely with the value of 0.67 used above. This 

“back-of-the-envelope” calculation suggests that the value of 0.67 given by Fruin et 

al. (2004) is reasonable. 
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Chapter 3: Intake fraction of vehicle emissions in 

California’s South Coast Air Basin 

 

Reproduced in part with permission from Atmospheric Environment, 37(24): 3455-3468, 

2003. Copyright 2003 Elsevier Inc. 

 

Introduction 

Although strongly associated with photochemical smog and its harmful 

components, such as ozone and NOx, motor vehicles also contribute significantly to 

ambient concentrations of hazardous air pollutants and certain primary criteria pollutants, 

such as carbon monoxide. Nationwide, on-road motor vehicles contributed 48% of US 

benzene emissions in 1996 and 51% of US carbon monoxide (CO) emissions in 1999 (US 

EPA, 2001c). In the South Coast Air Basin (SoCAB) of California, on-road motor 

vehicles contributed 70% and 80%, respectively, of total benzene and CO emissions 

(CARB, 2000b; SCAQMD, 2000). Previous investigations have emphasized the 

importance of motor vehicles as a dominant source of exposure to ambient benzene and 

CO (Flachsbart, 1999b; Fruin et al., 2001; Law et al., 1997; Macintosh et al., 1995).  

In this chapter, I estimate intake fraction values for benzene and CO from motor 

vehicles in the SoCAB (see Figure 3-1) during 1996 – 1999. Prior to this research, no 

published report had analyzed ambient concentration data to quantify the intake fraction 
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(iF). Two previous investigations quantified the iF for motor vehicles based on air 

dispersion modeling. Evans et al. (2002) used a trajectory model, with 448 grid cells of 

10,000 km2 each, to calculate iFs for motor vehicle emissions on 40 highway segments 

throughout the United States. For primary PM2.5, they report iFs of 3–18 per million for 

urban locations.  Nigge (2001) combined two air dispersion models to calculate iFs of 

nine primary pollutants from point sources in Germany. For short-range transport (within 

100 km), he used a Gaussian plume model. For long range transport (>100 km) he used a 

trajectory model with 10,000-km2 grid cells. Intake fraction results are presented by 

Nigge for three pollutants: acetaldehyde (3–14 per million), PM2.5 (8–18 per million), and 

PM10 (3–12 per million). These results, which Nigge argues are applicable to motor 

vehicles, are similar to those of Evans et al. (2002). In contrast with these two studies, we 

estimate intake based on ambient monitoring data, and we explicitly include near-source 

exposures. Our research focuses on an urban area (17,460 km2) that would occupy less 

than two grid cells in the trajectory models employed by Evans et al. (2002) and Nigge 

(2001).  

  

Methods 

For inhalation of a primary pollutant from an emission episode, the intake fraction 

can be expressed as follows (Lai et al., 2000): 
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Here, T1 and T2 are the starting and ending times of the emission episode; P is the number 

of people in the exposed population; Qi(t) is the breathing rate for individual i at time t 

(m3 h-1); Ci(t) is the incremental concentration at time t in individual i’s breathing zone 

that is attributable to the emission source (g m-3); and E(t) is that source’s emissions at 

time t (g h-1). In practice, the integral in the numerator would not be evaluated out to 

infinite times, but only until the incremental concentration attributable to the source of 

interest becomes negligibly small. For this study, it is only necessary to evaluate this 

integral from T1 to T2, because the duration of that interval (four years) is several orders 

of magnitude longer than the time scale for pollutant transport through an urban air basin 

(less than a day). 

The method I employ for calculating the intake fraction requires information on 

three parameters or parameter groups: emissions, population size and breathing rate, and 

exposure concentration. Each of these parameters is discussed below. If there were no 

spatial or temporal variability in the exposure concentration, the intake fraction could be 

evaluated from a simple form of Equation 3-1. It would be computed as the product of 

the population size, the average breathing rate, and the average incremental exposure 

concentration attributable to a specific source, divided by the total emission rate for that 

source. However, a more detailed analysis is required for two reasons. First, publicly 

available concentration data come from monitoring stations that record ambient 

concentrations (most monitoring stations are located on the roof of a building), rather 

than from exposure concentrations. Second, spatial and temporal correlations among 

population density, breathing rates and exposure concentrations may increase the actual 

population intake (Hayes and Marshall, 1999). 
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Emissions 

Emissions data, which are shown in Figure 3-2, are based on the California Air 

Resources Board’s (CARB’s) EMFAC database and model (CARB, 2000a). EMFAC 

calculates evaporative and exhaust emissions from on-road mobile sources based on 

monthly estimates of vehicle-miles traveled and of the age distribution of the vehicle 

fleet. Exhaust emissions are estimated from dynamometer tests, which are run according 

to Federal Testing Procedure (FTP) protocols, and from CARB’s database of time spent 

in various operating modes, such as idling, accelerating, and startup. Evaporative 

emissions include drips, leaks, and “breathing losses” due to diurnal heating and cooling 

of the gas tank and the engine. Benzene is present in both evaporative and exhaust 

emissions, because it is a constituent of gasoline and also a product of incomplete 

combustion. Carbon monoxide is only present in exhaust emissions because it is formed 

during incomplete combustion but is not a gasoline constituent. 

EMFAC directly estimates CO and total organic gas (TOG) emissions; it does not 

differentiate among the hydrocarbons that make up TOG emissions. I calculated benzene 

emissions by applying data from recent tunnel studies, which indicate that benzene is 

3.3% of the TOG from exhaust emissions and 0.5% of the TOG from evaporative 

emissions (Kirchstetter et al., 1999a; Kirchstetter et al., 1999b). These two benzene 

percentages (3.3% for exhaust; 0.5% for evaporation) are assumed here to be constant 

over time. In reality, these percentages will vary diurnally and seasonally because they 

depend on the temperature (which differentially impacts the volatility of various ROGs) 

and on fuel composition (which changes seasonally). Gasoline was reformulated in 
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California in the mid-1990’s, reducing benzene levels in gasoline and therefore also in 

evaporative emissions. EMFAC-estimated emissions used here average 495 tonnes per 

month for benzene and 196,500 tonnes per month for CO. For benzene, exhaust 

emissions are about an order of magnitude greater than evaporative emissions. EMFAC-

estimated emissions used here are 92% exhaust and 8% evaporative.  

Initially there were discrepancies between the bottom-up approach of EMFAC 

and the top-down approach of fuel-based emissions inventories (Fujita et al., 1992; 

Harley et al., 1997; Pierson et al., 1990; Singer and Harley, 1996). The former is based on 

scaling up the emissions from a sampling of individual motor vehicles, in terms of the 

emissions per km times the total km driven (Horie, 1995). The latter is based on the total 

fuel consumption times the emissions per liter (Singer and Harley, 2000). Recent versions 

of EMFAC agree with the fuel-based emission inventory to within about 20% (Singer 

and Harley, 2000). 

 

Population size and breathing rate 

The SoCAB is home to ~15 million people occupying 17,460 km2 (6745 miles2). 

In contrast, the population of California is ~34 million, and the population of the U.S. is 

~285 million. Thus, the South Coast contains 44% of the population of California, and 

one in 19 US residents. The average population density is 860 people km-2 (2,200 people 

mile-2). 

Using an approach based on metabolic activity, Layton (1993) estimates age- and 

gender-specific breathing rates. To use the breathing rates in the intake fraction analysis, 

I first determined the population average breathing rate, and then estimated the diurnal 
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profile of breathing rate. Population average breathing rate is calculated from the data in 

Layton (1993) based on the fraction of the US population in 5-year age bins (under 5 

years old, between 5 and 9 years old, between 10 and 14 years old, etc.) (US Census, 

2001). The estimated population average breathing rate is 12.2 m3 d-1. As a comparison, I 

also calculated the lifetime average breathing rate for an individual, based on the data in 

Layton (1993) and assuming a lifetime duration of 75 years. To three significant figures, 

the result of this second calculation is the same as for the first calculation (12.2 m3 d-1). In 

contrast with the value of 12.2 m3 d-1 used in this chapter, risk assessments often use a 

higher breathing rate (e.g., 20 or 25 m3 d-1) to account for interindividual variability and 

to provide a conservative intake estimate.  

The next step is to determine the diurnal breathing rate profile (i.e., allocate the 

total volume of air breathed per day – 12 m3 – to each 1-hour time step). To my 

knowledge, there are no available estimates of the diurnal profile for the population 

average breathing rate, nor are there data that would yield a robust estimate. In this 

dissertation, I present two independent estimates for this information, one in this chapter 

and one in Chapter 6. Layton (1993) provides the breathing rate and amount of time spent 

per day for five activity levels: sleep, light, moderate, hard, very hard. For the analysis in 

this chapter, I estimate the diurnal profile for the population average breathing rate by 

allocating total hours spent at each activity level to each 1-hour period during the day. 

This allocation is based on my own best estimate of the likelihood of a specific activity 

level occurring in each hour. Figure 3-3 presents the resulting diurnal profile, in terms of 

the population average breathing rate and the activity level. If better estimates of the 
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diurnal population average breathing rate become available, it would be straightforward 

to update my analysis to include this information. 

  

Exposure concentration  

Exposure concentrations are calculated from ambient concentrations, the time 

spent in various microenvironments (i.e., time-activity patterns), and the concentrations 

in these microenvironments. Each of these three parameters is discussed below. Monthly 

average ambient and exposure concentrations attributable to motor vehicles are shown in 

Figures 3-4a and 3-4b, respectively. Figure 3-5 shows the typical diurnal pattern for 

breathing rate and exposure concentration. 

 

Ambient concentrations 

The South Coast Air Quality Management District (SCAQMD) measures and 

records ambient pollutant concentrations at 34 air quality monitoring stations distributed 

throughout the South Coast Air Basin (SoCAB). During 1996 – 1999, 20 of these stations 

recorded one-hour average CO concentration every hour, for a total of 623,534 

measurements. Six of these stations recorded 24-hour average benzene concentration 

approximately twice per month, for a total of 518 measurements. Additional information 

on the ambient concentration data is given in Table 3-1. 

Monitoring station data and year-2000 population densities for the US Census 

tracts containing monitoring stations are combined to yield a population-weighted 

ambient concentration. That is, when determining the average ambient concentration, the 
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concentration recorded at each monitoring station is multiplied by a weighting factor. The 

weighting factor used is the population density in the census tract containing the monitor. 

Visual inspection of a map showing census tract population density and the locations of 

ambient monitor stations did not reveal a systematic bias between the population 

densities of the tracts containing monitors, as compared to the tracts surrounding each 

monitor. A more sophisticated approach would be to generate a three-dimensional surface 

of concentrations (i.e., concentrations throughout the two-dimensional ground surface), 

based on kriging or other interpolation methods. The additional resources necessary to 

implement such an approach are not justified for this analysis because there is only a 

modest degree of spatial heterogeneity in the ambient data. For example, the difference 

between the highest and lowest annual average ambient CO concentration is a factor of 

four (0.54 ppm at El Torro versus 2.3 ppm at Lynwood). The coefficient of variability 

among the stations (i.e., the standard deviation divided by the average) is only 0.33, again 

indicating only modest spatial heterogeneity. This result for the South Coast appears to 

hold for other urban areas throughout the US (see Chapter 4). 

Because hourly ambient concentrations are available for CO but not benzene, I 

estimate hourly ambient benzene concentrations by applying the characteristic daily 

profile for CO concentrations in each month and year to the 24-hour average benzene 

concentration. The typical daily CO profile is shown in Figure 3-6. This approach 

assumes that benzene and CO exhibit similar profiles over the hours of the day. 

Expectations suggest that this assumption is approximately true, since both pollutants are 

nonreactive and emitted by motor vehicles, but it is not rigorously correct because CO 

comes from exhaust emissions while benzene comes from both exhaust and evaporative 
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emissions. Evaporative benzene emissions peak during hot afternoons, while CO 

emissions peak during “cold start” conditions on cold mornings. The approach I have 

used, which does not account for these differences in the diurnal pattern between benzene 

and CO, is the best currently possible. If more detailed data were available on hourly 

ambient benzene concentrations, the analysis could be readily refined to incorporate the 

additional information. 

One of the practical data-analysis challenges I encountered is accounting for 

concentrations that were below the detection limit, which occurred 5-6% of the time in 

the ambient CO and benzene data sets. There are several ways to utilize data with a 

significant fraction of nondetects. A straightforward method is to replace all non-detects 

with an arbitrary value, such as half the detection limit, two standard deviations below the 

mean, or zero. A more robust method is to replace each nondetect with a randomly 

generated value below the detection limit, based on statistical properties (e.g., geometric 

mean and geometric standard deviation) of the data above the detection limit. I tested 

both methods, and, for both CO and benzene, the different methods do not change the 

mean concentration significantly. This finding results from two attributes of this system: 

the data have a small fraction of nondetects, and the detection limit is small relative to the 

average measured values. 

 

Time-activity patterns 

Pollutant intake depends on time-activity patterns, which indicate how much time 

is spent in various microenvironments. Using National Human Activity Pattern Survey 

(NHAPS) data (Klepeis et al., 2001) provided directly to me by Klepeis, I examined three 
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microenvironments: in a vehicle, in a residence with an attached garage, and in all other 

locations, whether indoor or outdoor. In a separate analysis, described below, I also 

account for exposures in indoor locations that are immediately downwind of a freeway. 

For the first microenvironment, I used data for the NHAPS category “in/near 

vehicle.” This category includes any outdoor activity that takes place inside or nearby a 

transportation vehicle, such as riding in a vehicle, waiting for a bus/train/automobile, and 

walking on a sidewalk. For the second microenvironment, I combined an estimate for the 

Los Angeles-Long Beach Metropolitan Area that 60% of people have an attached garage 

(US HUD, 2001) with NHAPS data on time spent in a residence. All other time is 

allocated to the third microenvironment, which includes both outdoor (not in/near a 

vehicle) and indoor (without an attached garage) locations. Of the 1.30 × 1020 person-

hours available annually to the 15 million residents of the SoCAB, 7% is spent in-vehicle, 

41% is spent inside a residence with an attached garage, and the remainder (52%) is spent 

elsewhere. Other microenvironments that have been used in benzene and CO exposure 

assessments, such as bars or houses with natural gas cook stoves, are not needed to study 

exposure only to motor vehicle emissions (Fruin et al., 2001; Kirchstetter et al., 1996; 

Macintosh et al., 1995; Ott et al., 1992). Levels of benzene and CO from vehicles are not 

expected to vary systematically across such microenvironments (e.g., in homes with 

natural gas stoves as compared to homes with electric stoves). 

 

Microenvironment concentrations 

In locations that are in close proximity to motor vehicles, the exposure 

concentration tends to be higher than the measured ambient concentration. The estimated 
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average concentration in each of four microenvironments (in-vehicle, in a residence with 

an attached garage, in a building near a freeway, and all other locations) is presented 

below. The results below are consistent with an EPA study that uses 37 

microenvironments (US EPA, 2001a). The population-average increase in the exposure 

concentration over the ambient concentration, owing to microenvironmental 

enhancements, is presented in Figure 3-5 as the normalized exposure concentration.  

 

In-vehicle concentrations. Concentrations of vehicle pollutants such as benzene 

and CO are higher in vehicles than at ambient monitoring stations owing to differences in 

proximity to the emissions source. When in traffic, a person is potentially exposed to 

pollutants from (1) ambient urban air, (2) surrounding vehicles, and (3) the vehicle in 

which that person is riding. The first type of pollution, ambient pollution, would be 

recorded at ambient monitoring sites, and is attributable to vehicle emissions throughout 

an urban area and upwind of an urban area. Ambient concentrations vary with time of 

day, day of week, and season, because of differences in emissions and meteorology. The 

second type of pollution is attributable the vehicle passing through “micro-plumes” from 

the nearby surrounding vehicles. Time-average concentrations attributable to these micro-

plumes will vary, depending on wind speed and direction, traffic density and speed, 

distances between vehicles, and emissions from neighboring vehicles. The third type of 

pollution, termed “self-pollution”, is explored in more detail in Chapter 5 for the case of 

children’s inhalation of school bus emissions. It is generally believed that self-pollution is 

relatively minor for most private passenger vehicles. Here, it is necessary to know how 

average concentration in vehicles differ from average ambient concentrations, but it is not 
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necessary to disaggregate in-vehicle concentrations into the three types of pollution listed 

above (ambient, nearby vehicle, self-pollution). 

Flachsbart (1995; 1999a) reviewed 14 studies reporting in-vehicle and ambient 

concentrations of CO. All 14 studies reported concentrations to be higher in-vehicle than 

in ambient air, to a degree that is relatively consistent over time and among cities. The 

ratio of in-vehicle concentration to ambient concentration is found to be in the range 2 – 5 

for most studies, with an average value of 3.5. The three studies conducted in Los 

Angeles, California, reported values of 2.3, 2.9, and 3.9 for this ratio. For benzene, 

Weisel et al. (1992) reported this ratio as 5.8 in winter and 10.0 in summer, for an annual 

average of 7.9. These values from Weisel et al. (1992) are consistent with results from the 

multi-city TEAM study (Wallace, 1996), which reported typical benzene concentrations 

6.0 µg m3 in ambient air and 30 – 40 µg m3 in vehicles, suggesting a ratio of 5.0 – 6.7. 

The average value for this ratio from among the studies conducted in Los Angeles 

(values: 2.3, 2.9, 3.9, 7.9) is 4. Based on this value, I assume here that in-vehicle 

concentrations are 4 times higher than ambient concentrations.  

 

 Concentrations in residences with an attached garage. In a residence with 

an attached enclosed garage, vehicle emissions into the garage can migrate into the 

household via airflow coupling between the garage and the living space of the house 

(CMHC, 2001; Lansari et al., 1996). This coupling can increase in-residence 

concentrations of vehicle pollutants (Graham et al., 2004; Thomas et al., 1993). The 

seasonal and diurnal profiles of in-garage emissions will differ for CO and benzene. As a 

product of incomplete combustion, CO is only emitted when the engine is operating (all 
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CO emissions are tailpipe emissions). Benzene emissions include tailpipe and non-

tailpipe components. In-garage tailpipe emissions occur when a vehicle enters and exits 

the garage, and whenever the vehicle is warming-up or otherwise idling in-garage. 

Tailpipe emissions of CO and benzene are greater in the morning before the car leaves, 

when the car is idled in-garage to warm up the engine and before the catalytic converter 

is warm enough to function fully, than in the evening after the car returns home, when the 

catalytic converter is warm and the engine is likely to be turned off soon after entering 

the garage. Non-tailpipe benzene emissions (e.g., breathing losses) can occur whenever 

the vehicle is present, whether or not the engine is operating, and also potentially when 

the car is not present (e.g., evaporative emissions of gasoline drips and leaks on the 

garage floor). In general, evaporative benzene emissions are greatest during high ambient 

temperatures (daytime in the summer), and breathing loses are greatest for days with a 

wide diurnal temperature range. 

Evidence suggests that coupling between in-garage emissions and a household 

may, under certain circumstances, be significant. A clear reminder of this fact is the 

accidental CO poisonings that have been attributed to high-emitter vehicle emissions 

(Marr et al., 1998). In addition, measurements of household CO levels indicate that CO 

concentrations increase following in-garage emissions (IES, 1995).  

One recent study that explored this issue measured indoor, in-garage, and outdoor 

concentrations of CO and several VOCs (Liu et al., 2004). Unfortunately, the results from 

that study are not directly applicable to the current investigation, for two reasons. First, 

that study considered homes in Anchorage, Alaska, in winter. Few study conditions (e.g., 

meteorology, personal activities, home design) in the US would be less representative of 
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Southern California. This issue of applicability to conditions in Southern California 

applies generally to other studies conducted in cold climates (e.g., Graham et al., 2004). 

Second, by design, garage VOC emissions in the Anchorage study included gasoline 

equipment (e.g., lawn mower, snow blower) and other VOCs stored in the garage. The 

Anchorage study, like several other similar studies (e.g., Thomas et al., 1993), did not 

disaggregate indoor VOC concentrations attributable to garage emissions into vehicles 

and non-vehicle components, yet this desegregation would be necessary for me to 

directly use the data. Nevertheless, the Anchorage study (Liu et al., 2004) concluded that 

CO emissions from cars did not significantly increase long-term indoor CO 

concentrations. If this conclusion holds for Anchorage, where “warming up” a car is 

significantly more likely than in Southern California, then it is likely to hold for the South 

Coast.  

Based on limited tailpipe CO emissions in garages (as evidenced by the results 

from Anchorage) and no evaporative CO emissions, I estimate that motor vehicle-caused 

CO concentrations in all houses (with or without an attached garage) are the same as the 

local ambient value. The brief period of time that people spend in-garage, between 

exiting the vehicle and entering the house, is not expected to significantly increase the 

total population inhalation of CO or benzene. 

I estimate here that residences with an attached garage have vehicle-associated 

benzene concentrations that are ~20% higher than the ambient counterparts. This value is 

derived from measured benzene concentrations in 300 California homes during the period 

December 1991 – April 1992 (IES, 1995). On average, the difference between indoor and 

outdoor concentrations was reported as 0.06 ppb for no attached garage, 0.2 ppb for an 
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attached garage with no parked car, 1.1 ppb for one car, and 1.9 for two cars (Fruin et al., 

2001). These values indicate that vehicle emissions in garages, excluding non-vehicle in-

garage benzene emissions, contributed ~0.8 ppb to indoor benzene concentrations, or a 

~20% increase over typical ambient benzene levels of 3.4 ppb in the South Coast at the 

time.  

 

 Indoor concentrations near freeways. People in houses and other buildings in 

the vicinity of freeways will tend to experience higher concentrations than the ambient 

concentrations at monitoring stations because of the close proximity to a relatively major 

emissions source. I analyze time spent indoors near freeways separately because this 

microenvironment is not included in the NHAPS data. As with the previous 

microenvironments, the key questions are “How much higher are typical concentrations, 

compared to the ambient concentration?” and “How much time does the population spend 

in this class of microenvironments?”  

 For the approach employed here, answers to these questions can be derived from 

experiments or models, or both. Similar to the houses with an attached garage 

microenvironment, using experiments to measure the impact of a freeway in a way that 

the results could be generalized would require careful experimental design and would 

likely be highly data-intensive. Alternatively, a modeling approach can more easily 

estimate concentrations downwind of a generic freeway. Combining Gaussian plume 

model results for a line source with data showing in-vehicle concentrations as four times 

ambient concentrations (Fernandezbremauntz and Ashmore, 1995; Flachsbart, 1995), I 

estimate that average concentrations of motor vehicle emissions near a major roadway are 
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twice the basin-wide ambient concentration. This estimate accounts for the rapid decrease 

in concentration immediately downwind of a major source due to atmospheric dispersion. 

“Near” is defined here by the distance downwind of a freeway wherein the observed 

concentration is significantly higher than the ambient concentration because of that 

roadway’s emissions. Drivas and Shair (1974) found this distance to be less than 100 m. 

This result agrees broadly with the Gaussian plume dispersion equation for a line source 

(Nazaroff and Alvarez-Cohen, 2001), which indicates that this distance is typically less 

than 300 m. Both of these analyses assumed the wind is perpendicular to the freeway. 

Since all other wind directions will result in lower values for this characteristic distance, 

200 m represents a reasonable upper bound for the average characteristic distance. Zhu et 

al. (2002) measured CO concentrations at 17, 20, 30, 90, 150, and 300 m downwind and 

200 m upwind from the center of a Los Angeles freeway (Interstate 710). Their results 

are consistent with Drivas and Shair (1974) and with Nazaroff and Alvarez-Cohen 

(2001): the on-road spike in CO concentrations diminishes after 100–300 m. Similarly, 

the East Bay Children’s Respiratory Health Study reported that concentrations of several 

vehicle-related pollutants “were higher at schools located within 300 m downwind of a 

freeway compared with those at schools upwind or further from major traffic sources” 

(Kim et al., 2004).  

Combining the characteristic distance of 200 m with the length of freeways in the 

SoCAB, 3316 km (2061 miles) (Bhat, 2001) yields 660 km2 of “near-freeway” land, or 

4% of the total area of the SoCAB. For this portion of the analysis, I assume that the 

population density is uniform throughout the basin, and therefore ~4% of the people in 

the SoCAB are in buildings near freeways at any given time. While the assumption of 
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uniform population density is rough, it is sufficiently accurate for this calculation as my 

final results are not sensitive to this parameter. Although there are major roads that are 

not freeways, I have not accounted for them explicitly in this analysis because their 

impact on concentrations is partially reflected in the ambient concentration data. 

 

 Concentrations in other locations. In all locations other than the three 

microenvironments already discussed, the exposure concentration is taken to be equal to 

the measured ambient concentration. Both benzene and CO are relatively nonreactive 

gases, and outdoor concentrations readily penetrate into indoor environments without 

loss. Indoor environments may have additional sources of benzene or carbon monoxide, 

such as gas stoves, cigarette smoke, or, at an ice skating rink, Zamboni emissions, but the 

existence of these sources does not alter exposure to on-road vehicle emissions. (The 

existence of these indoor sources makes it difficult to design exposure monitoring studies 

to directly confirm predicted iF values for vehicle emissions of benzene and CO.)  

 

Results 

As shown in Figure 3-2, basinwide emissions are relatively constant throughout 

the year. However, ambient concentrations of benzene and CO (Figures 3-4a and 3-4b) 

are about twice as high in winter as in summer. The varying concentration-to-emissions 

ratio generates a similar seasonal pattern in the intake fraction, as is shown in Figure 3-7. 

This variability is a consequence of varying seasonal meteorological patterns. 

Atmospheric transport and dispersion are lower on average during the winter because of 

the weaker incident solar radiation. Poorer pollutant transport means that the same 
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emissions of primary pollutants will lead to higher ambient concentrations. Both the wind 

speed and the atmospheric mixing height are lower in winter (NREL, 1995), leading to 

higher concentrations in winter. Episodes of extreme air pollution, such as the infamous 

"killer fog" that occurred in London during December 5 – 9, 1952, are associated with 

periods of highly stable meteorological conditions. This seasonal concentration pattern 

for primary pollutants – with higher concentrations in the winter – is the reverse of the 

pattern for ozone and other photochemical smog constituents, which have higher 

concentrations in the summer owing to much higher solar radiation. 

Based on the methodology laid out above, including microenvironments, hourly 

ambient concentrations, breathing rates, and time-activity pattern data, I calculate annual 

average intake fractions of 46 per million for CO and 49 per million for benzene. These 

estimates mean that approximately 50 grams of primary motor vehicle pollutants are 

inhaled for every million grams of primary pollutants emitted in the South Coast Air 

Basin. The iF is slightly higher for benzene than for CO, owing to the slightly increased 

exposures from attached garages, but this difference is small compared to the seasonal 

variability for both benzene and CO. As is shown in Figure 3-7, wintertime iFs are almost 

twice summertime iFs; this pattern is due to the seasonal variability in ambient 

concentrations (shown in Figure 3-4a). Intake fraction estimates by month are given in 

Appendix II for this chapter. Using 48 months of data, with a single intake fraction 

calculated for each month, I calculate a standard deviation in the monthly average iF of 

20 per million for benzene and 15 per million for CO. Note that these standard deviations 

represent variations in the monthly intake fraction, not uncertainties associated with the 

estimate. 
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Because there are significantly more concentration data for CO than benzene, the 

monthly-average CO concentration measurements are more consistent from one year to 

the next. Consequently, my results show about twice as much interannual variability in 

the iF for benzene as for CO. 

 

Discussion 

My results are consistent with existing research. Based on previous publications, I 

expected the time-average iF for an outdoor release in an urban area to be on the order of 

1 – 100 per million. For example, using Gaussian plume equations, Lai et al. (2000) 

calculated iF values of 4 – 230 per million for episodic outdoor sources, depending on the 

meteorology, population density, and urban area. Smith (1993) reported 20 per million as 

an order-of-magnitude estimate for outdoor ground-level emission sources in urban 

settings. Evans et al. (2000) used a Gaussian plume model to calculate an intake fraction 

of 3.6 – 13 per million for ambient dry cleaner emissions in the US (excluding indoor 

exposures, such as to workers and customers). (Note that to compare the Evans et al. 

(2000) results with other values listed in this chapter, I have modified here their reported 

iF of 6 – 22 per million to account for the different breathing rate they used, 20 m3 d-1 

rather than 12.2 m3 d-1.) Schauer et al. (1996) reported a value of 0.4 (µg m-3) per (t d-1) 

for the ratio of ambient concentration increase to emissions for elemental carbon from 

diesel exhaust in downtown Los Angeles(1). Multiplying this value by an inhalation rate 

of 12.2 m3 d-1 and a population of 7 million for the ~1600 km2 region they used yields an 
                                                 

(1) Owing to a typographical error, the units in the publication are given as µg/m3 per kg/day. 
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iF of about 34 per million for this urban emission source. A study of Taipei City, Taiwan, 

stated that because of government efforts over the past two decades to relocate point 

sources to outside the city, over 99% of urban CO emissions are from motor vehicles 

(Chen et al., 2002). They present modeled and measured CO concentrations of 1.1 ppm, a 

population of 2.6 million people, and CO emissions of 400,000 tonnes y-1. Using a 

breathing rate of 12.2 m3 d-1, their results indicate an iF of 39 per million. Consistency 

between previous findings and the results presented here substantiates the general 

accuracy of my results and reinforces the potential utility of the intake fraction concept 

for air pollution exposure assessments. 

In addition, the close agreement between the iFs for benzene and CO also 

reinforces the validity of the intake fraction approach. CO and benzene from motor 

vehicle emissions should have similar iFs because they have similar fate and transport 

characteristics in the atmosphere. The dominant removal mechanism from the air basin 

for nonreactive gases is advection, and nonreactive gases penetrate the building 

envelopes without impedance or removal. I characterize CO and benzene as relatively 

nonreactive because their characteristic lifetimes in urban atmospheres (882 hours for CO 

(CARB, 1999) and 490 hours for benzene (US EPA, 1993)) are significantly greater than 

the typical residence time of air in the air basin (7 – 16 hours, see Appendix I for this 

chapter). 

Within a specific air basin, the iF for any gas emitted from a broadly distributed 

outdoor urban source should be similar to the iF for CO and benzene if its characteristic 

lifetime is significantly greater than ~8 daylight hours. A gas emitted from a distributed 
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source with a lifetime less than ~8 hours will have a smaller iF because some of the 

emissions will degrade before people inhale them.  

For emissions with a relatively short lifetime (less than ~1 hour), a significant 

fraction of the total intake will occur during near-source exposures, such as the time spent 

in vehicles. For such a compound, it is more difficult to deduce the average concentration 

to which people are exposed from a limited number of ambient monitoring stations. 

Intake fraction results presented in this chapter are not directly applicable to other 

urban locations. Differences in the intake fraction could arise because of differences in 

meteorology, such as the wind speed, rate of dispersion, and mixing height, or because of 

differences in the city, such as the size and population density. Chapter 4 provides 

estimates of intake fraction for motor vehicle emissions in other urban areas throughout 

the US. 

 

Applying the results for benzene and CO to other chemicals 

Understanding about exposures is built on models and measurements. 

Measurements are necessary to provide input data and to validate models. Properly 

validated models allow the testing of a variety of questions and hypotheses for which 

experiments are difficult or impossible to undertake.  

Intake fractions facilitate the application of insights gained in one investigation to 

other, related, investigations. For example, models and measurements can be used to 

calculate intake fraction values, which can then be applied to new situations or 

compounds beyond those specifically modeled or measured. In Table 3-2, I have applied 

my results for benzene and CO to several chemicals that are emitted from motor vehicles. 
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The estimation of exposure to these compounds owing to motor vehicles would be 

difficult based on a pure monitoring approach. Intake fractions represent an innovative 

and practical method for estimating the total population intake to these chemicals due to 

motor vehicles.  

Table 3-2 lists the emissions, as given by the 1996 Toxic Emissions Inventory; 

intake fraction, as calculated in this chapter; and intakes for six compounds emitted from 

motor vehicles. The iF value of 0.0048%, or 48 per million, is only valid for primary 

pollutants that are nonreactive on the time scale of an urban air basin. Table 3-2 shows 

how intake fractions can be decreased, using the equations in Appendix I for this chapter, 

to account for the presence of removal reactions. (The benzene emissions shown in Table 

3-2 are from the published 1996 inventory, rather than directly from EMFAC, to maintain 

consistency with the data on other chemicals listed in the table.) The total population 

inhalation burden presented in this table could be used in several analyses, e.g., in a 

health risk assessment, to track changes in intake rates over time, to compare against 

other urban areas, or to compare the intake rates attributable to outdoor and indoor 

pollution. 

 

Comparison to ambient concentration analysis 

As a comparison with my main intake fraction estimate of 48 per million, I 

completed a second analysis using the average ambient concentration as a direct 

surrogate for the exposure concentration. For this simplified analysis, I computed the 

intake as the product of the monthly average ambient concentration, the fraction of 

emissions attributable to motor vehicles (70% for benzene and 80% for CO (CARB, 
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2000b; SCAQMD, 2000)), the population size, and the monthly breathing rate per person. 

The resulting intake fraction estimates are 33 ± 14 per million for benzene and 32 ± 11 

per million for CO, or 32% less than obtained by the more detailed analysis. The standard 

deviations presented here indicate the monthly variability in the values, rather than the 

confidence interval or associated level of error. 

The simplified analysis, which is summarized in Table 3-3, agrees well with the 

values of 34 and 39 presented above for downtown Los Angeles and Taipei City, 

respectively (Chen et al., 2002; Schauer et al., 1996). Those estimates reflect a similar 

level of simplification in their analysis (i.e., the Schauer et al. (1996) and Chen et al. 

(2002) studies investigated ambient concentrations rather than population intakes). 

The more detailed analysis accounts for several factors that may be important in 

determining the total intake, such as variability in concentration and breathing rates, and 

elevated concentrations in certain microenvironments. However, considerably more input 

data and processing time are required to complete the more complicated analysis. My 

study suggests that if urban population exposures for motor vehicle emissions are needed 

to within a error bound of approximately 50%, then the less complex analysis may be 

adequate. Additional detailed studies of other sources and other urban air basins are 

necessary to confirm this inference.  

 

Exposures occurring outside the air basin  

The intake fraction results determined in this study only account for exposures 

that occur within the same air basin as the emissions. In reality, some exposure will occur 

outside of that air basin because of atmospheric transport of the pollutants from one air 
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basin to another. I used a material-balance equation based on a box model to estimate 

exposures occurring outside the SoCAB that are attributable to motor vehicle emissions 

occurring inside the SoCAB. The details of this analysis, including the equations and data 

used, are given in Appendix I to this chapter. I examine both a conserved pollutant and a 

reactive pollutant that has a characteristic lifetime of 80 hours. The characteristic reaction 

lifetime for benzene in Los Angeles (i.e., accounting for chemical reactions but not loss 

by advection) is 80 hours in the summer, and 900 hours (37 days) in the winter (US EPA, 

1993). The rate of degradation via attack by the hydroxyl radical will decrease once the 

air leaves the urban air basin, because of lower hydroxyl radical concentrations in less 

polluted environments. Consequently, the lifetime of benzene will increase after leaving 

the SoCAB in the summer. Thus, a lifetime of 80 hours, when applied to areas downwind 

of the South Coast, represents a compound that is more reactive than benzene in the 

summer. 

I first look at the regional intake outside the SoCAB by assuming that motor 

vehicle emissions from inside the SoCAB mix throughout the two air basins that border 

the South Coast to the east (the Salton Sea Air Basin and the Mojave Desert Air Basin). 

These two air basins combined occupy 84,240 km2, or about five times the land area of 

the South Coast, and they are inhabited by 1.3 million people, or less than one-tenth the 

population of the South Coast (CARB, 2002b). Next, I estimate the contribution of 

SoCAB motor vehicle emissions to nationwide exposure, using an area of 9,157,000 km2 

and a population of 281,422,000 people (US Census, 2002). 

For both the regional and nationwide analyses, I assume a population breathing 

rate of 12.2 m3 person-1 d-1 and a wind speed of between 3.36 and 5.50 m s-1. These wind 
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speeds are the 5% and 95% values of the distribution of harmonic mean wind speed for 

the 75 cities listed in EPA’s SCRAM database (US EPA, 2002). They represent the 

average throughout the mixing depth, rather than being the surface wind speed. For the 

regional box, I use a mixing height of between 600 and 3,000 m, representing an 

assumption that the pollutant mixes throughout 5% to 25% of the troposphere. In 

comparison with the lower estimate of 600 m, the elevation difference between 

Beaumont, California (located inside the air basin, near the eastern border) and 

Coachella, California (located outside of the air basin, also near the eastern border) is ~ 

820 m. The mountain peaks surrounding Beaumont are significantly higher than 

Beaumont, so the altitude drop upon leaving the air basin is greater than 820 m in many 

places. Thus, 600 m represents a reasonable lower estimate for the mixing height of air 

exiting the South Coast. In addition, the range of 600 – 3,000 meters for the Salton Sea 

and Mojave Desert Air Basins is consistent with current research by Heath on typical 

mixing heights for Bakersfield, CA. The interquartile values (i.e., the 25th and 75th 

percentile values) for a derived Typical Meteorological Year are 630 – 2,870 m (Heath, 

2005). For the national box, I use a mixing height of 3,000 to 12,000 meters, representing 

an assumption that the pollutant mixes throughout 25% to 100% of the troposphere. 

For a conserved pollutant, I calculate incremental iFs (in units of per million) of 

0.04 – 0.45 regionally and 0.20 – 1.85 nationally. For a reactive pollutant (k-1 = 80 h) I 

calculate incremental iFs of 0.03 – 0.31 per million regionally and 0.07 – 0.34 per million 

nationally. 

The reactive pollutant (k-1 = 80 h) would be considered moderately reactive when 

compared to the residence time of air in the US air basin (150 – 360 hours). However, it 
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would be considered relatively nonreactive when compared to the residence time of air in 

the regional air basin (15 – 34 hours). This distinction leads to an important result. The 

regional iF for the reactive pollutant is only 20 – 40% less than the regional iF for the 

conserved pollutant. On the other hand, the national iF for the reactive pollutant is 3 to 5 

times lower than the national iF for the conserved pollutant. All else being equal, a more 

reactive compound will tend to have a smaller intake fraction. 

Combining the regional and nation wide intakes, I estimate a total incremental iF 

of 0.10 – 0.65 per million for a reactive pollutant and 0.24 – 2.30 per million for a 

nonreactive pollutant. These results for exposures outside the SoCAB are 20 – 500 times 

less than the iF for exposures that occur inside the SoCAB. Consequently, for the case 

being studied, regional and national intakes of primary and reactive pollutants are 

significantly less than intra basin intakes of urban emissions. 

The analysis of downwind air basins presented above is based on the prevailing 

wind direction, which is an offshore wind (i.e., from the west or southwest). This 

prevailing wind direction dominates the wind-rose, with 51% of hours in a Typical 

Meteorological Year (TMY) having wind from 220 – 280° (Heath et al., 2003), where 90° 

indicates wind blowing from the East. During other hours, however, air pollution may 

enter air basins other than the Salton Sea and Mojave Desert. One way to investigate this 

issue would be to consider a Lagrangian model, which would follow a parcel of air 

migrating from the South Coast to other air basins. This approach could account for 

direct and indirect migration of air between air basins. For example, an air parcel could 

travel directly from the South Coast to San Diego, or it could migrate from the South 

Coast to the ocean, then southeast over the ocean, then eastward to San Diego.  
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My analysis here employs a simple analysis that accounts for direct flow between 

air basins and ignores indirect flow patterns. In this analysis, wind blowing perpendicular 

to the shore leads to pollutant transport to the Salton Sea and Mojave Desert Air Basins, 

while wind parallel to the shore leads to pollutant transport to the South Central Coast Air 

Basin (population: 1.54 million people; area: 20,450 km2) or the San Diego Air Basin 

(3.15 million people; 10,890 km2) (CARB, 2005). The interquartile range for the term 

uH, based on the distribution of values from TMY data for San Diego, is 840 – 3,320 m2 

s-1 (Heath, 2005). Applying this value to San Diego and the South Central Coast, and 

emplying the same one-compartment model used for the Salton Sea and Mojave Desert, I 

estimate that the intake fraction (units: per million) is 1.3 – 5.1 in the San Diego Air 

Basin and 0.5 – 1.8 in the South Central Coast. Next, I assume here that wind from 220 – 

280° transports pollutants to San Diego, while wind from 100 – 170° transports pollutants 

to the South Central Coast. An analysis of TMY data for Los Angeles indicates that the 

former condition annually occurs during 9.9% of the hours and the latter condition occurs 

during 13.8% of the hours (Heath et al., 2003). Combining these values, the time-

weighted average intake fraction (per million) for nonreactive South Coast vehicle 

emissions being inhaled by residents of the four air basins surrounding the South Coast is 

0.4 – 2.5. This range is similar to the range presented above of 0.2 – 2.3, which accounts 

for intakes in the Salton Sea and Mojave Desert but not San Diego or the South Central 

Coast. Thus, I conclude that for vehicle emissions in the South Coast, the inhalation rate 

is significantly larger for South Coast residents than for residents of the four nearby air 

basins. 
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As a comparison, the box model is also used in Appendix I to predict the intake 

fraction for exposures occurring inside the SoCAB. The results are in the range 12 to 82 

per million, which evenly brackets the values of 46 and 49 per million presented above 

for CO and benzene. This consistency lends support to the validity of the box model for 

estimating incremental intake fractions. 

 

Uncertainty and sensitivity analysis 

My research quantifies the population intake of motor vehicle emissions, a 

parameter that is not amenable to direct measurement. An uncertainty analysis is 

important to determine the confidence that can be placed in the results and methodology. 

In addition to the uncertainty analysis presented here, the uncertainty in the results could 

also be ascertained by comparing these results with future research that uses an 

alternative method to quantify the population intake of motor vehicle emissions. 

Systematic errors can reduce the accuracy of a measurement and random errors 

can reduce the precision of a measurement. Systematic errors refer to biases that lead to 

consistent under- or over-estimation, while random errors are fluctuations that lead to a 

specific measurement being too high or too low. For example, if a laboratory technique to 

measure the concentration of a specific compound in an air sample has random errors but 

no systematic errors, then duplicate measurements of a single air sample will yield 

different results while the average of many duplicate samples will approach the correct 

answer as the number of samples increases. Such measurements are characterized as 

accurate but not precise, because the average is correct even though any individual 

measurement is not necessarily correct. In contrast, if a laboratory technique has 
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systematic errors but no random errors, then duplicate measurements of a single sample 

will yield similar results, all having a similar level of error. Such measurements are 

precise but not accurate, because even though there is a high level of consistency between 

measurements, the average of several measurements is different from the correct value. 

Among the data that I use in this investigation, four parameters dominate in 

influencing the results. These four parameters are emissions from motor vehicles, 

ambient concentrations, the size of the population, and the breathing rate. In addition, a 

second set of parameters is relatively important, though less so than the previous four. 

This second list is concentrations in vehicles, time spent in vehicles, concentrations inside 

residences with an attached garage, and population density at each of the ambient 

monitoring stations. 

Below, I first complete an uncertainty analysis for the four input parameters that 

dominate my results (emissions, ambient concentrations, population size, and breathing 

rate). Then, I conduct an approximate sensitivity analysis for the four additional 

parameters (concentrations in vehicles, time in vehicles, concentrations in residences with 

an attached garage, and population density at each monitoring station). Finally, I provide 

a qualitative discussion of methodological uncertainties. 

 

Uncertainty analysis 

Emissions.  The EMFAC emissions model, which yields monthly emissions 

estimates, is maintained by the California Air Resources Board (CARB). CARB does not 

provide an uncertainty estimate for the EMFAC results. A comparison between EMFAC 

and a fuel-based emission inventory (Singer and Harley, 2000) indicates agreement to 
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~20%, with EMFAC yielding lower estimates. This level of agreement is a significant 

improvement from previous versions of EMFAC, which were a factor of 2 – 4 lower than 

fuel-based emission inventories (Fujita et al., 1992; Harley et al., 1997; Pierson et al., 

1990; Singer and Harley, 1996). 

 

Ambient concentrations.  Because of the relatively large number of 

measurements (623,534 CO measurements and 518 benzene measurements), random 

error in individual measurements will tend to average out and not bias the final result. 

However, the potential exists for systematic error in the measurement technique. 

The CO and benzene monitoring stations are audited on a regular basis using a 

laboratory-prepared calibration sample of a known concentration. During the years 

considered (1996 – 1999), audits of monitors throughout California yielded an average 

percent difference between the calibration sample and the monitor's measurement of 0.5% 

and -11% for CO and benzene, respectively (CARB, 2001; Miguel, 2002). These audits 

indicate that CO monitors have a high degree of accuracy while benzene monitors tend to 

underestimate the true concentration somewhat. 

 

Population size.  The US Census Bureau does not directly report uncertainty. An 

indirect indicator of the level of accuracy in their data is the undercount rate, which is the 

amount by which survey tally results are increased to account for people not surveyed. 

Publicly available census data have been corrected to account for the undercount rate. In 

California and the US, the undercount rates are 2.7% and 1.6%, respectively. In Los 

Angeles, Orange, Riverside, and San Bernardino Counties, the rates are 3.3%, 2.1%, 
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2.4%, and 2.6%. These values indicate a relatively high degree of precision and accuracy 

in census results, as compared with other major input parameters in this analysis. 

 

Breathing rate.  There is no direct information on the accuracy and precision of 

the breathing rate data I use (Layton, 1993). Variability in breathing rates offers a proxy 

for the level of accuracy. Lifetime average rates for men and women are 14.1 and 10.2 m3 

d-1, respectively. These two values are 2.0 m3 d-1 different from the average breathing rate 

of 12.2 m3 d-1. Breathing rates for people 18 and under are 11.2 m3 d-1 while breathing 

rates for people over 18 are 12.5 m3 d-1. These two values are 1.0 and 0.4 m3 d-1 different, 

respectively, from the average breathing rate. 

A second estimate of the level of accuracy in the breathing rate data comes from 

comparing against other available published values. Average breathing rates reported in 

alternative sources (units: m3 d-1) include 12 (US EPA, 1997), 15 (Marty et al., 2002), 

and 17 (OEHHA, 1996). However, there are two aspects of the analysis yielding the 

value of 17 m3 d-1 which are incorrect. First, it is obtained as the product of the reported 

adult average body weight (63 kg) and the reported lifetime-average (i.e., adult plus 

child) breathing rate per kg body weight (0.271 m3 kg-1 d-1). A more accurate approach 

would account explicitly for breathing rate differences between children and adults. For 

example, dividing the population into children (≤ 12 years old) and adults (>12 years 

old), using values reported by OEHHA (1996) for children (body weight = 18 kg; 

breathing rate per kg body weight = 0.452 m3 kg-1 d-1) and adults (body weight = 63 kg; 

breathing rate per kg body weight = 0.232 m3 kg-1 d-1), and assuming a lifetime of 70 y 

(i.e., the population is 17% children, 83% adults) yields a population average breathing 
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rate of 13.5 m3 d-1. This value is significantly closer than 17 m3 d-1 to the value of 12.2 

reported by Layton (1993) and used in this chapter. The second error in the OEHHA 

(1996) analysis is that the reported body weight values significantly underestimate 

current body weights. Results from the Centers for Disease Control’s (CDC’s) National 

Health and Nutrition Examination Survey during 1999 – 2002 indicate that the population 

average body weight is 28 kg, not 18 kg, for children (< 12 years old), and 79 kg, not 63 

kg, for adults (> 12 years old) (Ogden et al., 2004). Incorporating these updated body 

weight values yields a population-average breathing rate 17.4 m3 d-1, a value that is close 

to the reported value of 17.1 m3 d-1. However, based on the two errors identified here and 

the lack of consistency between the values in OEHHA (1996) and those reported 

elsewhere (Layton, 1993; Marty et al., 2002; US EPA, 1997), I would assign a low 

confidence level to the value of 17.1 m3 d-1, and would not consider this value to be a 

useful indicator of uncertainty in the estimate of 12.2 m3 d-1 from Layton (1993). 

Based on the within-population variability reported by Layton (1993) and 

variability among alternative data sources, I estimate here that the population-weighted 

breathing rate is approximately 12.2 +2/-1 m3 d-1.  

 

Combined uncertainty. Combining the uncertainties reported above for the four 

main calculation inputs (emissions, concentrations, population, breathing rate) yields the 

following estimates for the range of plausible intake fraction results. A lower-bound 

estimate for both benzene and CO is determined by considering the case where the 

breathing rate is too high by 8%, the census values are too high by 3.3%, the 

concentrations are correct, and the emission inventory is too low by 20%. In this case, the 



 82

actual iF for benzene and CO would be 28% lower than my results. An upper-bound 

estimate for the benzene iF is determined by considering the case where the breathing 

rate is too low by 16%, the census values are too low by 3.3%, the benzene 

concentrations are too low by 11%, and the emission inventory is correct. In this case, the 

correct benzene iF result would be 26% higher than my result. Finally, an upper-bound 

estimate for the CO iF is determined by considering the case where the breathing rate is 

too low by 16%, the census values are too low by 3.3%, the CO concentrations are 

correct, and the emission inventory is correct. In this case, the correct CO result would be 

12% higher than my results. These values are likely to over-estimate uncertainty because  

they are derived by assuming that the errors line up at maximum possible amounts. Based 

on the values reported above (lower-bound uncertainty of 28%; upper-bound uncertainty 

of 26% and 12% for benzene and CO, respectively), I conclude that my results are 

accurate to approximately ± 33% or better, and that the CO results are somewhat more 

certain than the benzene results because of greater accuracy in the ambient concentration 

data and because spatial and temporal coverage of the data is more sparse for benzene 

than for CO. 

 

Sensitivity analysis 

The above estimate of 33% uncertainty includes the four factors that most 

strongly influence the results. However, it does not include the uncertainty in several 

inputs, such as time-activity pattern data and concentrations in microenvironments, 

because the level of uncertainty associated with these data has not been quantified. 

Among the data for which uncertainty has not been quantified above, the most important 



 83

values are the concentration and time spent in vehicles, the concentration inside 

residences with an attached garage, and the population density around the air basin 

throughout the day. A crude sensitivity analysis indicates the potential importance of 

uncertainty in these variables. The results of this sensitivity analysis are shown in Table 

4. For example, changing the in-vehicle concentration by 20% yields a 6% change in the 

intake fraction results. Doubling the population density at any one specific monitoring 

station changes the intake fraction results by between –2% and 8%. Note that one station 

(Station #60371301, located at 11220 Long Beach Boulevard in Lynwood, California) 

has both the highest population density and the highest annual average concentration. 

Changes to the population density for this station have a larger impact on the intake 

fraction than changes to other stations. 

 

Methodological uncertainties  

The estimate of 33% uncertainty based on primary data inputs does not include 

the potential for methodological errors, which can be especially difficult to quantify in a 

rigorous manner. For example, I use census data on population density to population-

weight the ambient concentration measurements. These data account for where people 

live, but not where they travel during the day (i.e., downtown to shop or work). The issue 

of how mobility influences the estimated population inhalation intake of air pollution is 

addressed in Chapter 7. A second example of a potential methodological error in this 

work is how I implemented the NHAPS data on time spent in vehicles. Specific data on 

time spent “in an automobile” rather than simply “in a vehicle” (which includes trains 

and airplanes) is not currently available in NHAPS. By including time spent in trains and 
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airplanes with time spent in a motor vehicle, I overpredict the average exposure to motor 

vehicle exhaust. However, because most travel time in the South Coast is spent in private 

motor vehicles, the magnitude of this error is likely to be small, and unlikely to 

significantly impact my results. A third example of a potential methodological error is the 

use of data from monitoring stations to represent ambient concentrations of benzene and 

CO. Monitoring stations offer the most comprehensive ambient concentration data set 

available. Nevertheless, the methodology used in this report, which estimates exposure 

concentrations based on monitoring station data, may under- or overestimate exposures. 

A limited number of monitoring stations might not accurately capture the true average 

ambient concentration, either because there are not enough monitoring stations or 

because they are not well situated throughout the air basin. 

The close agreement in the calculated intake fractions for benzene and CO 

indicates that certain components of the underlying data are likely to be reasonably 

accurate. In addition, the agreement between the results presented in this work and in 

other works provides general support for the broad accuracy of the results reported here. 

However, the close agreement in the benzene and CO results does not intrinsically lend 

support to calculations that are applied to both chemicals. For example, if the population 

size I use is incorrect, it will have the same effect on both the benzene and the CO results. 

EMFAC-estimated emissions may be similarly biased for benzene as for CO. For 

example, if high-emitting vehicles (i.e., “gross polluters”) are underrepresented in the 

EMFAC-modeled vehicle fleet, then EMFAC could underestimate emissions for both 

pollutants. 
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Conclusions 

Intake fraction (iF) characterizes the fraction of a pollutant’s emissions inhaled by 

people. The iF presented in this chapter is for population exposure to atmospheric 

emissions from motor vehicle emissions in the South Coast Air Basin (SoCAB). 

However, iF can also be applied to individuals or subpopulations, and it can involve a 

multi-pathway, multi-media exposure assessment. Based on population-weighted ambient 

concentrations of benzene and CO, time-activity pattern data, a microenvironment 

analysis, and population average breathing rates, I calculated an iF of 48 per million. This 

value means that 0.0048% of SoCAB nonreactive emissions for motor vehicles are 

inhaled. The results for CO and benzene are consistent with each other (within 5%) and 

with previous intake fraction studies, thereby lending support to the results and to the 

intake fraction approach. 



 86  

 

 Table 3-1: Summary of ambient concentration data 

 Carbon monoxide Benzene 
Number of data points 623,534 518 

Percent non-detects 5% 6% 
Precision 0.1 ppm 0.1 ppb 

Detection limit 0.1 ppm 0.2 - 0.5 ppb 
Average value 1.20 ppm 1.29 ppb 
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Table 3-2: Inhalation of various motor vehicle emissions(1), South Coast Air Basin, 1996 – 1999 
 

Notes: 
(1) These results are for inhalation of primary motor vehicle emissions in the South Coast Air Basin. Degradation of primary 

emissions is included, but secondary formation is not.  
(2) Source: California 1996 Toxics Emission Inventory (http://www.arb.ca.gov/toxics/cti/cti.htm). Motor vehicle emissions in 

SoCAB are 42% of California motor vehicle emissions (Singer and Harley, 2000).  
(3) Source for styrene and acrolein: CARB Toxic Air Contaminant Fact Sheets (http://www.arb.ca.gov/toxics/tac/toctbl.htm). 

Source for remaining compounds: EPA 1993 Motor Vehicle-Related Air Toxics Study 
(http://www.epa.gov/otaq/toxics.htm). 

(4) The reaction rate constant (k) is the reciprocal of the lifetime.     
(5) The reactivity correction, which is derived in Appendix I for this chapter, is multiplied by the intake fraction for a 

conserved pollutant to account for the presence of removal mechanisms other than advection. The intake fraction for a 
conserved pollutant is taken as 47.5 per million, which is the average of the results for benzene and carbon monoxide 
presented in the report. The range of values for the reactivity correction in this table are based on high and low values for 
the residence time of air in the air basin. The residence time of air in SoCAB is estimated in Appendix I for this chapter as 
between 7 and 16 hours.     

 

  1,3-
butadiene acetaldehyde benzene formaldehyde styrene acrolein 

SoCAB emissions 
from motor vehicles(2) t y-1 1067 1235 5482 3963 291 8 

Lifetime(3) h 6 39 490 12 23 17 
Reaction rate 

constant(4) d-1 4.1 0.6 0.05 2.1 1.0 1.4 

Reactivity correction(5) - 28  -  47 % 71  -  85 % 97  -  99 % 43  -  63 % 60  -  78 % 52  -  72 % 

iF for this pollutant per 
million 13  -  22 34  -  41 46  -  47 20  -  30 28  -  37 25  -  34 

Population intake kg y-1 14  -  24 42  -  50 253  -  257 80  -  119 8  -  11 0.2  -  0.3 
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Table 3-3: Simplified intake fraction analysis 

  Carbon Monoxide Benzene 

Concentration ppm 1.20 0.00129 
Concentration µg m-3 1410 4.22 

Ambient concentration 
attributable to motor vehicles - 80% 70% 

Breathing rate m3 d-1 12.2 12.2 
Population people 1.5 × 107 1.5 × 107 

Intake g month-1 6.3 × 106 1.6 × 104 
Emissions g month-1 2.0 × 1011 5.0 × 108 

Intake fraction per million 32 33 
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Table 3-4: Sensitivity analysis 

 

Parameter Change in 
parameter 

Change in 
intake fraction 

+ 20% + 6% 
- 20% - 6% 

+ 100% + 30% Concentration in vehicles 

- 100% - 30% 
   

+ 20% + 6% 
- 20% - 6% 

+ 100% + 30% Time spent in vehicles 

- 100% - 30% 
   

+ 20% + 8% 
- 20% - 8% 

+ 100% + 40% 

Concentration in residences with an 
attached garage 

- 100% - 40% 
   

+ 100% - 2% to + 8% Population density at each specific 
monitoring station - 100% - 10% to + 2% 

89



 90  

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-1: California’s 15 air basins, highlighting the South Coast Air Basin counties. 

From http://www.arb.ca.gov/emisinv/maps/ statemap/abmap.htm. 
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Figure 3-2: Motor vehicle emissions in the SoCAB 1996 – 1999.
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Figure 3-3: Hourly breathing rate by time of day and activity intensity. Layton (1993) gives breathing rates for five activity levels 

(sleep, light, moderate, hard, very hard) and the total number of hours spent in each of those activities. This figure shows how these 

rates and hours were divided into the hours of the day.
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Figure 3-4a: Monthly average ambient concentration attributable to motor vehicles in the SoCAB 1996 – 1999. The ambient 

concentration attributable to motor vehicles, which is based on ambient air monitoring station data, shows a “U-shaped” profile due to 

the predominant meteorology. Summer conditions tend to disperse primary pollutants more efficiently than winter conditions. 
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Figure 3-4b: Exposure concentration attributable to motor vehicles in the SoCAB 1996 - 1999. Exposure concentration to benzene and 

CO attributable to motor vehicles shows the same pattern as the ambient concentrations in Figure 3-4a. 
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Figure 3-5. (Caption is on next page.) 
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Figure 3-5: Hourly variability in breathing rate, exposure, and intake. Normalized 

breathing rate is the hourly breathing rate divided by the average breathing rate. 

Normalized exposure concentration is the exposure concentration divided by the ambient 

concentration. Normalized intake, which is the product of the normalized breathing rate 

and the normalized exposure concentration, indicates the increase in the true intake, as 

compared to the simplified analysis, owing to the combined influence of 

microenvironments and breathing rates. This figure shows that the population-average 

exposure concentration is greater than the ambient concentration at all times. Normalized 

benzene and CO intake is greater than one during the daytime, indicating that during the 

daytime, population intake is greater than ambient concentration times the average 

breathing rate. At night, population intake is less than ambient concentration times 

average breathing rate.  
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Figure 3-6: Typical ambient daily carbon monoxide concentration profile. Normalized 

concentration is the average ambient concentration in each hour divided by the overall 

average ambient concentration. Concentrations are highest during the morning commute, 

when emissions are high and dispersion is slow. 
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Figure 3-7: Monthly average intake fraction for nonreactive motor vehicle emissions in 

the SoCAB 1996 – 1999. Intake fractions for benzene and CO show the same pattern 

seen in Figures 3-4a and 3-4b. Consistency between the values for benzene and CO lends 

support to the intake fraction concept. 
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Appendix I: One-compartment model for estimating intake fraction 

 

Here I use a one-compartment model to estimate the intake fraction for a 

conserved and for a reactive compound. This approach indicates the influence of various 

factors on the calculated intake fraction. In a one-compartment model, the air in the basin 

is assumed to be well mixed and pollutant concentrations are assumed to be at steady 

state (Figure 3A-1). 

 The total population intake rate, I (g s-1), that is attributable to an emission source 

is 

 

  I = CQBP,          3A-1 

 

where C is the incremental concentration (g/m3) attributable to the emission source, QB is 

the population average breathing rate per person (m3 person-1 s-1), and P is the population. 

The steady-state mass balance for a one-compartment model is given in Equation 3A-2: 

 

 E = kCV + QC,        3A-2 

 

where E is the emission rate (g/s), k is the first-order reaction rate constant (s-1), V is the 

volume (m3) of the compartment (i.e., the air basin), and Q is the flow of air through the 

compartment (m3 s-1). For a conserved pollutant, k=0. The first term in Equation 3A-2 

(kCV) is the loss rate owing to reaction, and the second term (QC) is the removal rate by 
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advection. For a square-plan, one-compartment model of an urban area, the flow of air 

through the compartment may be estimated as uHA0.5, where u is the wind speed (m s-1), 

H is the atmospheric mixing height (m), and A is the urban land area (m2). Intake fraction 

(iF; unitless) is the total attributable intake rate divided by the total attributable emission 

rate. This ratio may be expressed incorporating Equations 3A-1 and 3A-2 as 

 

( )1  kH
Q

    
Q  kV

PQ
    

E
PCQ

    F BBB

+
=

+
==

τ
ρτ

i .     3A-3 

 

Here, ρ is the population density (m-2), which is equal to P/A, and τ is the residence time 

(s) of air in the air basin, which may be expressed as V Q-1 or estimated as A0.5 u-1. 

For a relatively nonreactive compound, kτ << 1. In this case, Equation 3A-3 

reduces to iF  ~ QBρτ/Η. For a highly reactive compound, kτ >> 1. In this case, Equation 

3A-3 reduces to iF ~ (QBρ) / (Hk). A compound is defined as being moderately reactive 

when τ ~ (1/k), i.e., when the reciprocal of the reaction rate constant is similar in 

magnitude to the residence time. In Equation 3A-3, the term (kτ+1)-1 stands out as a 

“reactivity correction term.” If the intake fraction is known for a nonreactive compound, 

multiplying by this term will yield an intake fraction estimate that accounts for the 

reactivity of a specific compound. This approach is used in Table 3-2. 

Equation 3A-3 can be rewritten as 

 

T
H

Q   Fraction   Intake Bρ
=        (3A-4) 



 101

 

where T = (τ)/(kτ+1) is the characteristic time for the pollutant to be removed from the 

system. For a nonreactive compound, the characteristic time simplifies to T = τ. For a 

highly reactive compound, the characteristic time becomes T = k-1. 

Table 3A-1 first uses iF = (QBP) / (uHA0.5) to calculate the intake fraction for a 

conserved pollutant, and then applies the “reactivity correction term” (kτ+1)-1 to predict 

the intake fraction for a reactive pollutant with k-1 = 80 hours. For the values in this table, 

the reactivity term varies from 18% to 92%, meaning that the intake fraction for the 

reactive pollutant is 18 – 92% of the intake fraction for a conserved pollutant.  

The first entry for the SoCAB columns in Table 3A-1 represents the product of 

the wind speed and mixing height. The values used in Table 3A-1 (195 – 1,300 m2 s-1) 

are the 5% and 95% values from the distribution of harmonic means for the 75 cities in 

the EPA's SCRAM database of mixing heights (US EPA, 2002). The mixing heights for 

the downwind regional intake (600 – 6,000 m) represent mixing occurring throughout 5% 

– 50% of the troposphere, and the mixing heights for the US intake (3,000 m – 12,000 m) 

represent the assumption of mixing throughout 25% – 100% of the troposphere. The wind 

speeds (2.36 – 5.50 m s-1) represent the 5% and 95% distribution of harmonic means for 

the 75 cities in the EPA's SCRAM database of wind speeds. These wind speeds are the 

average over the mixing height rather than being the surface wind speed. As is discussed 

in the text, the reaction rate (k-1 = 80 hours) represents a compound that is more reactive 

than benzene in the summer. 

The iF for a conserved pollutant in the SoCAB is estimated to be in the range 12 – 

82 per million using the box model. This range includes the main results of ~48 per 
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million for benzene and CO, and the results presented in Table 3 of ~33 per million from 

the simplified analysis. Consistency between the box model and these two results lends 

support to the validity of the box model approach for approximating the intake fraction 

for broadly distributed emissions of nonreactive pollutants into outdoor urban air.
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  Table 3A-1: Intake fractions using a box model 

  SoCAB Downwind Regional Nationwide 
H m   600 6,000 3,000 12,000 
u m s-1   2.36 5.50 2.36 5.50 
Hu m2 s-1 195 1,300 1,416 33,000 7,080 66,000 
A m2 1.7 × 1010 1.7 × 1010 8.4 × 1010 8.4 × 1010 9.2 × 1012 9.2 × 1012 
A0.5 m 1.3 × 105 1.3 × 105 2.9 × 105 2.9 × 105 3.0 × 106 3.0 × 106 
P people 1.5 × 107 1.5 × 107 1.3 × 106 1.3 × 106 2.81 × 108 2.81 × 108 

QB m3 d-1 
person-1 12.2 12.2 12.2 12.2 12.2 12.2 

PQB m3 s-1 2.1 × 103  2.1 × 103 1.8 × 102 1.8 × 102 4.0 × 104 4.0 × 104 
UHA0.5 m3 s-1 2.6 × 107 1.7 × 108 4.1 × 108 9.6 × 109 2.1 × 1010 2.0 × 1011 
iF(a) - 8.2 × 10-5 1.2 × 10-5 4.5 × 10-7 1.9 × 10-8 1.9 × 10-6 2.0 × 10-7 

iF(a) per 
million 82 12 0.45 0.019 1.85 0.20 

k-1 h 80 80 80 80 80 80 
k s-1 3.5 × 10-6 3.5 × 10-6 3.5 × 10-6 3.5 × 10-6 3.5 × 10-6 3.5 × 10-6 
u m s-1 2.36 5.50 2.36 5.50 2.36 5.50 
T h 16 7 34 15 356 153 
(kt+1)-1 - 84% 92% 70% 85% 18% 34% 

iF(b) per 
million 69 11 0.31 0.016 0.34 0.07 

 (a) Intake fraction for a nonreactive compound 
 (b) Intake fraction for a reactive compound with k-1 = 80 h. 
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Appendix II: Intake fraction results for the South Coast by month 

 

 Table 3A-2, presented next, summarizes the estimated intake fractions in each 

month during 1996–1999 (inclusive), for carbon monoxide and benzene. 

 
 
Table 3A-2: Intake fraction results for the South Coast by month 

  Intake Fraction (per million) 

Year Month Carbon monoxide Benzene 

1996 1 68.4 98.4 

1996 2 48.2 58.2 

1996 3 42.8 29.3 

1996 4 37.5 36.1 

1996 5 28.0 22.3 

1996 6 31.0 24.3 

1996 7 34.3 42.0 

1996 8 35.7 57.3 

1996 9 34.1 44.0 

1996 10 51.0 77.9 

1996 11 61.0 39.7 

1996 12 62.9 63.2 

1997 1 55.2 58.9 

1997 2 54.5 68.2 

1997 3 51.3 50.2 

1997 4 32.4 31.3 

1997 5 34.3 48.2 

1997 6 24.4 18.7 

1997 7 31.3 47.6 

1997 8 32.1 36.2 

1997 9 37.1 38.0 
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Table 3A-2 (Cont.) 

  Intake Fraction (per million) 

Year Month Carbon monoxide Benzene 

1997 10 48.1 60.4 

1997 11 71.9 78.1 

1997 12 66.0 49.0 

1998 1 70.0 78.5 

1998 2 40.0 48.7 

1998 3 38.4 57.7 

1998 4 38.8 51.2 

1998 5 29.9 25.2 

1998 6 31.5 27.5 

1998 7 42.8 37.7 

1998 8 43.8 49.1 

1998 9 36.5 20.8 

1998 10 53.0 46.2 

1998 11 77.5 57.1 

1998 12 69.5 75.4 

1999 1 73.0 92.9 

1999 2 57.6 55.6 

1999 3 41.0 28.4 

1999 4 35.3 26.1 

1999 5 29.9 29.7 

1999 6 32.8 31.1 

1999 7 33.2 33.6 

1999 8 34.2 26.3 

1999 9 39.0 34.7 

1999 10 61.3 75.6 

1999 11 63.8 77.6 

1999 12 69.1 57.9 
    



 106

 
 
 

 

 

Figure 3A-1: Box model representation of an urban airshed. Shown are wind speed (u), 

mixing height (H), and urban land area (A). 
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Chapter 4: Intake fraction of nonreactive vehicle emissions in US 

urban areas  

 

Reproduced in part with permission from Atmospheric Environment, 39(7): 1363-1371, 

2005.  Copyright 2005, Elsevier, Inc. 

 

Introduction  

The previous chapter presented a detailed estimate of intake fraction of vehicle 

emissions in California’s South Coast Air Basin. The South Coast is an important case 

study: it is home to approximately 1 in 19 US residents, and air pollution levels there are 

among the worst in the US. However, conditions in the South Coast are not typical of US 

urban areas. This chapter expands on the previous one by considering the intake fraction of 

vehicle emissions in urban areas throughout the US. Here, I develop and implement 

methods for efficiently estimating intake fraction for distributed ground-level releases of 

nonreactive pollutants in urban environments. The methods incorporate three types of 

models: the straightforward one-compartment model described in Appendix I of Chapter 3 

(Benarie, 1980), an empirical model describing measured carbon monoxide concentrations 

in 14 cities (Glen et al., 1996), and the US EPA’s most sophisticated national-scale 

exposure model (US EPA, 2004). 
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Methods 

Intake fraction is the fraction of emissions that are taken in by people. For 

inhalation of a primary pollutant, intake fraction is defined in the previous chapter, in 

Equation 3-1. Three approaches for estimating intake fractions for vehicular emissions in 

urban air basins are described and applied in the following subsections. In all three cases, 

the population average breathing rate, Q, is taken as 12.2 m3 person-1 d-1, based on 

metabolic activity studies (Layton, 1993). In this chapter, I estimate intraurban intake 

fractions, i.e., those associated with urban residents’ inhalation of emissions that occurred 

in the same urban area. This approach represents an important and logical step towards a 

complete treatment, which would also quantify downwind intakes for urban areas 

throughout the US. Downwind intakes for the South Coast were estimated in Chapter 3 as 

significantly smaller than intraurban intakes. This attribute does not hold for all urban 

areas. The closer spacing of cities in the Eastern US and elsewhere in many parts of the 

world would yield higher extraurban intake fractions. 

 

One-compartment model 

I use a one-compartment model (Benarie, 1980; Lyons et al., 2003) to combine 

meteorological data on wind speed and mixing heights with demographic data on urban 

population and land area. This model is often assumed to be too simple to offer 

reasonable estimates of ambient concentrations in urban areas. It does not offer many of 

the capabilities of more sophisticated models, such as predicting spatial variability in 

ambient concentrations. However, for conserved or slowly reacting emissions from 
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broadly distributed ground-level sources, the one-compartment model may offer a 

reasonably accurate estimate of spatially averaged concentrations in an urban area. In 

Chapter 3, I reported that for the South Coast Air Basin, the range of values reported for 

the long-term basin-wide average intake fraction of benzene and CO, as estimated by the 

one-compartment model, bracketed the value estimated based on a detailed analysis 

incorporating measured concentrations and microenvironments.  

The one-compartment model assumes that air concentrations are uniform 

throughout an air basin. To explore the accuracy of this assumption, I analyzed year-2002 

annual average CO concentrations at the 497 monitoring stations in the US EPA AIRData 

database (http://www.epa.gov/air/data). I chose CO because it is nonreactive, because 

there are a large number of monitoring stations in the US, and because most urban CO 

emissions are attributable to motor vehicles (US EPA, 2001c). First, I removed from the 

dataset the 60 monitors that did not meet EPA’s reliability criterion (> 75% reporting 

rate). Then, I removed the 30 monitors that did not have an associated metropolitan 

statistical area (MSA) code. Among the remaining 407 monitors, 189 (46%) are located 

in one of the 28 MSAs with five or more monitors. I evaluated intra-MSA variability 

among these 189 monitors. The coefficient of variability (the standard deviation divided 

by the mean) for each MSA has a small average value of 0.31 (range: 0.13-0.53). 

Furthermore, the concentration difference between a monitor and the associated MSA 

average is always less than 65%. Low intra-MSA variability in annual average ambient 

CO concentrations suggests that the one-compartment model is useful for estimating the 

average emissions-to-concentration relationship for primary nonreactive vehicle 

emissions in urban areas. 
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Examples of pollutants that are reasonably modeled as conserved when 

considering ambient concentrations include benzene, carbon monoxide, and primary 

PM2.5. Advection is the dominant removal mechanism for conserved pollutants because 

the time they take to react or deposit is considerably longer than the residence time of air 

in an urban basin, which may be estimated as A0.5 u-1. Here, A is urban land area (m2) and 

u is wind speed averaged over the mixing height (m s-1). (This approach assumes that (1) 

the characteristic length scale for wind traversing the urban area is ~ A0.5, and (2) air 

parcels that exit the urban area do not re-enter. These assumptions are reasonable for the 

purposes here for urban areas whose 2-dimensional map projection is continuous and in a 

shape that is simple, such as a square or circle, rather than sinuous or contorted.) The 

population-weighted average value for A0.5 for US urban areas is 49 km (US DOT, 

2003a) (the unweighted average for A0.5 is 20 km), and the harmonic mean wind speed in 

the US is 3.4 m s-1 (US EPA, 2002), indicating that the characteristic residence time of air 

in a US urban area is ~2 – 4 h. The lifetime of many air pollutants is much greater than 4 

h (Atkinson, 1994). For example, of the 130 toxic air contaminants that have a half-life 

listed in the California Air Resources Board’s contaminants summary database 

(www.arb.ca.gov/toxics/tac/txctbl2.htm), 81% have a half-life of more than 10 h. 

For a square-plan, one-compartment model, the intake fraction of nonreactive 

pollutant emissions is calculated using Equation 4-1 (Lai et al., 2000): 

AuH
QP    iF tcompartmen = . (4-1) 

Here, iFcompartment is the intake fraction (unitless) estimated by means of the one-

compartment model, Q is the population average breathing rate (m3 person-1 s-1), P is the 
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population, and H is the atmospheric mixing height (m). Equation 4-1 is derived from a 

mass balance. The main assumptions in the derivation are that air in an urban area is well-

mixed, and that either the system is at steady-state or concentrations are not strongly 

correlated over time with breathing rates. (The impact on exposures of temporal 

correlations between diurnal breathing rate and diurnal concentrations is explored in 

Chapter 6.) I assume here that deposition and chemical reactions occur slowly compared to 

advection, but as is shown in Chapter 3 (Appendix I), it is straightforward to extend the 

approach to incorporate first-order decay processes.  

The variables in Equation 4-1 can be clustered into three parameter groups. The first 

parameter group (which I term “linear population density”), P A-0.5, is an attribute of a 

city’s urban form, i.e., the way in which the urban area is laid out. The second parameter 

group (“normalized dilution rate”), uH, is an attribute of the meteorology. Normalized 

dilution rate (m2 s-1) is the volumetric airflow rate out of the basin (m3 s-1) divided by air 

basin width (m). The final parameter is the population average breathing rate, Q. 

Linear population density (people m-1) values are calculated from year-2002 

population and land area data for the 379 urban areas in the US with more than 50,000 

people (US DOT, 2003a). These 379 urban areas contain 63% of the US population. 

Harmonic mean normalized dilution rates (m2 s-1) are calculated from twice-daily derived 

values of wind speeds and mixing heights for the 75 meteorological stations in the US 

EPA’s Support Center for Regulatory Air Models (SCRAM) database (US EPA, 2000; US 

EPA, 2002). Wind speeds in this database are the average speed over the mixing height 

(US EPA, 2002). The mean and median values of the meteorological stations’ harmonic 

mean normalized dilution rate, uH (units: m2 s-1), are 610 and 480, respectively. The linear 
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population density and normalized dilution rate data are presented in Figure 4-1. In Figure 

4-2, the linear population density data is compared against population in that urban area.  

Using Equation 4-1, I combine each of the 379 linear population densities with each 

of the 75 annual harmonic mean normalized dilution rates, yielding 28,425 estimates of 

intake fraction. This method of combining the two datasets implicitly assumes that the 

SCRAM data are representative of meteorological conditions throughout the US and that 

the DOT data are representative of urban areas throughout the US. Visual inspection of a 

US map showing the locations of the 75 meteorological stations and the 379 cities did not 

reveal a systematic location bias.  

As a comparison with Figures 4-1 through 4-5, which apply to US urban areas, 

Table 4-1 presents linear population density and intake fraction values for select urban 

areas in California. Intake fraction values in Table 4-1 are based on Equation 4-1, using a 

breathing rate of 12.2 m3 d-1 person-1 and a normalized dilution rate of 480 m2 s-1 (i.e., 41.5 

million m2 d-1). Linear population density, and thus estimated intake fraction, varies among 

California urban areas by more than an order of magnitude. 

 

Empirical model 

The empirical model developed by Glen et al. (1996) estimates ambient 

concentrations of carbon monoxide (CO), which is a good tracer for nonreactive vehicle 

emissions. As a statistical model based on measured concentrations, this approach offers a 

good complement to the two other methods presented in this chapter. The empirical model 

focuses explicitly on vehicle emissions, incorporating US EPA’s MOBILE5 emission 
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factors (www.epa.gov/otaq/m5.htm). The model offers good predictions of observed data, 

based on only a few empirically determined parameters.  

For the years 1984 – 1991, Glen et al. (1996) compared monthly average ambient 

concentrations of CO in 15 US cities with meteorological data and MOBILE5 emission 

factors. They report the following empirical relationship: 

    
Ci,n = knEi,n exp -

Hi,n

h* -
ui,n

u*

 
 
 

  

 
 
 

   (4-2) 

Here, Ci,n is the modeled ambient CO mole fraction (ppm) in month i for city n; kn is an 

empirically determined constant (ppm mile g-1) for city n; Ei,n is the average CO emission 

factor (g mile-1) in month i for city n; Hi,n and ui,n are the average mixing height (m) and 

wind speed (m s-1), respectively, in month i for city n; and h* and u* are empirically-

determined constants with units of length (m) and speed (m s-1), respectively, used to make 

dimensionless the argument in the exponential. They report one value for h* (1626 m) and 

for u* (9.55 m s-1) and the following information for each city: kn, mean summer and winter 

wind speed and mixing height, and modeled and measured CO concentration time series. 

For each of the 15 cities analyzed by Glen et al., I calculate the winter and summer 

intake fraction using Equation 4-3, which is derived from Equations 3-1 and 4-2. 
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Here, DVMT is the total daily vehicle-miles travelled (VMT) in an urban area (mile d-1), φ is 

the fraction of ambient concentrations attributable to motor vehicle emissions (unitless), 

and 0.00125 converts the CO mole fraction (ppm) to CO concentration (g m-3). For the 
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years 1984 – 1991, φ is ~0.7 based on US nationwide data (US EPA, 2003c). Population 

and VMT data are taken from US DOT (2003a). 

 

National-Scale Air Toxics Assessment (NATA) 

The National-Scale Air Toxics Assessment (NATA) estimates year-1996 population 

inhalation of atmospheric emissions in the US (US EPA, 2004). To my knowledge, NATA 

is the most comprehensive national-scale exposure model available. Two main steps within 

NATA are important here. First, the ASPEN Gaussian plume dispersion model uses 

meteorological data and the year-1996 National Toxics Inventory to estimate ambient 

concentrations in all US census tracts. Next, a probabilistic exposure model combines (1) 

ASPEN-estimated ambient concentrations, (2) time-activity information for 30 hypothetical 

individuals from each of 10 cohorts (5 age groups, two genders) and (3) estimates of 

differences between ambient and microenvironment exposure concentrations. The results 

are summarized as the population average incremental exposure concentration attributable 

to four source categories (point, area, on-road mobile, and off-road mobile) in two county 

types (urban and rural). I estimate NATA intake fractions for urban on-road mobile sources 

based on two conserved pollutants: benzene and diesel particulate matter.  

Intake fraction is estimated from the NATA values using Equation 4-4: 

    
iFNATA  =   

CQP
E

 (4-4) 

Here, C is the mean urban attributable exposure concentration (g m-3), and E is the 

emission rate from on-road mobile sources (g h-1). Consistent with the EPA’s caveat that 
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NATA results are more meaningful when aggregated rather than presented for individual 

counties, I present here the mean intake fraction among US urban counties. Because the 

NATA exposure concentrations are the mean values across census tracts, they are 

approximately population-weighted values, as US Census tracts are sized to contain ~4,000 

people each (US Census, 2004b). 

 

Results and discussion 

Intake fraction values 

Intake fraction values vary among urban areas. The first two methods I use (the 

one-compartment model and the empirical model) provide information about this 

variability. Table 4-2 presents population-weighted and unweighted intake fraction results. 

The unweighted mean, for example, is the mean value of the intake fraction among urban 

areas (i.e., giving equal weighting to each urban area). These values are applicable when 

considering each US urban area as a distinct unit. The population-weighted mean weights 

the intake fraction value for each urban area based on urban population (i.e., giving equal 

weight to each person). These values are applicable for population-weighted measures 

including total US urban environments. 

Unprocessed intake fraction results from the one-compartment model are presented 

in Figure 4-3. Figure 4-4 presents isopleths of one-compartment-model-derived intake 

fraction values as a function of linear population density (PA-0.5) and normalized dilution 

rate (uH). At a given pair of percentiles, intake fraction is larger for the population-

weighted values than for the unweighted values. Figure 4-5 is a bubble plot of results from 



 116

the empirical model, with the icon area proportional to the intake fraction. Each of the 15 

cities in the empirical model is represented by two icons (summer and winter).  

 

Comparisons among the three methods 

Intake fraction values calculated by the three methods employed in this chapter are 

consistent with each other. The range of intake fraction values (units: per million) is 

broader for the one-compartment model (0.1 – 280) than for the empirical approach (5.7 – 

54). One reason for this difference is that the one-compartment approach considers 

significantly more urban areas than the empirical approach (379 versus 15 urban areas). In 

addition, as applied here, the one-compartment model estimates values for all possible 

combinations of linear population density (PA-0.5) and normalized dilution rate (uH), rather 

than incorporating only the one, true set of meteorological conditions found in any urban 

area. Hence, it is more appropriate to consider the one-compartment model results 

presented in this chapter in terms of central tendencies (e.g., median and inter-quartile 

range) rather than for extreme values (e.g., maximum and minimum). 

Unweighted intake fraction values for the empirical model are larger than for the 

one-compartment model mainly because of differences in urban population size. The mean 

urban population is 5.5 times larger for the 15 cities in the empirical model than for the 379 

urban areas in the one-compartment model (1.2 million versus 220,000 people). The best-

fit relationship in Figure 4-2 indicates that linear population density is proportional to P0.59. 

Based on this relationship, the population difference of 1.2 million versus 220,000 would 

yield a factor of 2.7 difference in the linear population density values, and thus, in the 

expected mean unweighted intake fraction. Consistent with this expectation, the difference 



 117

in unweighted mean intake fraction between the empirical model (15 per million, summer 

and winter combined) and the one-compartment model (5.3 per million) is a factor of 2.8. 

For comparison, I also calculated the NATA-derived mean urban intake fraction 

value for a reactive vehicle emission, 1,3-butadiene (characteristic lifetime ≈ 6 h (US EPA, 

1993)). The result, 3.1 per million, is less than the NATA-derived intake fraction for 

benzene (7.0 per million) because chemical reactions remove a portion of the 1,3-butadiene 

from ambient air. 

Results presented in this chapter, like those presented in Chapter 3, support the idea 

that a one-compartment model can yield reasonably accurate results for investigations of 

typical intake fraction values. NATA accounts for several factors that the one-compartment 

model does not, such as concentration differences in microenvironments and spatial 

heterogeneities in emissions and ambient concentrations. The more sophisticated approach 

employed by NATA allows it to address questions the one-compartment model cannot. 

Nevertheless, the two approaches yield similar results for the primary research objective of 

this chapter. 

  

Intake fraction in urban areas not studied in this work 

One method for estimating the intake fraction in a specific urban area would be to 

scale the results from this chapter up or down based on the linear population density. For 

example, based on the one-compartment model results, when considering an urban area 

with a linear population density that is two times greater than the US DOT (2003a) median 

value of 9.5 people m-1, the intake fraction would be estimated as ~6 per million (i.e., two 

times greater than the unweighted one-compartment model median intake fraction value of 
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3.0 per million). For the South Coast Air Basin (linear population density ≈ 120 people  

m-1), this approach suggests a value of 38 per million, which is close to the value of 48 per 

million presented in Chapter 3. If the linear population density is not known, the intake 

fraction for an urban area can be approximated from the urban population (P) using the 

following relationship: intake fraction ≈ 0.0025 P0.59, where intake fraction is in units of 

per million. This relationship combines Equation 4-1, the empirical relationship in Figure 

4-2, a breathing rate of 12.2 m3 d-1 person-1, and a normalized dilution rate of 480 m2 s-1. 

Uncertainty 

I discuss here uncertainty in the input parameters and in the methods used. For the 

one-compartment and empirical models, method uncertainty is expected to be larger than 

input uncertainty. While rigorous uncertainty bounds are not known for the input 

parameters used in these two approaches, most of the input data (e.g., population, land area, 

wind speed) have relatively tight confidence intervals. An exception is the vehicle CO 

emission factor, for which the uncertainty is a factor of ~2 (Singer and Harley, 1996). 

These two methods do not account for differences between ambient and exposure 

concentrations, such as those occurring while traveling in a vehicle, nor do they incorporate 

emissions’ spatial and temporal variability. To the extent that such factors increase the 

estimated inhalation intake rate, these two methods may underestimate the true intake 

fraction value. The NATA approach accounts for these two factors, which reduces method 

uncertainty, but in doing so, it increases both the number of input parameters and the input 

uncertainty. Most of the uncertainty information that NATA provides is qualitative. One 

exception is uncertainty in modeled ambient concentrations: comparisons between modeled 
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and measured concentrations indicate that the model under-predicts ambient concentrations 

by ~40% for conserved gases and by a factor of ~5 for particles (US EPA, 2004). Because 

intake fraction incorporates the ratio of concentrations to emissions, differences between 

measured and modeled concentrations may or may not lead to errors in the NATA-derived 

intake fraction estimates presented in this work. If these differences were attributable to the 

air dispersion model, then the NATA-derived intake fraction values presented in this work 

would be too low by ~40% for conserved gases and by a factor of ~5 for particles. In 

contrast, if these differences were attributable to errors in the emission inventory, then they 

would not indicate errors in the NATA-derived intake fraction values. The EPA considers 

the latter case to be more likely than the former (US EPA, 2004). 

Comparing results among the three methods provides information about the overall 

method uncertainty. Combining results from the three methods with equal weight, the mean 

population-weighted annual average intake fraction for conserved gaseous vehicle 

emissions is estimated to be ~14 per million. The mean values from the three methods 

(excluding diesel PM because it is not a nonreactive gas) are within ~50% of this average. 

Thus, I estimate method uncertainty to be roughly 50%. Further investigations, applying 

additional methods to urban areas throughout the US, are necessary to confirm the intake 

fraction results and the uncertainty estimates presented in this work. 

Total intake for urban emissions is the sum of the intakes within and downwind of 

the urban area. The results presented in this chapter only quantify intraurban intake. 

Previous work indicates that for urban vehicle emissions, the downwind intake may either 

be small relative to, or be comparable to, intraurban intake. Not enough work has yet been 

done to arrive at firm conclusions. Evans et al. (2002) found that 50% of the total 
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inhalation of urban highway emissions occur within 100 km of the source. Greco et al. 

(2004) found that 41% of people in the US live in counties where a majority of the total 

inhalation intake of mobile source emissions occurs within their county borders. For 

vehicular emissions in California’s South Coast air basin, I report in Chapter 3 that the 

downwind increment of intake is a few orders of magnitude smaller than the intake within 

the air basin. 

Seasonal variability 

I investigate seasonal variability for the 15 cities in Glen et al. (1996) and for six 

cities from the SCRAM database: Waycross, Georgia; Denver, Colorado; Atlantic City, 

New Jersey; Oakland, California; Peoria, Illinois; and Tucson, Arizona. These six cities 

were chosen to span a range of climates throughout the US. Following the approach by 

Glen et al., I group the SCRAM data into four summer months (May-August) and four 

winter months (November-February).  

The analysis reveals that intake fraction values are, on average, higher in winter 

than in summer. The median intake fraction value calculated using the empirical model is 

~40% larger in winter than in summer. (One city of the fifteen in the empirical model does 

not follow this trend: the calculated intake fraction for Buffalo, New York, is essentially the 

same in summer as in winter.) For five of the six SCRAM stations, the average normalized 

dilution rate is greater in summer than in winter, causing the calculated intake fraction to be 

50 – 200% larger in winter than in summer. (At the sixth station, Peoria, Illinois, the 

normalized dilution rate is 80% larger in winter than in summer.) These estimates are 

consistent with the finding reported in Chapter 3 that the vehicle intake fraction in the 

South Coast Air Basin is ~100% larger in winter than in summer. 
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For these 21 cities, seasonal variability in the calculated intake fraction is more 

attributable to changes in mixing height than to changes in wind speed. On average, mixing 

heights are 90% higher in summer than in winter. This seasonal trend, with mixing heights 

being higher in summer than in winter, occurs in all 21 cities. In contrast, wind speeds for 

the 21 cities change by an average of 20% between summer and winter. For 10 of the 21 

cities, wind speed is larger in summer than in winter; for the remaining 11 cities, the 

reverse is true. 

Conclusions 

I have used three independent methods to characterize intake fraction for 

nonreactive vehicle emissions in US urban areas. These three methods incorporate 

empirical results and models with different levels of sophistication. Intake fraction varies 

among locations, based on factors such as meteorology, linear population density, and the 

spatial distribution of emissions. Population-weighted annual-average mean intake 

fractions for nonreactive gaseous vehicle emissions in US urban areas are estimated to be 

~14 per million, with an uncertainty of approximately 50%. Intraurban removal 

mechanisms, such as chemical reactions (as for 1,3-butadiene) and physical removal as 

air migrates from outdoors to indoors (as for diesel PM), reduce the intake fraction. 

Seasonal average intake fractions are usually higher in winter than in summer, owing 

primarily to changes in atmospheric mixing height. 

Intake fraction is a useful metric for health risk assessments, cost-benefit analyses, 

and other investigations that require a summary of the emission-to-intake relationship. 

Earlier work (Bennett et al., 2002; Evans et al., 2002; Lai et al., 2000) highlighted the 



 122

merits of compiling intake fraction values and methods for various sources and pollutants. 

This investigation contributes to that goal. 
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Table 4-1: Linear population density values for selected California metropolitan areas, 
with estimated intake fraction values 

Metropolitan Statistical Area (MSA) 
Linear population 
density(a) 

Estimated intake 
fraction(b) 

  (people m-1) (per million) 
 Los Angeles-Long Beach-Santa Ana  163 48 
 San Francisco-Oakland  74 22 
 San Diego  65 19 
 San Jose  54 16 
 Sacramento  48 14 
 Riverside-San Bernardino  44 13 
 Fresno  28   8.3 
 Oxnard  26   7.5 
 Bakersfield  20   5.9 
 Santa Barbara  16   4.8 
 Simi Valley  14   4.0 
 Lodi  14   4.0 
 Vacaville  12   3.6 
 Chico  11   3.2 
 Santa Cruz     9.8   2.9 
 San Luis Obispo     8.7   2.5 
 Redding     6.9   2.0 
(a) Source: US DOT (2003a). 
(b) Intake fraction estimates in this table are based on Equation 4-1, using Q = 12.2 m3 
person-1 d-1, uH = 41.5 × 106 m2 d-1, and the linear population density values in this table.
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Table 4-2: Estimated annual average intake fraction (per million) for urban vehicle emissions using the three methods 
employed in this chapter 

 One-compartment 
model 

Empirical model, 
summer 

Empirical model, 
winter 

NATA, 
benzene

NATA,  
diesel PM 

Range of values 0.1 – 280 5.7 – 31 7.7 – 54 - - 
Population-weighted      

mean  21 10 15 7.0 4.4 
median  12 9.3 13 - - 
inter-quartile range(a) 5.1 – 25 8.4 – 11 11 – 16 - - 
10%-trimmed range(b) 2.4 – 50 7.6 – 15 11 - 29 - - 

Unweighted       
mean  5.3 12 19 - - 
median 3.0 9.3 13 - - 
inter-quartile range(a) 1.8 – 5.6 8.2 – 13 11 – 24 - - 
10%-trimmed range(b) 1.1 – 11 6.2 – 19 11 – 33 - - 

(a) The inter-quartile range is the range of values excluding the top 25% and bottom 25% of the distribution. 
(b) The 10%-trimmed range is the range of values excluding the top 10% and bottom 10% of the distribution. 
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Figure 4-1: Distributions of values for normalized dilution rate (m2 s-1; left plot) and linear population density (m-1; right plot). 
These two variables are input parameters to the one-compartment model.
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Figure 4-2: Relationship between linear population density and population for the 379 

urban areas in the US with more than 50,000 people. Linear population density is the 

population divided by the square root of the land area. Urban areas with large populations 

tend to have large linear population densities, suggesting that increasing the urban 

population size increases the intake fraction. Data are from US DOT (2003a). 

Population 

 
 
 
 

Linear 
population 

density  
(people m-1) 



 127

 

 

 

Figure 4-3: 10%-trimmed distribution of annual average intake fraction values for 

distributed ground-level releases of nonreactive pollutants in US urban areas using the 

one-compartment model. 
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Figure 4-4: Isopleths of 10%-trimmed annual average intake fraction values (per million) for vehicle emissions in US urban 

areas based on the one-compartment model. In the left figure (the unweighted plot), the linear population density percentile 

values on the y-axis represent the distribution among urban areas in the US DOT (2003a) database. In the right figure (the 

population-weighted plot), the linear population density percentile values on the y-axis represent the distribution among people 

living in urban areas.  
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Figure 4-5: Summer and winter seasonal-average wind speed and mixing height 

(harmonic means) and intake fraction (iF) values (numerical labels) for vehicle emissions 

in the 15 urban areas in the empirical model. The area of each circle is proportional to the 

intake fraction value.  

 

Mixing height (m) 

 
Wind 
speed 
(m s-1) 



 130

Chapter 5: Self-pollution intake fraction of school bus 

emissions 

 

Reproduced in part with permission from Environmental Science & Technology, 39(8): 

2559-2563, 2005. Copyright 2005, American Chemical Society. 

 

Introduction 

The two preceding chapters presented intake fraction estimates for urban areas. In 

this chapter, I focus on the intake fraction in a specific microenvironment, a specific 

population, and a specific vehicle type. Here, I investigate children’s inhalation of vehicle 

emissions from the school bus in which they are riding. 

As discussed in Chapters 2 and 3, concentrations of vehicular pollutants are 

higher in and near vehicles than at centrally located monitors (Flachsbart, 1995; Gulliver 

and Briggs, 2004; Rodes et al., 1998; Wallace, 1991; Wallace, 1996). Recent work 

confirms that pollution from other vehicles is important on school buses, especially in 

explaining short-term variability in on-board concentrations (e.g., particle concentrations 

increase after passing a diesel truck with visible emissions) (Sabin et al., 2005). 

Proximity to other vehicles is one reason for elevated in-vehicle concentrations (Rodes et 

al., 1998). However, a fraction of the pollution inside a school bus is attributable to the 

bus itself. This chapter investigates this type of pollution – which I term vehicle “self-

pollution” – for students commuting on a school bus. As a major form of children’s 
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transportation, school bus emissions represent a potentially important source of children’s 

exposure to vehicle pollutants. Self-pollution increases exposure to vehicular emissions 

for those children riding a school bus. 

School bus emissions, like other vehicle emissions, are a health concern in urban 

areas. However, school bus emissions are especially salient for two reasons. First, almost 

all bus engines are diesel engines. Diesel particulate matter (DPM) is estimated to cause a 

majority of the cancer risk attributable to ambient air pollution in the South Coast Air 

Basin (SCAQMD, 1999). Second, an important objective of air quality regulations is to 

reduce exposures, especially for sensitive subpopulations. Children are believed to be 

especially susceptible to air pollution because of their high inhalation rates and lung 

surface area per body weight, narrow lung airways, low lung clearance rates, and 

immature immune systems (CARB, 2002c; Dockery et al., 1989; Lipsett, 1995; Thurston, 

2000).  

Using results from previous tracer-gas experiments (Behrentz et al., 2004; Fitz et 

al., 2003), I estimate the fraction of emissions inhaled by the population of school bus 

riders (the intake fraction, iF) and by an average individual bus rider (the average 

individual intake fraction, iFi). In addition to assisting in characterizing exposures and 

elucidating causative factors, this information can aid in designing effective exposure 

reduction strategies. 
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Methods 

Tracer gas experiment 

Tracer gas experiments were performed on six buses while traveling on an in-use 

school bus route that covered highly urbanized areas of south-central Los Angeles and 

suburban areas of West Los Angeles. Researchers from the University of California at 

Los Angeles made measurements during seven runs with closed windows and nine runs 

with open windows in April, May, and June, 2002. Table 5-1 summarizes the 

characteristics of these runs. Experimental methods are described elsewhere (Behrentz et 

al., 2004; Fitz et al., 2003). In each bus run, a mass flow controller metered the delivery 

of a tracer gas, sulfur hexafluoride (SF6), from a high-concentration cylinder into the 

bus’s exhaust system. On-board SF6 concentrations were measured at two locations (front 

and rear) with an electron capture detection analyzer (AeroVironment Model CTA 1000). 

Model years of the buses were 1975, 1985, 1993, 1998 (two buses), and 2002. These 

buses included two older (year-1975 and 1985) high-emitting (HE) diesel buses, two 

diesel buses more representative (RE) of current fleets, one particle trap-outfitted (TO) 

diesel bus, and one bus powered by compressed natural gas (CNG). 

 

Intake fraction 

Intake is the mass of a pollutant that is taken in by an exposed individual or 

population. For inhalation of air pollution, intake rate (g min-1) is the product of 
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volumetric breathing rate (L min-1) and exposure concentration (g L-1). I calculate intake 

fraction for school bus self-pollution, iFSP, using Equation 5-1: 

 

E
PCQiF B

SP = .         (5-1) 

 

Here, QB is the average breathing rate (m3 person-1 min-1), P is the average number of 

people on a school bus, C is the temporally and spatially averaged on-board SF6 

concentration (g m-3) during a bus run, and E is the experimental SF6 mass emission rate 

(g min-1) into the bus’s exhaust during a bus run, calculated as the product of the 

concentration of SF6 (g L-1) in the high-pressure SF6 gas cylinder and the metered flow 

rate of gas (L min-1) from the cylinder to the bus’s exhaust. 

The variables in Equation 5-1 can be grouped into two terms. The first term, QBP 

(units: L min-1), is the volume of air inhaled per minute by the exposed population. The 

second term, C E-1 (min L-1), indicates the magnitude of self-pollution, as measured by a 

tracer gas. I define a self-pollution term, S, as C E-1, which is proportional to the mass 

fraction of emissions that enter the bus (Mf): 

 

bus

f

V
τM

E
CS == .        (5-2) 

 

Here, Vus is the interior volume of the bus (L), and τ is the mean residence time of air 

inside the bus (min). The residence time of air inside the bus depends on the rate of air 

exchange between inside and outside air, which in turn depends on factors such as the 
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window position (open or closed), vehicle speed, and wind speed (Fitz et al., 2003; Park 

et al., 1998). 

Values for the self-pollution term, S, were calculated from reported tracer gas 

experiments for school-bus commutes (Fitz et al., 2003), as given in Table 5-1. Data on 

breathing rate and number of passengers are not available for students on a school bus. 

Based on children’s metabolic rates at rest and at light activity levels (Layton, 1993), I 

estimate that children’s average breathing rate on a school bus is between 7.2 and 22 L 

min–1. Activities given in Layton (1993) that correspond to this range of breathing rates 

include “sweeping”, “preparing vegetables”, and “cooking”. The middle estimate, used in 

the analyses below, is the average of these two values (14.6 L min–1). I estimate that the 

average number of children on a school bus is 40, and in the range 20 to 50. The middle 

estimate equals the number of public school students transported by buses in California 

during the 2000-2001 school year (964,815 students) divided by the number of buses 

available (24,497 buses) (School Transportation News, 2003). On any given day, some of 

the 964,815 students will not ride a bus, and not all of the buses in the fleet will be used. 

The time spent on a bus varies among students. 

 

Results 

Table 5-1 summarizes the SF6 measurement results and the calculated intake 

fractions for each bus run (i.e., each row represents a single tracer-gas experiment). 

Figure 5-1 depicts the self-pollution term, S, for the six buses studied. Self-pollution is 

substantial for all six buses.  
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Bus age and window position affect the magnitude of self-pollution, with older 

buses and closed-window buses having higher self-pollution levels. On average, S values 

are ~2 times higher with windows closed than with windows open. The importance of 

window position increases with bus age: the difference between open and closed 

windows is ~20% for the newer buses and a factor of ~3 for the older buses. Similarly, 

the importance of bus age increases when windows are closed: the difference in average S 

value between the oldest (model year 1975) and the newer buses (model year 1993 and 

later) is a factor of ~2 with windows open and a factor of ~6 with windows closed. 

Total intraurban inhalation intake for school bus emissions has two components: 

inhalation intake by passengers (self-pollution) and inhalation intake by all other people 

(excluding self-pollution). Intake fraction (iF) is equal to self-pollution intake fraction 

(iFSP) plus intake fraction excluding self-pollution (iFnon-SP). These two components (iFSP 

and iFnon-SP) are presented separately in Figure 5-2. Values for iFSP are estimated from the 

tracer gas experiments (Behrentz et al., 2004; Fitz et al., 2003) analyzed here. Values for 

iFnon-SP for primary, nonreactive pollutants are estimated as the fleet-wide average intake 

fraction for motor vehicle emissions of carbon monoxide in the South Coast Air Basin 

(46 per million). This value, derived in Chapter 3, accounts for spatial variability in 

population density and ambient concentrations; temporal variability in concentrations and 

breathing rates; and microenvironments such as in- and near-vehicle and indoors near a 

freeway. The true non-self-pollution intake fraction for buses may differ from the value 

of 46 per million derived in Chapter 3 because school-bus travel patterns differ from the 

fleet average. For example, the timing of emissions during the day and the spatial 

location of the emissions (e.g., freeway versus highway) differ between school buses and 
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the fleet average. However, there is not available information to estimate readily how 

these differences in the spatial and temporal emission patterns influence intake fraction. 

Self-pollution intake fraction is estimated in this work from ~90-minute tracer gas 

experiments, while the estimate of non-self-pollution intake fraction is based on annual 

exposures in the South Coast. Results from these two methods can be compared because 

the analyses are independent of exposure duration, which is true for two reasons. First, 

the periods analyzed are much longer than the residence times of air in the respective 

environments. The tracer gas experiments were performed for much longer than the 

residence time of air in a bus (Fitz et al., 2003), and the South Coast analysis considered a 

much longer time period than the residence time of air in an air basin (see Chapter 3). 

Second, in this work, I do not analyze temporal variability in self-pollution intake 

fraction (i.e., when using Equation 5-1, I incorporate average, rather than time-varying, 

values for the parameters).  

Figures 5-2 and 5-3 depict intake fraction and average individual intake fraction 

for nonreactive gaseous emissions. Because the self-pollution term is similar in 

magnitude for the newer buses, these four buses are combined in Figures 5-2 and 5-3. 

Average values across all bus runs are 27 per million for school bus self-pollution intake 

fraction, 73 per million for school bus intake fraction (i.e., including self-pollution and 

non-self-pollution intakes), and 0.7 per million for school bus self-pollution individual 

intake fraction. 

Figures 5-2 and 5-3 use the arithmetic mean of front and rear S values for the 

newer buses and for the oldest bus. Error bars assume that uncertainty in the average 

number of students on a school bus (P) and in students’ average breathing rate (QB) align 
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to yield the maximum uncertainty in intake fraction and individual intake fraction. The iF 

values in Figure 5-2 indicate that for every million grams of a primary conserved 

pollutant emitted by a school bus, a total of ~46 g are inhaled by the ~15 million people 

in the South Coast Air Basin who are not riding that bus, and that the passengers inhale 

an additional 10 – 54 g for a newer school bus, and 13 – 94 g for an older school bus. 

The values in Figure 5-2 apply to nonreactive gasous emissions, but a similar 

comparison that focused on diesel PM2.5 (DPM) would be likely to yield similar results. 

For example, I estimate here that the value for iFnon-SP for primary PM2.5 is 33 per million. 

This value combines the estimate of 46 per million for iFnon-SP for primary, nonreactive 

pollutants (shown in Figure 5-2) with the estimate that people spend 87% of time indoors 

where ambient PM2.5 concentrations are 67% of their value outdoors (see Chapter 2, 

Appendix). Thus, the non-self-pollution intake fraction value for PM2.5 is approximately 

71% (i.e., 87% × 67% + (100% - 87%)) of the same value for a nonreactive gas. The 

difference (33 per million versus 46 per million) is attributable to the protection buildings 

offer against ambient PM2.5. Furthermore, I estimate here that the school bus self-

pollution intake fraction is approximately the same for PM2.5 as for nonreactive gases, for 

two reasons. (1) Cracks and leaks in a school bus tend to be relatively large (large enough 

to allow in visible light), and thus are unlikely to remove a significant fraction of PM2.5 as 

air migrates into the bus. (2) The residence time of air on a bus is short enough that only a 

small fraction of the PM2.5 would be removed in-vehicle (e.g., via deposition).  

Figure 5-3 presents average individual intake fractions. Average individual intake 

fraction is equal to intake fraction divided by the number of people exposed. The right-

most bar represents a typical person’s exposure to emissions from an average vehicle in 
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the South Coast Air Basin. The remaining values are for a student’s exposure to 

emissions from the school bus on which they commute. For example, for every million 

grams of a primary, conserved pollutant emitted by an old bus with closed windows, ~2 g 

are inhaled by the average person on that bus, and ~2 × 10-6 g are inhaled by the average 

person who is not riding on that bus. The difference in intake fraction among the cases in 

Figure 5-2 (iFSP for a newer and older bus, and iFnon-SP) is less than one order of 

magnitude, but the size of the exposed population varies by more than five orders of 

magnitude (~40 people for self-pollution, and ~15 million people for non-self-pollution). 

Therefore, the difference in individual intake fraction values between self-pollution and 

non-self-pollution is between 5 and 6 orders of magnitude. That is, the emission-to-

individual-intake ratio is 105–106 times greater for children inhaling their own school 

bus’s emissions than for the average South Coast resident inhaling emissions from a 

single average school bus. Even with the order of 104 school buses operating daily in the 

South Coast Air Basin, the individual inhalation intake from all school buses is much 

larger for bus-riding school children owing to vehicle self-pollution than for the average 

urban resident. 

 

Discussion 

Self-pollution intake 

The relationship between reductions in emissions and reductions in a child’s 

intake varies significantly among sources. For example, reducing annual DPM emissions 

by 1 tonne would reduce an average exposed child’s annual intake of DPM by 3 × 10-3 
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mg if the reduction comes from ambient emissions from a typical diesel vehicle, by 400 

mg if the reduction comes from the child’s school bus if he rides a newer bus, or by 1,000 

– 2,000 mg if the reduction comes from the child’s school bus in the case that he rides an 

older bus. In other words, because of self-pollution, school buses are orders of magnitude 

more effective than an average vehicle at delivering emissions to bus-riding children’s 

lungs. Reducing an exposed child’s intake by a specific amount would require 4 to 6 

orders of magnitude greater emission reduction if control strategies target typical diesel 

vehicles (e.g., heavy duty diesel trucks) than if strategies target self-pollution from that 

child’s school bus. 

 

Health risk assessment 

An estimate of the overall health risk can be made based on the intake fraction 

values above. DPM emissions from a diesel bus are estimated by the US EPA 

MOBILE6.2 emission factor models as 0.5 g km-1 for year-2004 buses and 2.0 g km-1 for 

year-1985 and older buses (US EPA, 2003a). (An alternative US EPA model, PART5, 

gives vales that are 40 – 50% lower than these values from MOBILE6.2. EPA considers 

the values from MOBILE6.2 to be more reliable than those from PART5  (US EPA, 

2003a).) The concentration-based lung cancer unit risk factor for lifetime exposure to 

DPM is 0.0003 (µg m-3)-1 (CARB, 1998; OEHHA, 1998). This value means that the lung 

cancer risk attributable to a lifetime average exposure to 1 µg m3 of DPM is 0.0003, or 

300 per million. Based on a lifetime average breathing rate of 12.2 m3 d-1 and a lifetime 

duration of 70 y (i.e., based on a breathing rate of 312,000 m3 lifetime-1), the 
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concentration-based unit risk factor can equivalently be expressed as an intake-based unit 

risk factor of 0.0010 g-1. This value means that the lung cancer risk attributable to a 

lifetime inhalation intake of 1 g of DPM is 0.001, or 1000 per million. Based on the 

common assumption of a linear dose-response for cancer risk, this intake-based unit risk 

factor holds whether one considers the intake by an individual or by a group. 

According to the US EPA’s Clean School Bus program website 

(www.epa.gov/cleanschoolbus), school buses drive more than 6.4 billion km per year, 

and 24 million children per day ride a school bus. Combining this distance traveled (6.4 × 

109 km y-1) with the range of MOBILE6.2 emission factors for new and old buses (0.5 – 

2.0 g km-1), total DPM emissions from school buses are estimated at 3,000 – 13,000 t y-1. 

If the average self-pollution intake fraction is 27 per million, then the cumulative inhaled 

mass of DPM by children is 90 – 360 kg y-1. Using an intake-based toxicity of 0.001 g-1, 

the estimated number of lung cancer cases attributable to self-pollution intakes is 90 – 

350 y-1. For each year of school bus fleet operation, an estimated lifetime burden of 90 – 

350 lung cancer cases is estimated to occur among school children owing to vehicle self-

pollution. The average annual risk per child, assuming an exposed population of 24 

million bus riders, is 4 per million – 14 per million. The total risk attributable to 13 years 

of exposure (i.e., during the age range of 5 – 18 years old) is 52 per million – 180 million. 

Assuming that the person does not have significant school-bus ridership after age 18, 

these values represent the lifetime average lung cancer risk attributable to an individual’s 

school bus. These values are broadly consistent with an extant health risk assessment that 

estimated that the lifetime lung cancer risk attributable to riding a school bus as a child is 

~30 per million (CARB, 2003a). These lung cancer risk values are well above the “de 
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minimus” risk level of 1 per million identified in the 1990 Clean Air Act. These values 

represent average risks for a large population. Risks are highest for the most exposed 

students, including those who ride the buses with the highest emissions and the highest 

self-pollution levels, and those riders with the longest exposure duration (i.e., the longest 

commute). Because of the assumptions involved in these health risk assessment 

calculations, they represent only a magnitude estimate of the health risks. Nevertheless, 

the estimate is useful for understanding the scale of the problem. 

 

Control strategies  

The school bus microenvironment contributes significantly to children’s estimated 

total inhalation intake of DPM. Approximately 90% of school bus fuel consumption is 

diesel (Davis and Diegel, 2003). On commute days, for newer and year-1975 buses, 

students commuting on school buses have 34% and 70% higher 24-hour total intakes of 

DPM than car-commuters, respectively (CARB, 2003a). The daily inhalation intake by a 

child of emissions from the one school bus on which he or she commutes is between ~7 

and ~70 times greater than the average daily inhalation intake by a typical South Coast 

resident of emissions from all school buses. 

Both emissions and self-pollution intake fraction are higher for old buses than for 

new buses. The difference between newer (model year 1993 and later) and older buses 

(model years 1975 and 1985), for windows closed, is a factor of ~2 for average iF values 

(63 per million versus 140 per million) and ~5 for average iFSP values (17 per million 

versus 94 per million). The emission factor difference between newer and older buses, 

according to EPA’s MOBILE6 emission model, is approximately a factor of 10 (US 
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EPA, 2003a). The correlation between vehicle age, vehicle emissions, and both iF and 

iFSP suggests that older buses should be a much higher emission reduction priority than 

newer buses. Based on the results I presented in this chapter, even if vehicle emission 

control technologies were implemented on older buses, such that emissions from all 

buses were equal, self-pollution intake would still be higher on older buses than on newer 

buses because of the higher iFSP values. 

Inhalation intake equals emissions times intake fraction. Intake control strategies 

should aim to reduce both emissions and intake fractions. Intake fraction can be reduced, 

for example, by decreasing the use of older school buses and by better decoupling the 

exhaust flow from air flowing into the bus. Improved understanding of self-pollution 

mechanisms may suggest additional exposure control strategies. Opening windows, 

which reduces τ, may reduce self-pollution. 

It is important to identify the mechanism of self-pollution (CARB, 2003b). Many 

emission control technologies are applied at the end of the tailpipe. If the dominant 

mechanism for self-pollution transport is post-tailpipe, then end-of-tailpipe technologies 

will reduce all attributable exposures, including self-pollution. But, if the dominant 

mechanism for self-pollution occurs before emissions exit the tailpipe, then end-of-

tailpipe technologies will not reduce attributable exposures from self-pollution. 

 

Variability and uncertainty 

Relative to other urban areas in the US, the South Coast Air Basin has a large 

population size (15 million people) and generally unfavorable atmospheric mixing and 

pollutant transport conditions (CARB, 2002a). Both factors increase intake fraction 
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associated with ambient emissions. Average non-self-pollution intake fraction, iFnon-SP, in 

most urban areas is less than the value of 46 per million used in this chapter for CO in the 

South Coast. The value of 46 per million for the South Coast is derived in Chapter 3. 

Results in Chapter 4 indicate an intake fraction of 14 per million for nonreactive, gaseous 

vehicle emissions as a population-weighted mean for all US urban areas. Similarly, based 

on Eulerian air dispersion modeling, and not accounting for microenvironmental 

exposures, Evans et al. (2002) reported values for iFnon-SP in the range 3–18 per million 

for primary PM2.5 emitted by motor vehicles in urban areas. Thus, the average self-

pollution intake fraction among all bus runs in this study (27 per million) is larger than 

the non-self-pollution intake fraction for nonreactive vehicle emissions in a typical US 

urban area. Stated differently, when considering two groups in a typical urban area – 

students who ride a school bus and everyone else – the total mass of bus pollution inhaled 

by school bus riders likely exceeds the total bus pollution inhaled by the remaining 

public, despite school bus riders representing a small proportion of the population. 

Self-pollution intake fraction will vary based on factors such as the window 

position, bus speed, wind speed and direction, and the bus’s shape and structural 

integrity. The results presented in this work are averages over the conditions tested. 

Given the small sample size in the original tracer gas study (six buses, 16 runs), results 

presented in this chapter should be considered indicative, rather than representative of the 

entire bus fleet. Additional research is needed to refine and extend the results presented 

here, for example, by employing additional buses, bus types, and operating conditions. 

Uncertainty and variability in SF6 emission rates and on-board concentrations do 

not affect the results significantly (CARB, 2003a; Fitz et al., 2003). There is uncertainty 
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in the average activity level, and therefore also in the average breathing rate, for students 

on buses. Based on the range of breathing rates presented in Layton (1993), uncertainty in 

the average breathing rate is estimated as approximately a factor of 2.  

There is also uncertainty regarding the average number of students on each bus. 

The estimate used above, 40 children per bus, assumes that all buses are being used, that 

all students are attending school each day, and that students ride the bus for the entire 

duration of the route. The capacity on a typical school bus is larger than 40 students. For 

example, one school bus manufacturer, Blue Bird ®, sells three makes of standard size 

school bus: the “All American” with forward engine (three possible wheelbases; seating 

capacity ranges between 72 passengers and 89 passengers), the “All American” with rear 

engine (four possible wheelbases; seating capacity ranges from 63 to 84 passengers), and 

the “Vision” (five possible wheelbases; seating capacity ranges from 48 to 78 

passengers). An estimate of average number of students on a bus would need to account 

for travel time with no students, e.g., between the bus garage and the start of the bus 

route. As a back-of-the-envelope estimate, assume that (1) the average capacity for a 

school bus is 70 students, and (2) that a bus operates for an equal duration at each of three 

capacity factor levels: 0%, 50%, and 90%. In this case, the average capacity factor is 46% 

and the time-average utilization is 33 students per bus. This value is in the range of 

values used in this chapter (20 – 50 students per bus), and is within 20% of the best 

estimate value of 40 students per bus. The level of uncertainty in this estimate (40 

students per bus) is difficult to determine, but is estimated to be approximately a factor of 

2 or less. Variability and uncertainty in breathing rate and number of students on a school 
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bus affect the detailed numerical results, but do not alter the broad conclusions I draw 

from these results. 

 

Conclusions 

Vehicle self-pollution occurs when a vehicle’s emissions migrate inside that 

vehicle’s passenger compartment. This chapter presented values for two parameters: 

vehicle self-pollution intake fraction (iFSP), which is the total fraction of a vehicle’s 

emissions inhaled by all people in the vehicle, and vehicle self-pollution individual intake 

fraction (iFi,SP), which is the fraction of a vehicle’s emissions inhaled by an individual in 

the vehicle. I used results from tracer-gas experiments in California’s South Coast Air 

Basin (SoCAB) to quantify students’ iFSP and iFi,SP for school-bus emissions. Six buses 

were studied during nine runs with windows open and seven runs with windows closed. 

The resulting iFSP values (units: per million; min = 10, max = 94, mean = 27) indicate 

that the total mass of a bus’ exhaust inhaled by students commuting on it is comparable in 

magnitude to the total mass of that bus’ exhaust inhaled by all other people in the 

SoCAB. Reported iFi,SP values (units: per million; min = 0.2, max = 2.4, mean = 0.7) 

indicate that average per capita inhalation of emissions from any single bus is 105 – 106 

times greater for a student on that school bus than for a typical resident in the SoCAB. 

Vehicle self-pollution rate varies with bus window position (open or closed) and bus 

manufacture year. The results presented in this chapter can contribute to the development 

of cost-effective strategies to reduce children’s exposure to school-bus emissions. The 

results indicate, for example, that even if emission reductions were many times more 

expensive per gram emitted for school buses than for an average vehicle, it would still be 
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less expensive per gram inhaled by a student to reduce emissions from school buses than 

from an average vehicle. 
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Table 5-1: Self-pollution intake fraction and individual intake fraction results* 

Model 
year 

Window 
position 

Bus 
designation 

S, front 
(10-9 min L-1)

S, rear 
(10-9 min L-1) 

S, average 
(10-9 min L-1) 

iFSP  
(per million) 

iFi,SP 
(per million) 

1975 Open HE3 76 82 79 46 1.2 

1975 Closed HE3 100 220 160 94 2.4 

1985 Open HE2 18 28 23 13 0.33 
1985 Closed HE2 70 100 86 50 1.3 
1993 Open RE2 47 8 27 16 0.40 
1993 Open RE2 23 22 23 13 0.33 
1993 Closed RE2 19 28 23 14 0.34 
1993 Closed RE2 14 21 17 10 0.25 
1998 Open RE1 83 102 93 54 1.4 
1998 Open RE1 17 35 26 15 0.38 
1998 Open TO 14 20 17 10 0.25 
1998 Open TO 29 27 28 16 0.41 
1998 Closed TO 35 44 40 23 0.58 
1998 Closed TO 31 35 33 19 0.48 
2002 Open CNG 25 23 24 14 0.35 
2002 Closed CNG 25 41 33 19 0.48 
    Average 39 52 46 27 0.67 

 
* HE2, HE3 = high emitter diesel school buses; RE1, RE2 = representative diesel school buses; TO = particle-trap outfitted 
diesel school bus; CNG = compressed natural gas school bus; S = the self-pollution term, calculated as the ratio of the on-
board SF6 concentration (g L-1) to the SF6 emission rate (g min-1); iFSP = self-pollution intake fraction; iFi,SP = average self-
pollution individual intake fraction. Based on Equations 5-1 and 5-2, iFSP is calculated as the product of the average breathing 
rate, the estimated population on the bus, and the self-pollution term, S. The values presented here assume an average 
breathing rate of 14.6 L min-1 and an average population of 40 people on each bus. 
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Figure 5-1: Self-pollution term, S (= C E-1), versus bus model year for the front (upper 

plot) and rear (lower plot) of each bus, and with open and closed windows. Older buses 

have higher self-pollution levels than newer buses, but the level is still significant for 

newer buses. To facilitate comparisons between the two graphs, the scales were chosen 

such that one of the values in the lower plot (year-1975, closed windows; Srear = 221 × 10-

9 min l-1) extends off the plot.
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Figure 5-2: Intake fraction for an average vehicle and for school buses in the South Coast. 

Intake fraction is the sum of self-pollution intake fraction and non-self-pollution intake 

fraction. X-axis category labels refer to the bus model year (“new” means 1993 or later; 

“old” means 1985 or earlier) and the window position (open or closed). The error bars 

indicate uncertainty in the self-pollution term, owing to uncertainty in the breathing rate 

and in the number of people on the bus and assuming that uncertainty in these two 

parameters align to yield the maximum possible uncertainty.
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Figure 5-3: Individual intake fraction for an average vehicle and for school buses in the 

South Coast. The first (left-most) value is for a typical person’s inhalation of emissions 

from an average vehicle without self-pollution. The remaining values are for a student’s 

inhalation of emissions from the school bus on which they commute. Note the log scale. 

Error bars and X-axis labels are analogous to those in Figure 5-2. 
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Chapter 6: Mobility-based GIS model of inhalation intake of 

air pollution in the South Coast Air Basin 

 

Introduction  

One of the main challenges in environmental health is accurately estimating 

pollutant intake. For example, environmental epidemiology relies on exposure 

assessment to determine dose-response relationships, and health officials use exposure 

levels to estimate the total health impact of air pollution. Understanding and addressing 

distributional issues, such as correlations between exposure and demographic attributes 

such as ethnicity and income, is important for establishment of equitable policy goals. 

Current air pollution exposure models rarely, if ever, account for population 

mobility. This statement includes those models considered and developed in the 

preceding chapters of this dissertation. For example, using home-based census data (as is 

done in Chapter 3) implicitly assumes that people spend 100% of their time at home. Yet, 

we know that people move within an air basin for employment, shopping, recreation, and 

for other purposes. In doing so, they encounter pollutant concentrations that, in general, 

may differ from those at their home. This chapter addresses whether mobility matters for 

air-pollutant exposure analyses. While Chapters 2–5 emphasized intake fraction, this 

chapter and the next one focus on population inhalation of air pollution. 

I use data from a large (~29,000 person-days) time-location-activity survey in 

Southern California along with spatially and temporally resolved modeled ambient 
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concentrations to estimate population inhalation of air pollutants of outdoor origin. Each 

activity is geocoded, providing people’s location (latitude and longitude) over time. 

Spatially and temporally explicit ambient concentration estimates are combined with 

microenvironment factors and breathing rates to yield the inhalation intake rate. The results 

are evaluated to determine correlations between air-pollution intake rate and demographic 

attributes such as race and income.  

The research I describe in this chapter offers two significant advancements to 

exposure modeling science. First, I incorporate time-varying breathing rates, which makes 

more accurate the connection between exposures and intakes. In addition to presenting the 

diurnal breathing rate profile estimated in this chapter, I also explore explicitly the impact 

of time variability in population breathing rate on inhalation intake of air pollutants. To my 

knowledge, prior to the research presented in this dissertation, this issue has been raised in 

only one extant publication. Hall et al. (1993) used time-varying breathing rates in their 

assessment of inhalation intake of ozone and PM10 in the South Coast. Unfortunately, Hall 

et al. (1993) do not give sufficient detail to understand what was done or to recreate their 

work. (They devote less than one sentence to this issue.) Second, the model presented in 

this chapter explicitly incorporates individuals’ movement throughout an urban area. Most 

exposure analyses do not address the issue of mobility (e.g., Fruin et al., 2001; Lu et al., 

2005; Wu et al., 2005). A few publications have pointed to its importance; Hayes (1989) 

may have been the first to do so. Based on a generalized exposure-modeling framework, he 

showed that mobility could impact modeled exposure rates. Boudet et al. (2001) explored 

how proximity to roads influences the relationship between ambient and exposure 

concentrations for PM10 and PM2.5. Their analysis included both home and work locations. 
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To my knowledge, only one exposure modeling study, by Gulliver and Briggs (2005), 

tracks individuals’ exposures as they move through predicted concentration fields. They 

report journey-time exposure (i.e., exposures during travel activities) to PM10 for 5 days for 

50 children living and walking to school in Northampton, England. The research presented 

in the chapter goes much further in evaluating the effects of mobility on exposures, by 

incorporating a significantly larger sample and longer duration (~29,000 versus 250 person-

days) and by modeling inhalation intake in all microenvironments during each day rather 

than modeling exposures in one microenvironment (in-transit). 

 

Methods 

Inhalation intake of air pollution is calculated in this chapter using Equation 6-1: 

 

∫=
2

1
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T
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amb dtttyxCtaQI µγ ,     (6-1) 

 

where I is the mass of pollutant inhaled (µg) by an individual between times T1 and T2 

(h); Q(a(t)) is the volumetric breathing rate (m3 h-1), which depends on the person’s 

activity level, a(t), which changes over time, t; Camb(x,y,t) is the ambient (i.e., outdoor) 

concentration (µg m-3) near the person, which is a function of location (x,y) and time; and 

γµ(t) is a dimensionless factor for each microenvironment, µ, that accounts for differences 

between the ambient concentration and the exposure concentration in that 

microenvironment. In practice, the above integral is evaluated as a series of sums over 

discrete time intervals. These intervals are chosen such that the three variables (breathing 
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rate, ambient concentration, and microenvironment factor) are reasonably represented as 

constant for the duration of each interval. The input data for these three variables, and my 

methods for combining them, are described next. 

 

Breathing rates 

I use age-, gender-, and activity-specific breathing rates from metabolic activity 

studies (Layton, 1993). Age and gender are recorded in the transportation survey. Survey 

activity data indicate when people are exercising, but otherwise do not provide information 

on metabolic level. Individuals are assigned an exercise breathing rate during time spent 

exercising. If the individual was at home during 11 PM – 7 AM, I use sleeping breathing 

rates. All other activities (e.g., shopping, employment, household chores, etc.) are assigned 

a light activity breathing rate. The calculated average breathing rate (units: m3 d-1 person-1) 

for the sample is 13.0, which lies between the population average estimates of 12 and 15 

given by Layton (1993) and Marty et al. (2002), respectively. 

 

Ambient concentrations 

The ambient concentration assigned to an individual is determined from the 

individual’s location at a particular time and from the output of a spatially and temporally 

explicit model of urban air toxics in the South Coast Air Basin. Ambient concentrations 

used in this study are from the CAMx air quality model (www.camx.com). The air 

dispersion modeling period is April 1, 1998 – March 31, 1999, and the location is the 

South Coast Air Basin modeling domain (Figure 6-1). CAMx is a three-dimensional 
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Eulerian grid model that incorporates emissions, advection, and chemical reaction. 

Ground-level ambient concentrations are given each hour for each 2 km × 2 km grid cell 

in the 120 km × 210 km domain. Details about model formulation, model validation, and 

the broader Multiple Air Toxics Exposure Study (MATES) are available elsewhere 

(ENVIRON, 2002; Morris and Jia, 2003; SCAQMD, 1999). 

I chose CAMx for two reasons. First, the model output offers significantly more 

spatial and temporal resolution than ambient concentration data. The extant ambient 

monitoring network for toxics is not sufficiently detailed to offer robust answers to the 

issues I address in this chapter. Second, the model output covers a full year and includes 

important toxic pollutants, such as diesel particulate matter and benzene, in addition to a 

key criteria pollutant, ozone. In this work, I focus on five of the species modeled in 

CAMx: benzene, 1,3-butadiene, ozone, fine particulate matter emitted from diesel 

engines (DPM2.5), and hevalent chromium in the form of fine particulate matter (Cr-

PM2.5). These five species incorporate different types of pollutants (primary and 

secondary; vehicle-dominated and point-source-dominated emissions; toxic and criteria 

pollutants) and have been determined to be significant contributors to the total health 

impact of ambient air pollution in the South Coast Air Basin (SCAQMD, 1999; US EPA, 

2004). Based on preliminary work, results for the five species are representative of all 13 

toxic species modeled in CAMx. 

 

Travel survey data 

Individuals’ locations are from geocoded activity diaries from the Southern 

California Association of Government (SCAG) year-2000 transportation survey of 
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40,376 individuals. The travel survey incorporates an area larger than the South Coast Air 

Basin modeling domain (SoCAB). I removed from the dataset the 15,188 records (38%) 

for people who live or otherwise spent time outside the SoCAB, leaving 25,188 records 

(62%) of people who spent 100% of their travel diary time within the SoCAB. I removed 

an additional 120 records (0.5% of 25,188) that contained erroneous or missing data or 

that yielded infeasible results, leaving the records for 25,068 individuals used in the 

present study. Most (21,391 out of 25,068, or 85%) of the survey respondents in the data 

subset that I used have one 24-hour weekday record. The rest (15%) have a 48-hour 

record that includes one weekend day. Thus, there are a total of 28,745 person-days in the 

dataset. The records come from 11,780 households. Diary entries start and end at 3:00 

AM, the approximate time when the fewest trips occur (US DOT, 2003b). There are an 

average of 4 activities per person-day.  

The travel survey data were collected during three phases, corresponding to the 

following approximate dates: March 1, 2000 – June 30, 2000 (17 weeks), September 1, 

2001 – December 15, 2001 (15 weeks), and January 15, 2002 – June 30, 2002 (24 

weeks). It is not possible to match travel survey records directly to dates from the 

ambient concentration model results for two reasons. First, the survey period (year-2000 

through 2002) is after the modeling period (year-1998 and 1999). Second, the survey data 

provide the day-of-week and the survey phase, but not the date. To address these two 

limitations, travel survey data and ambient concentration fields were matched using a 

random selection process that preserves fidelity to day-of-week and time-of-year. For 

example, to determine the ambient concentrations for a Tuesday travel survey record in 
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the second phase, I use model results for one Tuesday, chosen at random, between 

August 27, 1998 and December 16, 1998. 

An alternative approach to using travel survey data would be to use results from 

travel demand models. These models simulate the flow of people between origins and 

destinations, and predict attributes of the transportation system, such as congestion, 

vehicle speeds, and public transportation usage. Such models are often used as part of a 

common four-step approach for transportation demand modeling.  

(1) Trip generation. Here, the total number of trips to be taken is estimated, based 

on the number of people and the number of destinations such as shopping and 

employment.  

(2) Trip distribution. Here, the total trips estimated in step 1 are allocated 

spatially. This allocation is often done based on a gravity-based model, which 

assumes that the likelihood for an origin to be associated with a potential 

destination is inversely proportional to the distance (in length and/or time) 

between the origin and the destination. The results from this step are the 

number of trips per hour for each origin-destination pair. 

(3) Mode choice. Here, the trips modeled in step 2 are allocated to the available 

modes, such as automobile, bus, train, bicycle, and walking. Typically, when 

allocating a trip to a mode, a logit model is used to predict people’s behaviors, 

based on a comparison among the mode options of the time and financial cost 

and mode availability. The results from this step are the modes associated with 

each of the trips predicted in step 2. 
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(4) Network assignment. Here, trips are assigned to the extant transportation 

network. For example, trips by automobile are assigned to the network of 

streets. 

Travel demand models are commonly used in transportation planning, especially for 

regulatory purposes. Their strength, from a research standpoint, is that they are 

comprehensive and provide unique information about the transportation system. Their 

disadvantages include that they are time consuming and cumbersome to run, and they 

involve a number of assumptions that are difficult to test about individuals’ behavior and 

about the transportation network. Another disadvantage, based on the goals of the 

investigation presented in this chapter, is that they describe the statistical movement of 

whole population, rather than the actual behavior of specific individuals. For example, I 

analyze below correlations between air pollution inhalation rate and demographic 

attributes such as individuals’ ethnicity and income. I would not be able to conduct this 

same analysis using results from a typical transportation demand model. 

 

Combining travel survey data with ambient concentration estimates 

The method for determining the ambient concentration depends on whether a 

person is traveling during a specific time. During non-travel activities, the ambient 

concentration assigned to a person is the ambient concentration for the CAMx grid cell in 

which they are located. During transportation activities, people may travel through 

multiple grid cells. The survey provides the time and location for the origin and the 

destination, but not the route traveled. I model people as moving in a straight line at a 

constant speed from their origin to their destination. Assigned ambient concentrations 
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during travel are the concentrations in each of the CAMx grid cells the person traverses 

during their trip, for the duration spent in that cell. In general, real trips do not conform to 

this straight line, constant velocity assumption. However, the additional resources 

necessary to relax this assumption are not justified because of uncertainty in determining 

a person’s true route between two locations and because of limited temporal and spatial 

resolution in the CAMx results (i.e., grid cells are 2 km × 2 km). The impact of this 

assumption on estimated population intake of air pollution is expected to be small for the 

pollutants studied. Time spent traveling is only 4–7% of the total day. Estimates of daily 

travel time include ~55 min for the US (US DOT, 2003b), ~80 min for the US and 

California (Klepeis et al., 2001), and ~92 minutes for California (Jenkins et al., 1992). 

Figure 6-2 summarizes the SCAG travel survey data in terms of the cumulative 

distribution plot of distance from home. Three lines are shown in Figure 6-2, corresponding 

to the distributions at 3:30 AM and 3:30 PM and the daily maximum distance away from 

home. The two times (3:30 AM and 3:30 PM) correspond approximately to the times with 

the fewest and most trips: 0.1% of trips begin during 3:00 – 4:00 AM, and 8.4% of trips 

begin during 3:00 – 4:00 PM (US DOT, 2003b). Figure 6-2 indicates that at 3:30 AM, most 

people (~98%) are at home (i.e., the distance from home is approximately zero). At 3:30 

PM, 58% of people are home, 22% are not at home but are less than 10 km from home, and 

the rest (20%) are more than 10 km from home. The line in Figure 6-2 corresponding to the 

maximum distance from home indicates that during an average travel diary day, 27% of 

people do not leave home (defined here as having a maximum distance from home of  less 

than 1 km), 38% leave home but never travel more than 10 km from home, and the rest 

(35%) travel to at least one location that is more than 10 km from home. 
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Microenvironments 

The concept of microenvironments is used to account for times when the exposure 

concentration is different from the nearby ambient concentration. For example, 

concentrations of primary vehicle emissions such as benzene tend to be higher in a 

vehicle than in nearby ambient air because the in-vehicle microenvironment tends to be 

in closer proximity to other vehicles’ emissions than the mean location in an air basin. In 

contrast, attributable concentrations are lower indoors than in ambient air for pollutants 

such as ozone that are removed chemically or physically within indoor environments or 

as air migrates from outdoors to indoors. The attributable concentration in a 

microenvironment is estimated as the product of the ambient concentration and the 

applicable microenvironment factor. 

Microenvironment factors used in this work are presented in Table 6-1. This work 

evaluates exposure to outdoor air pollution and therefore does not incorporate indoor 

sources in the microenvironment factors. I use four microenvironments: outdoor, indoors 

in a residence, indoors in a non-residence, and in or near motor vehicles. The exposure 

concentration for all pollutants in the outdoor microenvironment is the ambient 

concentration. Benzene and butadiene can penetrate the building envelope without 

significant loss. For these two gases, the time-average indoor (residential and 

nonresidential) concentration attributable to ambient emissions is taken to be equal to the 

time-average outdoor concentration, and hence the corresponding microenvironment 

factors are equal to 1.0. 
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For other species and microenvironments considered in this work, the 

microenvironment factor is determined stochastically, with values chosen from a 

distribution representing uncertainty and variability in the relationship between the 

ambient and the exposure concentrations. For example, benzene and butadiene are 

primarily emitted by vehicles and concentrations are higher in-vehicle than in ambient air 

averaged over a modeling grid cell. The microenvironment factor used for a specific in-

vehicle activity is chosen at random from a triangular distribution, with minimum = 2, 

peak = 4, and maximum = 6 (Flachsbart, 1995; Flachsbart, 1999a; Rodes et al., 1998), 

denoted “Tri(2, 4, 6)”. 

The in-vehicle microenvironment factor employed in Chapter 3 for benzene and 

CO is also 4.0. Strictly, the interpretation of the in-vehicle microenvironment factor is 

slightly different in this chapter as compared to Chapter 3. Here, the in-vehicle 

microenvironment accounts for differences between on-road concentrations and model-

predicted ambient concentration within a 2 km × 2 km grid cell. In Chapter 3, the in-

vehicle multiplier accounted for differences between on-road concentrations and the 

general urban ambient air, as measured at monitor stations. Information is not currently 

available that allows distinct, robust estimates to be generated separately for these two  

parameters; hence, they are both taken as having a best estimate value of 4.0 in this 

dissertation. 

Ozone concentrations tend to be lower in vehicles than in ambient air because of 

the close proximity to fresh nitric oxide emissions. Nitric oxide titrates ozone to oxygen 

and nitrogen dioxide. I use a Tri(0.15, 0.20, 0.60) distribution for the microenvironment 

factor for ozone in vehicles based on the empirical findings of Chan et al. (1991). Ozone 
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concentrations also tend to be lower in buildings than outdoors because ozone production 

rates are reduced in the absence of direct sunlight and because ozone reacts with indoor 

surfaces such as carpets, walls, and furniture (Weschler, 2000). The ozone 

microenvironment factor in nonresidential buildings is taken to be a Tri(0.3, 0.5, 0.8) 

distribution (Weschler, 2000). For residences, I use ozone microenvironment factors 

derived from indoor and outdoor ozone measurements taken at 126 homes in the Los 

Angeles area (Avol et al., 1998). I divided this dataset, which consists of 235 indoor-

outdoor ratios, into two subsets: the 159 values taken during April 15 through October 15 

(“summer”; range of values: 0.0% – 99.7%; mean = 34%), and the 76 measurements 

taken during October 15 thought April 15 (“winter”; range: 0.0% – 71.0%; mean = 

11.7%). When calculating the exposure concentration, an indoor-outdoor ozone ratio is 

chosen at random for each residence from the appropriate set of indoor-outdoor ratios, 

based on the travel diary date.  

The microenvironment factors used in this work for PM (DPM2.5 and Cr-PM2.5) in 

nonresidential buildings are 0.63 +/- 0.11 for DPM2.5 and 0.72 +/- 0.053 for Cr-PM2.5 

(Riley et al., 2002). These distributions are derived from a mass-balance model that 

accounts for infiltration, ventilation, makeup and recirculation airflow, and particle 

filtration and deposition for generic PM2.5 (for Cr-PM2.5) and for elemental carbon (for 

DPM2.5) (Riley et al., 2002). These distributions are treated as normal, with the indicated 

means and standard deviations, and with a maximum value of 1.0. (Truncating values 

above 1.0 does not significantly impact the distribution: the probably of generating a 

value greater than 1.0 for the indicated means and standard deviations is less than 

0.04%.) The in-vehicle microenvironment factor for DPM2.5 is modeled as a Tri(2,3,6) 
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distribution. To evaluate the microenvironment factor for PM2.5 in residences, I employed 

a mass-balance modeling approach, as shown in Equation 6-2 (Burke et al., 2001): 

 

ka
Pa

PMresidence +
=5.2,γ .       (6-2) 

 

Here, γresidence, PM2.5 is the microenvironment factor for ambient PM2.5 (i.e., DPM2.5 or Cr-

PM2.5) in residential buildings (dimensionless), P is the penetration efficiency of PM2.5 

(dimensionless), a is the air exchange rate (h-1), and k is the particle removal rate by 

means of deposition or filtration indoors (h-1). Penetration efficiency is estimated to be 

1.0 for PM2.5, based on the work of Ozkaynak et al. (1996) and Riley et al. (2002). 

Measured deposition rates have been reported to be 0.39 ± 0.16 h-1 (normal distribution; 

minimum value = 0.0) for PM2.5 (Ozkaynak et al., 1996). Values of the geometric mean 

(GM) and geometric standard deviation (GSD) for air-exchange rates in the Los Angeles 

area, based on a dataset of 1,444 measurements (Wilson et al., 1996), are GM = 0.55 h-1, 

GSD = 1.97 during the six winter months, and GM = 1.05 h-1, GSD = 2.39 during the six 

summer months. For each residence, values for a and k were randomly generated from 

these distributions, and then the residence microenvironment factor for DPM2.5 and Cr-

PM2.5 were calculated using Equation 6-2, with a maximum value of 1.0. (Truncating 

values above 1.0 does not significantly impact the distribution: the probability of 

generating a value greater than 1.0 is ~0.2% for both summer and winter.) Arithmetic 

mean and standard deviations for the resulting values for γresidence, PM2.5 are 0.61 ± 0.06 in 

winter and 0.71 ± 0.07 in summer. These values are consistent with the value of 67% 
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used in Table 2A-1 (Chapter 2 Appendix) as the indoor-outdoor ratio for ambient PM2.5 

(Fruin et al., 2004), and with the “back-of-the-envelope” estimate in Note (f) for Table 

2A-1, derived from values reported by Riley et al. (2002), that this ratio is 68%. 

 

Results and discussion 

Inhalation rates 

Model results yield the inhalation intake rate (µg d-1) for each person in the 

dataset for each of the five species (benzene, butadiene, ozone, DPM2.5, and Cr-PM2.5). 

Table 6-2 provides statistics summarizing the inhalation rates. This table also presents 

statistics summarizing other model parameters, such as individuals’ breathing rates and 

daily travel patterns. 

Intake rates presented in this work only account for inhalation of air pollution of 

ambient origin. Indoor emissions such as environmental tobacco smoke (ETS) also 

contribute to total population intake rates for certain pollutants, such as benzene and 

butadiene (Fruin et al., 2001; Nazaroff and Singer, 2004). Unlike in Chapter 3, emissions 

to attached garages, which can be an important contributor to population inhalation of 

vehicle emissions (Fruin et al., 2001; Graham et al., 2004; Thomas et al., 1993), are not 

included here. The TEAM series of studies on benzene found that for non-smokers, 

vehicle emissions contribute the majority of total exposure, while ETS only contributes 

only ~ 10% (Wallace, 1996). For smokers, cigarettes contribute ~ 90% of benzene 

exposures. TEAM results suggest that smokers bear roughly half of the total benzene 

exposure in the US (Wallace, 1996). Ozone is emitted by printers and photocopiers 



 165

(Tuomi et al., 2000) and by some indoor air “purifying” devices (Phillips et al., 1999). 

While the model developed and implemented in this chapter does not account for indoor 

emissions, it does account for inhalation indoors of ambient pollution.  

Mean intake rates (µg d-1) for the five pollutants are 67 for benzene, 7.3 for 

butadiene, 47 for DPM2.5, 0.0016 for CrPM2.5, and 120 for ozone. To explore the 

reliability of these results, and as a “reality check” to determine whether other 

investigations corroborate this one, I analyzed modeled average ambient concentrations 

from two independent investigations: the MATES II study of the South Coast Air Basin, 

which uses a 3-D Eulerian air dispersion model (SCAQMD, 1999) and values for 

California in the EPA’s National-scale Air Toxics Assessment (NATA), which uses a 

Gaussian plume model (US EPA, 2004). To estimate intake rates based on model output 

from these two studies, I used a breathing rate of 13 m3 d-1, and I used modeled ambient 

concentrations as a proxy for exposure concentrations. The results of this analysis yields 

the following per capita intake rates (µg d-1): for benzene: 41 (MATES) and 20 (NATA); 

for butadiene: 4.4 (MATES) and 0.9 (NATA); for DPM2.5: 46 (MATES) and 33 (NATA); 

and for CrPM2.5: 0.0031 (MATES). (There were not estimates for hexavalent chromium 

in NATA. Neither NATA nor MATES evaluated ozone.) The results from my analyses 

are within a factor of two or less of the MATES results. The NATA results are 

significantly less than those reported here and in MATES. One reason for this difference 

is that MATES and this study investigate a highly urbanized environment (the South 

Coast), whereas NATA results incorporate all of California, including both urban and 

rural areas. Another reason is that, based on model-measurement comparisons, NATA 

results underestimate ambient concentration; for gaseous species, modeled concentrations 
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are too low by ~40% on average (US EPA, 2004). As a third “reality check”, the results 

presented in Chapter 3 can generate an estimate of population intake of benzene in the 

South Coast. Based on values given in Chapter 3 for benzene (vehicle emissions = 16 

tonnes d-1; intake fraction = 48 per million; population = 15 million), mean per capita 

intake of vehicular benzene is 53 µg d-1. The method I employ in Chapter 3 to estimate 

this intake fraction value incorporates ambient concentration data for benzene in the 

South Coast, as measured at ambient monitoring stations. As described in Chapter 3, 

vehicle benzene emissions represent 70% of total benzene emissions. Assuming that the 

intake fraction for the remaining ambient benzene emissions is also approximately 48 per 

million, mean per capita benzene intake is estimated by this approach to be ~76 µg d-1, 

which is within 12% of the value reported in this chapter (67 µg d-1). Thus, the results 

presented in this chapter are reasonably consistent with the three previous investigations 

considered here. In the Uncertainty section (below), I compare measured and CAMx-

modeled ambient concentrations. 

Figure 6-3 presents cumulative distribution plots for the five species. A lognormal 

distribution would appear as a straight line when presented in these plots. Some of the 

distributions in these plots are approximately linear, indicating a nearly lognormal 

distribution. Statistical tests of the data (Kolmogorov-Smirnov and Cramer-von Mises) 

reject the strict assumption of lognormality for all five plots. Because of the large size of 

the dataset, such tests are more sensitive to deviations from lognormality than is desired 

for some applications. 
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Health risks 

There are a number of health risks expected from inhaling the pollutants modeled 

in this work. Diesel PM2.5 is believed to cause lung cancer; benzene is a known human 

carcinogen, and causes leukemia; ozone exposures can cause asthma attacks and 

bronchitis. Considering the combined impact of these five species considered, significant 

health impacts are expected at these exposure levels (SCAQMD, 1999).  

Diesel PM2.5 is believed to cause a majority of the air pollution lung cancer health 

risk in the South Coast (SCAQMD, 1999). Based on a chronic exposure mortality risk 

factor of 3 × 10-6 (µg d-1)-1 (Lloyd and Cackette, 2001), the average intake of diesel PM2.5 

(47 µg d-1), is estimated to cause approximately 2,100 deaths annually among the 15 

million residents of the South Coast. My estimates for diesel PM inhalation rates are ~2 

times higher than extant statewide estimates for California (CARB, 2000c; Fruin et al., 

2004). For example, Fruin et al. (2004) estimated an average diesel PM exposure 

concentration of 1.7 – 2.7 µg m3, or 22 – 35 µg d-1 if one assumes a population average 

breathing rate of 13 m3 d-1. There are several factors that contribute to the difference 

between the results in Fruin et al. (2004) and those presented here. (1) This study focuses 

on a single urban area rather than the whole state. Exposures are expected to be higher in 

the SoCAB than elsewhere in the state for reasons discussed in Chapter 4. (2) I include 

personal mobility and time-varying breathing rates, which increase intake rates by ~10% 

each. (3) My method incorporates intraurban spatial variability in population density 

rather than using one average ambient concentration for the air basin. 
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Evaluating three common exposure analysis assumptions  

Three assumptions commonly made in exposure assessments – for example, when 

using ambient concentrations as a surrogate for exposure concentrations – are to ignore 

the influence on exposures of (1) population mobility, (2) diurnal variability in breathing 

rates, and (3) microenvironments. The approach employed in this chapter allows me to 

explicitly evaluate the consequences of these three assumptions. To do so, I estimated 

intake rates using five parallel approaches: (1) incorporating the three common 

assumptions listed above (“base case”); (2) accounting for people’s movement 

throughout the air basin but not for variability in breathing rates or for 

microenvironments (“mobile”); (3) accounting for microenvironments but not mobility or 

breathing rate variability (“microenvironments”); (4) accounting for diurnal variability in 

breathing rates, based on activity data, but not microenvironments or variability 

(“breathing rates”); and, (5) accounting for breathing rate variability, microenvironments, 

and mobility (“all”). The default approach for results presented in this chapter is “all”. 

Figure 6-4 compares the results from these analyses in terms of the mean change in 

intake for each individual and for each chemical relative to the base case. For example, 

for butadiene, incorporating microenvironments in the analysis increases an average 

individual’s estimated intake rate by an average of 30%. This increase is attributable to 

the amplified exposure concentration in the in-vehicle microenvironment. For chromium 

PM2.5, incorporating microenvironments reduces individuals’ intake rates by 31% on 

average. This decrease is attributable to reduced concentrations of ambient particles in 

the indoor microenvironment. For all five pollutants, accounting for mobility increases 
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the mean intake rate, indicating that, on average, people travel to locations where the 

ambient air pollution concentration is higher than at their home.  

The three factors explored here (mobility, microenvironments, and temporally 

varying breathing rates) exhibit temporal correlations. For example, typical diurnal trends 

are that mobility rates, breathing rates, and the portion of time in a non-residence 

microenvironment are higher during the day than during the night. Because of these 

temporal correlations, the combined effect of the three factors is not, in general, equal to 

the direct sum of the effects of each factor taken individually (see Figure 6-4). The three 

factors, taken together, impact the individual’s estimated intake rates by an average of 4 - 

69%. Accounting for the three factors together reduces intake rates by 59% for ozone, 

increases intake rates by 40% and 69%, respectively, for benzene and butadiene, and 

causes only small changes (~5% or less) in the intake rates for chromium PM2.5 and 

diesel PM2.5. 

Figure 6-4 gives the mean influence among individuals of each refinement on the 

intake rate. The influence of each refinement on the estimated intake rate for specific 

individuals varies and – for some factors – can either increase or decrease intake rates. 

Accounting for mobility increases the estimated intake rate for individuals who travel to 

areas whose concentrations are higher than at home, and it decreases the estimated intake 

rate for individuals who travel to areas whose concentrations are lower than at home. For 

most people (~90% among the five pollutants), accounting for mobility changes the 

estimated intake rate by 30% or less. The remaining people (~10%), for whom 

accounting for mobility changes the estimated intake by more than 30%, are more mobile 

than the average individual. For example, for DPM2.5, the average daily distance traveled 
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is three times greater for the latter group than for the former group (68 km versus 21 km), 

and the average daily maximum distance from home is four times greater for the latter 

group than for the former group (33 km versus 8 km). These findings indicate, as 

expected, that mobility influences a person’s inhalation intake of air pollution more for 

people who travel a lot during the day than for people who travel only a little. 

 

The influence of mobility on inhalation rate varies among subpopulations 

Results presented in this chapter suggest that mobility leads to only moderate 

changes in population-average exposure concentrations. Not surprisingly, the effect of 

mobility on intake rates is higher for highly mobile individuals than for the general 

population. Mobility is correlated with demographic attributes: on average, low-income 

and minority (non-Caucasian) individuals tend to travel less than the population average.  

To explore whether the importance of mobility varies among subpopulations, I 

completed the analyses yielding Figure 6-4, but restricting the sample population first to 

individuals in households with an income of less than $50,000, then to Hispanic 

individuals in households with an income of less than $50,000. In both cases, the impact 

of mobility on exposure concentration is less for the subpopulation than for the whole 

population. For example, for the whole population, the highest impact of mobility on 

mean intake rate among the five pollutants is 17%  (butadiene; see Figure 6-4). The 

highest impact of mobility on mean intake rate is 7% for household income <$50,000, 

and 4% for Hispanic individuals with household income <$50,000. These two 

subpopulations are less mobile, on average, than the population as a whole. 

Consequentially, the importance of mobility is reduced for these subpopulations relative 
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to the whole population. To elaborate, average values for distance traveled (DT) and 

maximum distance from home (MDFH) for the whole population (n=28,745) are (units: 

km) 29.5 and 12.2, respectively. Using these two metrics, individuals with household 

income <$50,000 (n=12,309) are about 21% less mobile than the whole population: DT 

and MDFH values for this group are 23.3 and 9.6, respectively. Similarly, Hispanic 

individuals with household income <$50,000 (n=5065) are about 33% less mobile than 

the whole population: DT and MDFH values for this group are 19.5 and 8.2, respectively. 

 

Uncertainty 

In this section, I address uncertainty in the four main inputs: breathing rate, 

people’s location, microenvironmental concentrations, and ambient concentrations. I use 

metabolic activity rate studies to estimate breathing rate from age, gender, and exercising 

status (Layton, 1993). As discussed in Chapter 3, population average breathing rates are 

~20% lower using the values in Layton (1993) than using common alternatives (Marty et 

al., 2002; OEHHA, 1996; US EPA, 1997).  

The diurnal breathing rate profile for this investigation is presented in Figure 6-5. 

To my knowledge, estimates of this population-average diurnal profile have not been 

published by other researchers. In Chapter 3, I estimated this profile based on data in 

Layton (1993) and my own estimates of the likelihood of each activity occurring in each 

hour. In this chapter I estimated activity level for each individual and in each time based 

on the survey data. Enough information is provided in the survey data to yield a 

reasonable estimate of the diurnal breathing rate profile (especially in light of the limited 

information available about this topic), but enough information is missing from the 
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survey data that these estimates should be considered approximate rather than definitive. 

For example, survey responses indicate when a person exercises, but not his or her 

bedtime and waking time. Based on the results resented in this chapter, generating a more 

robust estimate of the diurnal profile of population breathing rate would be worthwhile. 

Travel diaries are likely to underestimate mobility because of trip underreporting, 

which is estimated at ~10 – 15% of trips (Clarke et al., 1981), and because comparatively 

mobile individuals may be underrepresented in survey data since they are harder to 

contact (Schafer, 2000). As discussed below, future studies using global positioning 

systems (GPS) may significantly reduce uncertainty associated with the location 

component of exposure models.  

The indoor-outdoor concentration ratio for ambient pollutants varies among 

microenvironments and pollutants, from near-zero to 100% (Avol et al., 1998; Riley et 

al., 2002). The Monte Carlo approach I used to estimate exposures in microenvironments 

incorporates available information about variability in the indoor-outdoor ratio. Particle 

decay rate values, k, used in this work were determined by Ozkaynak et al. (1996) from 

cotemporal measurements indoors and nearby outdoors, assuming particle penetration, P, 

equals unity. Empirical (Liu and Nazaroff, 2003; Long et al., 2001) and modeling (Liu 

and Nazaroff, 2001) studies of PM2.5 suggest P values less than unity, typically between 

0.6 and 1.0. However, to the extent that P is less than unity, this fact is accounted for in k 

values that are determined experimentally, e.g., using Equation 6-2 (Kopperud et al., 

2004). That is, when analyzing cotemporal indoor and nearby outdoor measurements to 

determine P and k, allowing P ≤ 1 rather than assuming P = 1 yields lower values of P 

and higher values of k. Kopperud et al. (2004) found that the fit of the curve, and the 
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utility of the resulting model for estimating indoor/outdoor relationships, is not 

significantly diminished by assuming P = 1. The indoor-outdoor concentration ratios for 

ambient pollutants employed here (average values: 0.61 ± 0.06 in summer, 0.74 ± 0.07 in 

winter) are broadly consistent with empirical evidence: reported values for elemental 

carbon are in the range 0.5 (LaRosa et al., 2002) to 0.8 – 0.9 (Geller et al., 2002; Na and 

Cocker, 2005). 

Uncertainty in ambient concentration estimates varies among the five pollutants 

studied (ENVIRON, 2002). Modeled benzene concentrations have a near-zero bias, 

whereas modeled butadiene concentrations underestimated measured concentrations by 

~40%. Modeled hexavalent chromium concentrations underestimate measurements by a 

factor of ~4, but it is unclear whether this difference is attributable to errors in 

measurements, in the air dispersion model, or in the emission inventory (ENVIRON, 

2002). Diesel PM is a complex mixture of species. Consequentially, direct measurement 

of ambient diesel PM is not possible. Because approximately two-thirds of ambient 

elemental carbon in the SoCAB is attributed to diesel emissions (SCAQMD, 1999), 

elemental carbon serves as a reasonable proxy for DPM2.5 when assessing model 

performance (ENVIRON, 2002). Employing this approach, modeled DPM2.5 

concentrations are estimated to be ~15% higher than ambient concentrations (ENVIRON, 

2002). CAMx model performance evaluation is not available for ozone (Morris, 2004). In 

Table 6-3, I present basinwide annual average concentrations for the five species 

considered in this chapter. I calculate these average concentrations from the CAMx 

model output that is used as input for the inhalation model presented in this chapter.  
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Eulerian air dispersion models such as CAMx implicitly assume that 

concentrations are uniform throughout each grid cell. When considering concentrations in 

a grid cell that are attributable to emissions in the same grid cell, this spatial smoothing of 

sub-grid processes can cause near-source concentrations to be underestimated. 

Reported inhalation intake rate estimates for the ~25,000 people surveyed are not 

necessarily representative of intake rates by the ~15 million people in the South Coast Air 

Basin. For example, relative to US Census data for the Los Angeles Metropolitan 

Statistical Area, survey respondents have a higher proportion of Whites (51% for the 

survey versus 22% for the Los Angeles MSA), a lower proportion of Hispanics (27% 

versus 43%), Asian/Pacific Islanders (6% versus 11%), and people who listed their 

ethnicity as “other” (3% versus 17%), and a comparable portion of African-Americans 

(7% for both the survey and the MSA). Development of appropriate weighting factors for 

each individual, which would allow “scale-up” from the survey population to the whole 

population, is a challenging task that is beyond the scope of the present work. Such 

weighting factors would incorporate, for the survey population and the whole population, 

attributes that correlate with intake, such as proximity to emissions, mobility, ethnicity, 

and weekend versus weekday differences.  

 

Weekend/weekday differences in inhalation rate 

Most (85%) of the survey respondents in this investigation recorded only 

weekday activities. Because air pollutant concentrations in Southern California (Marr and 

Harley, 2002; Qin et al., 2004) and human activities (Klepeis et al., 2001) exhibit 

weekend/weekday patterns, the results presented here are not necessarily representative 
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of weekend exposures. As expected, modeled exposures vary between weekend and 

weekday. Average modeled ozone intake is about 7% higher on weekends than on 

weekdays, which is consistent with ambient ozone concentrations being higher on 

weekends than weekdays (Marr and Harley, 2002). Average modeled exposures for the 

remaining four pollutants are lower on weekends than on weekdays, which is consistent 

with lower emissions for these pollutants owing to reduced commercial and personal 

activity. The weekend/weekday intake rate difference is about 9% for benzene and 

butadiene, and about 23% for DPM2.5 and CrPM2.5. Consistent with values reported 

elsewhere (Marr et al., 2002), survey respondents’ average travel distance is about 10% 

less on weekends than weekdays. 

 

Inhalation rate by ethnic and income group 

Intake rates are correlated with demographic attributes such as race and income. 

Figures 6-6 and 6-7 present the 50th and 90th percentile intake rates, respectively, as a 

function of subpopulation, for four ethnic groups and two income levels. These plots 

exclude the 14% of respondents who did not provide their ethnicity or household income 

and the 3% of respondents who listed “other” as their ethnicity. Two types of differences 

are immediately apparent in this figure: among demographic groups (ethnicity and 

income) and among pollutants (mainly, ozone versus the other four pollutants). For the 

four primary pollutants, median and 90th percentile intake rates are lower for Whites, and 

higher for Hispanics, African-Americans, and Asians/Pacific Islanders, than for the 

population as a whole. Ozone inhalation intake rates exhibit the opposite trend. Results in 

Figures 6-6 and 6-7 indicate that, for the four primary pollutants, individuals in higher 
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income households have lower intake rates than individuals in lower income households. 

For ozone, the reverse is true.  

Figures 6-8 and 6-9 elaborate on the results in Figures 6-6 and 6-7. Whereas 

Figures 6-6 and 6-7 present differences among ethnic and income groups at the 50th and 

90th percentiles, Figures 6-8 and 6-9 present these differences throughout the distribution. 

The interpretation of the values presented in Figures 6-8 and 6-9 is similar to in Figures 

6-6 and 6-7. For example, in Figure 6-8, the plot presenting distributions for Whites has a 

y-axis value of 82% for ozone at the 5th percentile x-axis value. This value indicates that 

comparing the ozone inhalation rate distribution for Whites and for the whole population, 

the 5th percentile value for whites is 82% higher than the 5th percentile value for the 

whole population. The main trends in Figures 6-8 and 6-9 are the same as in Figures 6-6 

and 6-7. For primary pollutants, inhalation rates are lower for Whites than non-Whites 

and for high-income than for low-income. For ozone, the reverse pattern holds: inhalation 

rates are higher for Whites than non-Whites and for high-income than for low-income. 

Two exceptions to this broad trend are (1) that Asian/Pacific Islander inhalation rates for 

ozone are roughly equal to the population values throughout much of the distribution, and 

(2) that African-American inhalation rates for benzene are only slightly below the 

population values at the upper end of the distribution.  

The demographic make-up differs between the overall survey population and the 

survey subpopulation with above-average inhalation rates. For example, the percent of 

survey respondents that are White is 52%. In contrast, the upper quartile for benzene and 

diesel PM inhalation rates are only 41% White and 39% White, respectively.  
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In all likelihood, the main factor underlying these trends in pollution inhalation 

rate by ethnic and income group is proximity to emission sources. On average, non-

Whites are in closer proximity to emission sources than Whites are, and therefore non-

Whites have higher exposures and higher intake rates for primary pollutants than do 

Whites (Gunier et al., 2003; Houston et al., 2004; Pastor et al., 2004). Proximity to 

sources would also explain why the ozone intake rate is higher for Whites than for non-

Whites: Because advection moves air masses during the time required for precursor 

emissions to form ozone, peak ozone concentrations are not proximate to emission 

sources but rather occur in downwind locations. Similarly, residents in lower-income 

households are closer to emission sources, on average, than residents of higher income 

households (Gunier et al., 2003; Houston et al., 2004; Pastor et al., 2004), which may 

account for the observed differences in inhalation intake rates between income levels for 

both primary and secondary pollutants.  

Although not accounted for in my model, a second causal factor that could also 

cause correlations between income level and ambient air pollution intake rates is 

household air-exchange rate. Older, “leakier” residences (i.e., residential buildings with a 

higher-than-average air-exchange rate) are more likely to be occupied by low-income 

than high-income families. The higher-than-average air exchange rates in older buildings 

cause them to offer less protection against particles and ozone than do newer and well-

maintained buildings (Equation 6-2). All else being equal, the inhalation intake rate for 

particles and ozone would be higher in a leaky building than in a tight building. 

Similarly, there is likely to be a correlation between household income and use of air 

conditioning versus natural ventilation (i.e., open windows). To my knowledge, the 
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literature correlating exposures with demographic attributes such as race and income has 

not yet quantified the impact of this issue. 

A comparison between Figure 6-6 and Figure 6-7 indicates that, on average and 

for the case study considered in this work, median and 90th percentile exposure levels 

differ more among ethnic groups than between high- and low-income households. (The 

value $50,000 is used here as the divider between “high” and “low” household annual 

income levels because this value reflects a specific question included as part of the 

transportation survey.) Variability in intake rates among the population, and correlations 

between intake rates and demographic attributes such as race and income, are important 

aspects of air quality. Environmental policy seeks not only to reduce the population-

average health risk attributable to air pollution, but also to ensure that specific 

subpopulations are not unduly burdened, relative to the population as a whole. Such 

concerns are components of the broader theme of environmental justice. 

The results presented in this work are generally consistent with those presented 

elsewhere. Several studies have reported higher exposures for low-income groups and 

non-Whites for primary pollutants (Brown, 1995; Schweitzer and Valenzuela, 2004), 

including populations in California in general (Gunier et al., 2003; Pastor et al., 2004) 

and specifically in Southern California (Morello-Frosch et al., 2001; Morello-Frosch et 

al., 2002). Consistent with the findings in this chapter, the proportion of upper income 

households and Whites are observed to be higher in high-ozone areas downwind of New 

York City and Philadelphia than in the urban areas where ozone precursors are emitted 

(Liu, 1996). Ozone levels in the SoCAB were found to be positively correlated with the 

percentage of Whites in the community (Brajer and Hall, 2005; Korc, 1996). However, in 
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contrast with the results presented in this chapter, others have found that ozone levels are 

inversely correlated with income (Brajer and Hall, 2005; Korc, 1996).  

All else being equal, the ambient concentration difference between near-source 

and not-near-source would be larger for rapidly decaying emissions (e.g., primary 

ultrafine particles) than for slowly decaying pollutants (e.g., benzene). Based on 

differences among ethnic and income groups in proximity to emissions, I would expect 

that the difference in inhalation intake rates between Whites and non-Whites would be 

greater for rapidly decaying emissions of primary pollutants than for slowly decaying 

emissions.  

The results support this expectation. For example, based on rate constants given in 

Table 3-2, the characteristic lifetimes for benzene and butadiene are 20 d and 6 h, 

respectively. Butadiene may be considered to be a modestly reactive (but not highly 

reactive) pollutant; benzene is nearly nonreactive. On the time scale of air in the South 

Coast Air Basin, between ½ and ¾ of emitted butadiene decays, but only 1 – 3% of 

benzene decays. The microenvironment factors (Table 6-1) are identical for benzene and 

butadiene. Differences in inhalation rates among ethnic and income groups are larger for 

butadiene than for benzene. The difference in median inhalation rate between Whites and 

the whole population is 13% for benzene versus 21% for butadiene. The difference in 

median inhalation rate between individuals in household income above $50,000 and the 

whole population is 3.2% for benzene versus 5.8% for butadiene. Similar comparisons at 

the 90th, rather than 50th, percentile yield similar results. These values support the 

hypothesis that differences among ethnic and income groups would be greater for rapidly 
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decaying pollutants such as primary ultrafine particles than for the primary species 

evaluated in this chapter. 

 

Future research 

Estimating the importance of mobility requires understanding temporal and 

spatial variability in pollutant concentrations and in people’s locations. Increasing the 

spatial and temporal precision of ambient concentration estimates may require 

considerable effort by air quality researchers; the financial costs associated with these 

advances appear unlikely to drop significantly in the near future. In contrast, future 

research may be able to estimate people’s locations to greater accuracy and precision than 

in this study. Global Positioning System (GPS) costs have dropped rapidly in recent 

years, as evidenced by the fact that the U.S. Federal Communications Commission 

requires that cellular phone companies be able to locate most calls to within 50 or 100 m 

for 911 Emergency Response purposes (www.fcc.gov/911/enhanced). If privacy concerns 

can be addressed, there exists the potential of inexpensive, widespread deployment of 

GPS devices to record volunteers’ time-location patterns for air pollution exposure 

research purposes. Coupling GPS devices with personal sampling equipment could 

generate a rich air pollutant exposure dataset (Phillips et al., 2001). 

 

Conclusions 

The use of census data, or other home-based data, is common in exposure 

assessment and environmental epidemiology. This chapter investigates the question of 
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whether this assumption is appropriate. I conduct a mobility-based exposure assessment 

for ~29,000 individuals in California’s South Coast Air Basin. I estimate inhalation 

intake rate for five pollutants: benzene, butadiene, hexavalent chromium PM2.5, diesel 

PM2.5, and ozone. Accounting for mobility increases the population mean intake rate by 5 

– 30% among the five pollutants. The combined effect on estimated mean intake rate of 

mobility, temporally varying breathing rates, and microenvironments is between 4% and 

93% for the five pollutants considered here. 

Median intake rates vary among demographic groups for the two demographic 

attributes studied here (ethnicity and income). For the four primary pollutants studied, 

median intake rates are higher for non-White individuals than for White individuals, and 

higher for individuals in households with less than $50,000 income than for houses with 

more than $50,000 income. For ozone, the reverse is true. For the case study considered 

in this chapter, differences in median intake rates among subpopulations are greater when 

considering ethnicity than when considering income category.  

As highlighted in Chapters 3 and 4, the South Coast is an important locale for 

studying air pollution exposure, but its attributes such as size, population, and 

meteorology are not representative of other US urban areas. Investigations of other urban 

areas would usefully refine and extend the results presented in this chapter.  

My expectations for how findings in other US urban areas would differ from the 

results presented in this chapter for the South Coast are as follows. Relative to the South 

Coast, I would expect that in a monocentric urban area, a greater fraction of commuters 

would exhibit the stereotypical suburban-downtown commute pattern; that the emissions 

and ambient concentration gradient between downtown and suburbs would be steeper and 
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more persistent during the day; that ethnic and income groups would be more spatially 

segregated (i.e., the spatial autocorrelation would be higher). As a result of these 

differences, relative to the South Coast, I would expect that in a monocentric urban area, 

mobility would be more important when estimating population inhalation rate, and 

inhalation intake rates would differ more among demographic groups. While urban areas 

are increasingly transitioning from monocentric to polycentric, my expectation is that 

most urban areas in the US lag behind the South Coast in the degree to which this shift in 

urban form has already occurred. Thus, comparing the South Coast to a hypothetical 

monocentric urban area is a reasonable basis for generating hypotheses about how the 

results in the South Coast would differ from similar results in other urban areas. 
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Table 6-1: Summary of microenvironment factorsa 

 

 in-vehicle indoor, residence indoor, other 

Benzene Tri(2,4,6) b 1 c 1 c 

Butadiene Tri(2,4,6) b 1 c 1 c 

Chromium 
PM2.5 

1 c 
Using Equation 6-2, P = 1, k = 0.39 +/- 0.16 h-1, and geometric means 
(GM) and geometric standards deviations (GSD) for a are GM = 0.55 
h-1, GSD = 1.97 in winter and GM = 1.05 h-1, GSD = 2.39 in summer d

0.72 +/- 0.053 e 

Diesel 
PM2.5 

Tri(2,3,6) f Same as for chromium PM2.5 0.63 +/- 0.11 e 

 Ozone Tri(0.15,0.20,0.60) g Randomly select a value from an empirical dataset, based on the 
season (summer/winter) h Tri(0.3,0.5,0.8) i 

 a This table lists three of the four microenvironments employed in this chapter. The factor for the fourth microenvironment, 
outdoors, is 1.0 by definition.  
b Flachsbart (1995), Flachsbart (1999a), Rodes et al. (1998), Chapter 3. “Tri(2,4,6)” indicates a triangular probability 
distribution; the lowest value of the distribution is 2; the most common value is 4; the maximum value is 6. 
c The time-average concentration for a nonreactive pollutant such as benzene is the same indoors as outdoors. While butadiene 
has a moderate reactivity on the time scale of air in an urban area, for processes such as migration of outdoor air to indoor 
environments, it can be considered as nonreactive. 
d Burke et al. (2001), Ozkaynak et al. (1996), Wilson et al. (1996). The parameter k is assumed to have a normal distribution 
with indicated mean and standard deviation, and with a lower bound limit of zero. The parameter a is assumed to have a 
lognormal distribution. Derived values for the microenvironment factor have an upper bound limit of 1.0. 
 e Riley et al. (2002). This microenvironment factor is taken as a normal distribution with indicated mean and standard 
deviation, and with an upper bound limit of 1.0. 
f CARB (2004), Flachsbart (1995), Flachsbart (1999a), Rodes et al. (1998), Chapter 3.  
g Chan et al. (1991). 
 h Avol et al. (1998). 
i Weschler (2000). See also note (b).  
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Table 6-2: Summary statistics(a) for time-location-activity survey data and for inhalation intake rate(b) for the five chemicals 
studied in this chapter 

 
   Percentile  Mean Std  GM GSD 
Variable  10th 25th 50th 75th 90th     
Number of household vehicles  1 1 2 2 3 2.0 1.1 1.9 1.6 
Survey respondent’s age (y) 7 19 37 54 70 38 23 28 2.5 
Breathing rate (m3 d-1) 9.46 10.5 12.1 15.0 16.3 13.1 4.4 12.6 1.3 
Total distanced traveled (km d-1) 0 0 13 38 79 29 46 23 3.1 
Maximum distance from home (km) 0 0 5 15 33 12 18 9.3 3.1 
Inhalation intake rate           

Ozone (µg d-1) 11 30 68 160 280 120 170 52 6.2 
Benzene (µg d-1) 19 30 53 89 130 67 54 51 2.1 
Butadiene (µg d-1) 0.80 1.9 5.1 10 16 7.3 7.6 4.1 3.4 
Diesel PM2.5 (µg d-1) 8.8 15 30 63 110 47 51 30 2.6 
Chromium PM2.5 (ng d-1) 0.18 0.38 0.87 1.9 3.7 1.6 2.6 0.83 3.4 

(a) Abbreviations used in this table are Std for standard deviation, GM for geometric mean, and GSD for geometric standard 
deviation. 
(b) Values estimate inhalation intake of pollutants of ambient origin. Indoor emissions are excluded. 
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Table 6-3: Basin-wide annual average ground-level ambient concentrations for the five species studied in this chapter 

 

 Mean 
concentration(a) 

Mean intake-
relevant exposure 
concentration(b) 

Ratio of mean intake-relevant 
exposure concentration to mean 

ambient concentration 
Benzene (ppt) 670 1600 2.4 
Butadiene (ppt) 65 240 3.7 
Chromium PM2.5 (µg m3) 74 × 10-6 120 × 10-6 1.6 
Diesel PM2.5 (µg m3) 2.1 3.6 1.7 
Ozone (ppb) 28 4.5 0.16 
(a) Based on CAMx model output for April 1, 1998 through March 31, 1999. The South Coast Air Basin Modeling Domain is 
25,200 km2 (210 km × 120 km), and contains 6,300 grid cells of size 2 km × 2 km. 
(b) Intake-relevant concentration is the concentration that, when multiplied by the mean breathing rate (here, 13.1 m3 d-1), 
yields the mean intake rate (given in Table 6-2). 
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Figure 6-1: Map of California, indicating the South Coast Air Basin modeling domain. 

Census tracts are also shown on this map. 
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Figure 6-2: Cumulative distribution plot of distance from home, based on the South Coast 

Association of Governments travel survey data, for the 28,745 person-days simulated. 

Three distributions are shown: at 3:30 AM, at 3:30 PM, and the daily maximum distance 

away from home. For example, at 3:30 PM, 58% of people are home (defined here as 

being less than 1 km from home), 22% are not at home but are less than 10 km from 

home, and the rest (20%) are more than 10 km from home.
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Figure 6-3a: benzene 
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Figure 6-3b: 1,3-butadiene 
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Figure 6-3c: diesel PM2.5 
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Figure 6-3d: hexavalent chromium PM2.5
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Figure 6-3e: ozone
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(Figure 6-3 appears on the preceding pages.)  

 

Figure 6-3: Cumulative distribution plots of inhalation intake rate for the 28,745 person-

days simulated, for each of the five chemicals studied (benzene, butadiene, diesel PM2.5, 

hexavalent chromium PM2.5, and ozone. The y-axis values, which are dimensionless, are 

the log10 of the inhalation intake rate in units of µg d-1. The x-axes are the Z values 

(quantiles) of the distribution. For completeness, these plots present all model results. 

However, the accuracy is lower when predicting the tails of the distribution than when 

predicting the central tendency or main range. 
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Figure 6-4a: benzene 

 

 

 

 

 

 

 

 

 

 

Figure 6-4b: 1,3-butadiene 
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Figure 6-4c: diesel PM2.5 

 

 

 

 

 

 

 

 

 

 

Figure 6-4d: hexavalent chromium PM2.5
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Figure 6-4e: ozone 

 

(Figure 6-4 consists of five plots; see also preceding pages.) 

 

Figure 6-4: Mean change in individuals’ estimated inhalation intake rate attributable to 

incorporating one or more of three factors relative to the base case (see text), for each of 

the five chemicals studied. For example, accounting for microenvironments decreases the 

estimated intake rate for ozone, but increases the estimated intake rate for benzene. For 

butadiene, accounting for mobility is the most important of the three factors, increasing 

the estimated intake rate by ~30%.
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Figure 6-5: Estimated diurnal profile of the population mean breathing rate for the 28,745 

person-days simulated. The daily average breathing rate per person is 13 m3 d-1 person-1. 

This estimate is derived from the time-activity survey data used in this work. 
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Figure 6-6: Estimated median inhalation intake rate for the subpopulation, relative to the 

population median, based on ethnicity (upper plot) and household income category 

(lower plot). 
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Figure 6-7: Estimated 90th percentile inhalation intake rate for the subpopulation, relative to the 

population 90th percentile, based on ethnicity (upper plot) and household income category 

(lower plot). 
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Figure 6-8a: Household income below $50,000 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-8a: Household income above $50,000 
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Figure 6-8: Estimated intake rate distribution by household income class, relative to the 

population. Values show indicate, for each pollutant, the subpopulation intake rate at each 

point on the distribution relative to the intake rate for the whole population at the same 

cumulative percentage. For example, for the subpopulation with household income more than 

$50,000, for ozone, the y-axis value is 15% at the x-axis value 75%. This means that the 75th 

percentile intake rate for this subpopulation is 15% more than the 75th percentile intake rate for 

the whole population. Intake rates for the four primary pollutants (benzene, diesel PM, 

chromium PM, and butadiene) are higher for the subpopulation with lower household income 

than for the subpopulation with higher household income. For ozone, the reverse is true. 
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Figure 6-9a: White 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-9b: Hispanic 
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Figure 6-9c: African-American 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-9d: Asian/Pacific Islander
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Figure 6-9: Estimated intake rate distribution by ethnicity, relative to the population intake rate. 

Values indicate, for each pollutant, the subpopulation intake rate at each point on the 

distribution relative to the intake rate for the whole population at the corresponding point of the 

cumulative distribution. For example, for Whites, for ozone, the y-axis value is 17% at the x-

axis value 75%. This means that the 75th percentile intake rate for this subpopulation is 17% 

more than the 75th percentile intake rate for the whole population. In general, intake rates for 

the four primary pollutants (benzene, diesel PM, chromium PM, and butadiene), intake rates 

are higher for non-Whites than for Whites. For ozone, the reverse is true. 
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Chapter 7: Effects of urban population and land area on 

inhalation intake of vehicle emissions 

 

Reproduced in part with permission from Atmospheric Environment, 39(2): 283-295, 

2005. Copyright 2005 Elsevier Inc. 

 

Introduction 

This chapter considers whether and how urban planning might be enlisted as a 

tool to improve air quality and health. Specifically, I explore here how changes in urban 

land area and population density would affect population inhalation of vehicle emissions. 

Effective air quality management would likely involve multiple strategies for improving 

air quality and health. Urban planning represents only one class of approaches from 

among the many technical, economic, and social strategies available. 

Previous investigations of urbanization and health have typically fallen into one 

of two camps: “urban penalty” research, which documents ways in which bringing people 

closer together (i.e., increasing urbanization) increases health risks and disease rates, and 

“sprawl penalty” research, which documents the environmental and social health 

implications of migration to suburbs and exurbs. There are currently calls to move 

beyond these two camps, instead investigating more holistically the relationship between 

urban living conditions and health (Freudenberg et al., 2005). The end goal, of course, is 

not only to study the system but also to uncover possible intervention strategies that 
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would improve living conditions and health. This chapter explores how one aspect of 

living conditions – population density – relates to inhalation intake of vehicle emissions, 

a proxy for the health effects of these emissions. The findings presented below indicate 

that there may be either an urban penalty or a sprawl penalty, depending on specific 

attributes of the infill or sprawl.  

Traditionally, air quality engineers have investigated the connection between 

transportation demand (measured, for example, in terms of total vehicle-miles traveled) 

and emissions, and between emissions and ambient concentrations. Recently, air quality 

managers have begun to consider the extent to which urban planning may reduce 

transportation demand and motor vehicle emissions. Increasing population density is 

expected to reduce average daily vehicle-kilometers traveled in private motor vehicles 

per capita (VKT) for several reasons (Ewing and Cervero, 2001). For example, increasing 

population density increases accessibility: people in more dense areas do not need to 

travel as far to reach common destinations such as stores, schools, and employment 

centers (Cervero, 1997; Levinson, 1998). Public transit and non-motorized private 

transportation such as walking and biking have higher mode shares in more densely 

populated regions (Crane, 2000; Messenger and Ewing, 1996). Certain disincentives to 

driving, such as congestion delays and limited parking availability, occur more frequently 

in densely populated areas. 

Urban planners are interested in the air quality and health benefits of their 

activities for several reasons. In the US, the free market is often considered the default 

mechanism for societal decisions. Alternative mechanisms, such as regulations and 

“planning”, may be seen as requiring case-by-base justification for why the free market is 



 207

insufficient. The health impacts of air pollution, as a major externality of the 

transportation system, are a politically and economically defensible reason why urban 

planning is necessary. That is, environmental health issues are important in this context 

because they help legitimize transportation and land-use planning. 

A broad definition for infill development is “any type of new development that 

occurs within existing built-up areas” (US EPA, 1999a). The potential association 

between density and VKT has led some planners in urban areas with an increasing 

population to implement policies that encourage infill development rather than sprawl 

(APA, 2002; Burchell et al., 2002; US EPA, 2001b). To understand the air-quality 

impacts of such policies, two questions arise: (1) Under what circumstances does 

increasing population density reduce vehicle emissions? (2) Under what circumstances 

does reducing emissions by increasing population density reduce people’s inhalation 

intake of vehicle emissions? A few publications have commented on these questions. An 

international study of motor vehicle use concluded that “whilst per capita [transportation] 

emissions may be higher in the low-density automobile-dependent regions, the rate of 

[transportation] emissions per urbanized hectare [is] clearly lower. We thus have the 

situation in the high-density cities… where emissions output is highly concentrated. This 

leads to more concentrated impacts and higher exposure…” (Kenworthy and Laube, 

2002). Cervero (2000) summarizes the dilemma: “exposure levels (and thus health risks) 

are lower with sprawl, but tailpipe emissions and fossil-fuel consumption are greatly 

increased.” 

Many urban areas are growing in population or land area or both, and this growth 

may impact emissions and emissions-to-intake relationships. Such impacts will vary with 
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urban conditions (e.g., urban population) and with the nature of growth. To my 

knowledge, no prior research has quantified how changes in urban land area and urban 

population would affect the population inhalation of transportation emissions. Nor has 

previous research addressed the necessary conditions such that increased population 

density is accompanied by reduced inhalation of vehicle emissions. This chapter 

contributes to filling these gaps. In addition to offering insights for air quality 

management and urban planning, the results in this chapter can inform expectations in the 

absence of active planning. 

I start with the premise, discussed in Chapters 1 and 2, that population inhalation 

of vehicle pollutants is more appropriate than emissions, ambient concentrations, or 

conditions for the maximally exposed individual, as an indicator of the total public health 

impacts attributable to air pollution. I develop and present an exploratory analysis that 

considers a hypothetical, idealized representation of an urban area. Using this 

representation, I investigate, quantitatively and parametrically, how three changes in 

urban land area and urban population influence population inhalation of motor vehicle 

emissions: (1) increasing population while land area remains constant (denoted “infill” in 

this chapter), (2) increasing land area while population remains constant (“sprawl”), and 

(3) increasing land area and population while density remains constant (“constant-density 

growth”). Note that as employed here, these terms have a narrower and more precisely 

defined scope than in common usage. 

There is debate in the literature as to whether and how much population density 

and other aspects of urban form influence VKT. Some investigations have found that 

increasing density reduces VKT while others have found no connection (Badoe and 
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Miller, 2000). Some research suggests that the correlation between density and VKT is 

not causal, but rather that density is a proxy for income, which is itself causally 

connected to VKT (Boarnet and Sarmiento, 1998). Others disagree, finding that both 

density and income are important (Kenworthy and Laube, 2002). In this chapter, I do not 

take a position on this debate. Because there is variability and uncertainty in the impact of 

density on VKT and vehicle emissions (Badoe and Miller, 2000; Gordon and Richardson, 

1997), I allow a range of values (including zero) for the density-emissions elasticity, and 

I identify the minimum elasticity necessary for a given change in urban population and 

land area to reduce intake.  

 

Methods 

Because this investigation represents the first attempt to quantify the relationship 

between urban population density and the inhalation intake of primary traffic-related air 

pollutants, I aim for a direct approach that clarifies underlying relationships, aids in 

elucidating causal connections, and permits the problem to be analytically tractable. I 

consider population density, passenger vehicle emissions, attributable ambient 

concentrations for primary pollutants, and the resulting attributable intake per capita. 

Below I describe my method for connecting these elements of the source-intake 

relationship for primary pollutants from motor vehicles.  
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Density-emissions elasticity 

 Population density has the potential to influence vehicle emissions (Holtzclaw et 

al., 2002) as well as the fraction of emissions inhaled by people (Lai et al., 2000). 

Population density is a key aspect of urban form, and one that can be influenced by urban 

planning. 

If there were no relationship between density and VKT, then an increase in 

population density would cause an increase in both transportation emissions per km2 and 

per capita inhalation of transportation emissions. On the other hand, if an increase in 

population density were to result in a reduction in per capita emissions, then the same two 

variables (emissions per km2 and per capita inhalation of emissions) might either increase 

or decrease, depending on the density-emissions elasticity. Equation 7-1 defines density-

emissions elasticity (εe) and density-VKT elasticity (εv): 
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Here, E is the total vehicle emission rate of a pollutant (g s-1), ρ is the population density 

(people km-2), and DVKT is the average daily per capita vehicle-distance traveled (km 

person-1 d-1). If εe is negative and large in magnitude, then increasing population density 

could reduce both vehicle emissions and per capita inhalation of vehicle emissions. 

However, if the magnitude of εe is small (but still negative), then increasing population 

density could reduce vehicle emissions yet increase per capita inhalation of vehicle 
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emissions. In this investigation, I allow εe to vary, and explore the resulting relationship 

between changes in population, land area and per capita inhalation of vehicle emissions. 

 

Pollutant classification 

The relationship between emissions and inhalation intake depends, among other 

factors, on the dynamic behavior of the air pollutant. Pollutants are classified as primary 

or secondary, according to whether they are emitted directly from sources or are formed 

in the atmosphere from precursors (Seinfeld and Pandis, 1998).  Pollutants are further 

classified as nonreactive or reactive according to their level of atmospheric reactivity.  

For the present purposes, a nonreactive pollutant is one for which the pollutant’s 

characteristic atmospheric lifetime owing to loss by chemical reaction or deposition is 

significantly greater than the characteristic residence time of air in an urban basin 

(typically of the order of several hours; see Chapter 4).  

Vehicular emissions of concern include primary nonreactive species (e.g., CO and 

benzene), primary reactive species (e.g., 1,3-butadiene and ultrafine particles), and 

secondary reactive species (e.g., ozone and NO2). The analysis in this chapter focuses on 

primary nonreactive pollutants as the logical and important first step toward a complete 

treatment of all pollutant classes. In the discussion, I outline how one would extend the 

methods to address secondary and reactive primary pollutants. 
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Ambient concentrations 

In this chapter, I use a one-compartment model (Benarie, 1980; Lyons et al., 

2003) to describe the relationship between emissions and ambient concentrations. The 

strengths and limitations of this model are discussed in Chapter 4. The limitations of the 

one-compartment model are such that the results reported here should be considered as 

preliminary and suggestive rather than conclusive. 

The steady-state mass-balance equation for a square-plan, one-compartment 

model yields the following expression for attributable concentration of a primary 

nonreactive pollutant: 

 
86400

1
×==

AuH
PFD

AuH
EC VKT .    (7-2) 

Here, C is the average ambient concentration attributable to vehicles (g m-3), u is the 

wind speed (m s-1), H is the mixing height (m), A is the urban land area (m2), F is the 

average motor vehicle emission factor (g km-1), P is the population size, and 86400 

converts time units from seconds to days. The group (uH) indicates how rapidly local 

meteorology dilutes and removes emissions from an area; the group (P A-0.5) is linear 

population density; and, the group (FV) is the average per capita emission rate. 

 

Intake 

Given Equation 7-2, average daily per capita intake of motor vehicle emissions, I 

(units: g person-1 d-1), can be estimated as 
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86400

1
×==

AuH
PQFDQCI VKT .    (7-3) 

Here, Q is the average breathing rate for an individual (m3 person-1 d-1).  

Of the variables that urban planning might influence, I explore three: DVKT, P, and 

A. I define a normalized intake (I*, units: d-1) to highlight the influence on intake of these 

three variables: 
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Although potentially important, I do not explore here intraurban concentration 

variability, the influence of urban population and area on emission factors (e.g., by 

changing traffic flow conditions), or the role of urban form on mixing height (e.g., via the 

urban heat island effect). 

Exposure concentrations can be subdivided based on the distance to the 

responsible emission source: e.g., global (>3000 km), regional (150–3000 km), urban (5–

150 km), local (200 m – 5 km), and microenvironmental (3–200 m) (Colvile et al., 2003; 

Watson and Chow, 2001). For the analysis presented here, I consider exposures from 

urban and local emissions. The importance of regional and global emissions will depend 

on the pollutant and the emission rate upwind of an urban area (Tsuang et al., 2003). An 

urban area’s population and land area are unlikely to strongly affect exposures 

attributable to emissions from upwind sources. The importance of microenvironmental 

factors depends on the amount of time spent in a microenvironment and the concentration 

difference between a microenvironment and ambient air. Exposures in near-source 

microenvironments contribute a greater fraction of total intake for rapidly decaying 
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primary pollutants (e.g., ultrafine PM) than for nonreactive species. Because of the 

transport and dispersion that occurs during the interval between precursor release and 

secondary pollutant formation, local and microenvironment emissions will be less 

important for secondary pollutants that take ~0.5 hour or more to form than for primary 

pollutants. 

Both intraurban concentration heterogeneity and microenvironments might play 

important roles influencing the relationship between urban form and inhalation intake of 

primary vehicle emissions. However, in addition to the analysis of ambient CO 

monitoring station data presented in Chapter 4, other evidence also indicates that average 

outdoor concentrations are relatively homogeneous for primary nonreactive pollutants 

from motor vehicles. For example, Chapter 3, which investigated population exposure to 

benzene and CO from vehicle emissions in California’s South Coast Air Basin, presented 

results for two analyses. The first analysis accounted for spatial variability of population 

density and ambient concentrations; temporal variability of concentrations and breathing 

rates; and microenvironments such as in- and near-vehicle and indoors near a freeway. 

The second analysis considered only the air basin-wide annual average ambient 

concentration. Estimated average intake values in the second analysis were ~70% of the 

values in the first analysis, indicating that the ambient concentration analysis captured 

most of the average population exposure to motor vehicle emissions. In a second 

example, Watson and Chow (2001), studying conditions in Mexico City, reported that 

“65% of the 24-hr black carbon was part of the urban mixture, 23% originated in the 

neighborhood surrounding the monitor, and only 12% was contributed from nearby 

sources [within ~1 km].”  For primary nonreactive pollutants, if there are removal 
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mechanisms as air moves from outdoors to indoors (e.g., ventilation system air filters that 

can remove diesel PM), then the average attributable exposure concentration will be less 

than the average attributable ambient concentration. But if such removal mechanisms do 

not exist (e.g., for CO), then the average attributable exposure concentration will more 

nearly equal the average attributable outdoor concentration. In addition to these 

considerations, the present study explores how changes in urban population and area lead 

to changes in inhalation. This approach reduces the importance to the results of 

differences between the average attributable ambient concentration and the average 

attributable exposure concentration. 

 

Results 

Changes in urban population and area 

Figure 7-1 illustrates the three changes in urban population and area considered 

(infill, sprawl, and constant-density growth). I present the effect of increases in urban 

population and area on per capita inhalation of vehicle emissions; a reduction would 

cause the opposite effect. Equations describing the three changes in urban population and 

area are given in Table 7-1. The entries in Table 7-1 follow from Equations 7-1 and 7-3 

and from the assumption that, among the variables considered, per capita transportation 

emissions are only a function of population density. The entries do not assume any 

specific functional form for the density-emissions relationship. 

Figure 7-2 summarizes key results. For the system considered here, constant-

density growth always increases per capita intake. Infill and sprawl may either increase or 
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decrease per capita intake, depending on the density-emissions elasticity. Infill reduces 

per capita intake when εe is less than –1.0. Sprawl reduces per capita intake when εe is 

greater than –0.5. 

Rather than plotting numerical values on the ordinate axes, Figure 7-2 shows 

mathematical expressions. To calculate the value for the derivatives in a specific city, one 

needs to know values of parameters such as the city’s population and land area. The term 

on the ordinate axis of the ∂I/∂P plot (Figure 7-2, left) contains A-0.5, indicating that — all 

else being equal — changes in per capita intake attributable to changes in population 

would be more significant in small cities than in large cities. The term on the ordinate 

axis of the ∂I/∂A plot (Figure 7-2, right) contains P A-1.5, indicating that — all else being 

equal — changes in per capita intake attributable to changes in land area would be more 

significant in densely populated small cities than in sparsely populated large cities. 

Table 7-2 presents the results in terms of an important policy question: which 

change in urban population and land area minimizes per capita intake? The answer 

depends on density-emissions elasticity, εe, and on whether population is increasing, 

decreasing, or remaining constant. For example, consider the case of an increasing 

population. If εe is less than –0.5 then infill minimizes per capita intake; if εe is greater 

than –0.5 then constant-density growth minimizes per capita intake. 

 

Density-emissions elasticity 

The analysis in this chapter develops results that depend on the relationship 

between population density and transportation emissions. Only a few studies have 
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investigated this relationship. A comparison between two Nashville neighborhoods found 

that one neighborhood is 68% more dense, has 25% fewer VKT, and has 7% less toxic-

emissions per capita per day from vehicles, than the other (NRDC, 2003). These findings 

suggest εe = –0.10 and εv = –0.37. The study did not consider changes in population 

intake. Using an international dataset, Newman and Kenworthy (1989) reported a 

density-fuel consumption elasticity of between –0.4 and –0.5.  Fuel consumption is likely 

a better surrogate for vehicle emissions than distance traveled (Pokharel et al., 2002; 

Singer and Harley, 1996). On-road remote sensing techniques used to determine vehicle 

emissions in these studies may prove valuable in direct investigations of density-

emissions elasticity.  

Because data from empirical studies of εe are sparse, I use empirical information 

about εv as a surrogate. The relationship between εe and εv is 
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where F* (g km-1) is the marginal change in emissions attributable to a marginal change 

in VKT. Using reported values for εv in place of robust estimates for εe assumes F* ≈ F, 

i.e., that F is not strongly dependent on population density. Because density and other 

urban-form attributes affect congestion (Dunphy and Fisher, 1996) and because emission 

factors are related to average speed (Kean et al., 2003; Ntziachristos and Samaras, 2000), 

distance traveled is an imperfect indicator of emissions. I expect in many situations that 

the density-emissions elasticity would be greater than the density-VKT elasticity (e.g., if 

both terms were negative, I expect the density-emissions elasticity would be less negative 
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than the density-VKT elasticity). Because of start-up emissions (Heeb et al., 2003), 

reductions to average trip length would reduce emissions less than it would reduce VKT. 

Furthermore, increasing density may increase congestion and driver aggressiveness, 

which would increase emission factors (De Vlieger et al., 2000). If future research better 

quantifies the relationship between density and emissions, that information could be 

applied directly to the approach presented in this investigation to yield refined results. 

There is debate in the literature regarding the nature of the density-VKT 

relationship. Some investigations have found little or no relationship between density and 

VKT, suggesting that εe may be approximately zero, while other investigations have 

found a strong relationship between density and VKT (Badoe and Miller, 2000; Mindali 

et al., 2004). Published εv values are between 0 and –0.7 (Holtzclaw et al., 2002). 

Empirical evidence of density-VKT elasticity comes from both intra- and interurban 

comparisons. Figure 7-3 presents an interurban comparison of density and VKT (US 

DOT, 2003c). These data exhibit a clear inverse relationship and suggest εv ≈ –0.3. A 

1996 study of four areas in Toronto (urban core, core ring, inner suburbs, and outer 

suburbs) found that urban core residents traveled half as far (motorized distance traveled) 

and had about four times the residential density (persons per sq. km. of urbanized land) as 

outer suburb residents (CST, 1998), suggesting that εv = –0.5. Transportation demand 

modeling of two hypothetical housing developments in each of three US metropolitan 

areas (Montgomery County, Maryland; San Diego, California; and West Palm Beach, 

Florida) concluded that VKT would be 40 – 50% lower for infill than for “greenfield” 

development (US EPA, 1999b). Holtzclaw (1991; 1994) reported that εv is between –0.3 

and –0.5 after accounting for demographic variables such as income and cars per 
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household. Internationally, a strong relationship has been observed between urban density 

and travel patterns (Kenworthy et al., 1999). For example, in a comparison of 100 cities 

worldwide, Kenworthy and Laube (2002) concluded, “The data show how the higher car 

use cities are low in population density and more decentralized… while the higher 

density and more centralized cities have reduced car use per person.” 

Empirical elasticity values cited here are from intra- and interurban comparisons, 

rather than from changes over time in a single urban area. By comparing available 

estimates for density-VKT elasticity with the results presented in this work, I implicitly 

assume that existing intra- and interurban cross-sectional data are informative about the 

longitudinal conditions that would apply in any given urban area. This assumption is 

common in the literature, but, to my knowledge, it has not been rigorously tested.  

Comparing the analyses with reported values for εv, I find that whether infill is an 

effective strategy for minimizing intake of vehicle emissions depends on the 

circumstances. Within the range of reported εv values, infill and constant-density growth 

both tend to increase per capita intake. If the elasticity is strong (εv < –0.5), then the 

intake increase is less for infill than for constant-density growth. However, in the case of 

weak elasticity (εv > –0.5), the reverse is true. On the basis of the available evidence, it 

appears that merely increasing population density, while holding constant all other 

aspects of urban form, will likely not reduce VKT enough to reduce average per capita 

intake of primary motor-vehicle emissions. Rather, to reduce inhalation intake of air 

pollutants emitted from motor vehicles, the analysis presented in this chapter suggests 

that infill development must include urban design features that strengthen the density-
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VKT relationship, such that the density-emissions elasticity satisfies the condition εe <  

–0.5. 

 

Discussion 

Considering a specific urban area 

Applying the intake results presented here to a specific urban area would require 

an estimate of εe or εv. The results presented in Table 7-1 and Figure 7-2 do not depend 

on a specific functional form for εe or εv. However, estimating εe or εv for a given 

situation may require specifying this function.  

Empirical studies of the density-VKT relationship often report results as 

“doubling density reduces VKT by X%.” These observations can be represented 

mathematically using the following two-parameter relationship: 
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Here, k is a constant (km person-1 d-1), and X is the percent reduction in VKT attributable 

to a doubling of population density. The exponent in Equation 7-6 is the density-VKT 

elasticity (εv). For example, if doubling density reduces VKT by 40%, then εv = –0.74. As 

an alternative to Equation 7-6, Holtzclaw et al. (2002) suggested the following three-

parameter relationship:  

c
VKT bρaD )( += .      (7-7) 
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Here, a, b, and c are empirical constants. 

To compare the two functional forms found in the literature (Equations 7-6 and 7-

7), I determined the correlation parameters for the neighborhood-scale data used by 

Holtzclaw et al. (2002) and for the urban-scale data reported by the US Department of 

Transportation (US DOT, 2003c). The neighborhood-scale dataset contains VKT and 

density for each traffic analysis zone in three urban areas (Chicago, Los Angeles, and San 

Francisco). The urban-scale dataset contains VKT and density for the 47 urban areas in 

the US with population greater than 750,000. Correlation parameters for the two- and 

three-parameter density-VKT equations, and a summary of the input datasets used to 

derive these parameters, are presented in Table 7-3. I report the neighborhood-scale 

density-VKT relationship for three cities (Chicago, San Francisco, Los Angeles). I also 

report the urban-scale density-VKT relationship for two representative urban areas 

(Atlanta and New York) from among the 47 urban areas in the dataset. There is almost no 

difference in the goodness-of-fit parameter (r2) for the two- and three-parameter 

equations.  

Table 7-3 also contains changes in normalized intake attributable to the three 

hypothesized changes in urban population and area. Intake differences in Table 7-3 

between the two- and three-parameter equations are <14% and <4% for the 

neighborhood- and urban-scale datasets, respectively.  

Figure 7-4 presents the relationship between elasticity and population density for 

the functional fits to the empirical neighborhood-scale data presented in Figure 7-3b. 

Elasticity is independent of density for the two-parameter equation. However, for the 
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three-parameter equation, elasticity magnitude increases as density increases (εv = 

c/(1+(b/ρ))). 

The normalized intake results in Table 7-3 and Figure 7-2 provide relative 

estimates of the exposure impact of changes in urban population and area. To quantify 

intake (Equation 7-3) for a specific pollutant in a specific location, one must specify 

average breathing rate (Q), average emission factor (F), and typical meteorological 

conditions in terms of wind speed and mixing height (uH). Appropriate values for these 

parameters are presented next. 

Estimates of the US population-average breathing rate vary. In this dissertation, I 

have used the value 12.2 m3 d-1 person-1 (Layton, 1993). Alternative values (units: m3 

person-1 d-1) found in the literature include 12 (US EPA, 1997), 15 (Marty et al., 2002), 

and 17 (OEHHA, 1996). As discussed in Chapter 3, I do not consider the reported value 

of 17 m3 person-1 d-1 (OEHHA, 1996) to be a reliable estimate of the population breathing 

rate, nor do I consider it to be a useful indicator of the uncertainty in the value of 12.2 m3 

d-1 person-1 from Layton (1993). Emission factors are available for many pollutants, 

based on techniques such as on-road measurements and laboratory dynamometer tests. 

There can be significant variability and uncertainty in estimates of F (Abu-Allaban et al., 

2003). An estimate of the overall average value of F can be obtained as the ratio of total 

vehicle emissions to total VKT. For example, dividing reported year-2000 PM2.5 tailpipe 

emissions for gasoline vehicles in California’s South Coast Air Basin (6.2 × 106 g d-1) 

(CARB, 2000b) by the total distance traveled by gasoline vehicles (5.1 × 108 km d-1) 

(CARB, 2002a) yields a value of F for tailpipe fine particulate matter of ~12 mg km-1. 

This value is consistent with experimentally measured values (Abu-Allaban et al., 2003). 
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Meteorology varies among locations and times. In Chapter 4, I compute the harmonic 

mean value of Hu for each of the 73 meteorological stations in the EPA SCRAM 

database (www.epa.gov/ttn/scram). The median value among the stations is ~500 m2 s-1. 

Combining the above values, for tailpipe emissions of PM2.5, I* can be converted to I by 

multiplying by 4.2 × 10-9 mg person-1.  

Results in Table 7-3, combined with conversion factors such as those given 

above, can provide information that is helpful to cost-benefit analyses and to 

understanding the health impacts of urban development. For example, the value in Table 

7-3 for infill development in Atlanta, ∂I*/∂P|A = 0.55 d-1 person-1, is converted to ∂I/∂P|A 

= 2.3 × 10-9 mg d-1 person-2 for PM2.5. This means that if the population of Atlanta were 

to increase by 100,000 people via infill development, I estimate that the average increase 

in inhalation intake of tailpipe emissions of PM2.5 would be 0.2 µg person-1 d-1. Per Table 

7-3, if the same population growth were to occur via infill development in New York 

City, then the expected average increase in per capita inhalation intake of PM2.5 would be 

3 times lower. Based on results presented in Chapter 3 and 6, the effects of 

microenvironments, time-varying breathing rates, and individual mobility on estimated 

average per capita inhalation would be expected to modify these results in detail but not 

in the main. The impact of these three factors (microenvironments, time-varying 

breathing rates, and individual mobility) on comparisons between urban areas (e.g., the 

factor of 3 difference between the effect of population growth in Atlanta versus New 

York City) is expected, in most cases, to be modest. 
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Considering specific pollutants or pollutant classes 

The analysis presented in this investigation is directly applicable to inhalation of 

primary conserved passenger-vehicle emissions, such as benzene and CO. The results can 

also inform considerations beyond this subset of pollutants. For example, at equal 

emission rates, the average ambient concentration of a primary conserved pollutant would 

be higher than for a primary reactive pollutant. All else being equal, intake for a primary 

nonreactive pollutant is an upper-bound estimate of intake of primary, reactive (or 

depositing) pollutants. Similarly, the estimated change in intake of a primary nonreactive 

pollutant that results from a change in urban form (e.g., as given in Table 7-3) is an upper 

bound estimate of the change in intake of a primary reactive pollutant. 

For rapidly reacting pollutants (i.e., those for which the characteristic reaction 

time is much less than the time for removal from the air basin by advection), 

concentrations are likely to exhibit a high degree of spatial heterogeneity. For all primary 

vehicle pollutants, concentrations will be higher near roadways than elsewhere, but the 

concentration difference between near-source and not-near-source areas would be greater 

for rapidly reacting pollutants than for nonreactive pollutants. One implication of this 

difference is that, when estimating population inhalation of vehicle emissions, proximity 

to the emission source is more important for rapidly reacting pollutants than for slowly 

reacting pollutants. A second implication is that the difference between the population 

average exposure and exposures for people who live or work in proximity to major 

roadways will be greater for rapidly reacting pollutants than for slowly reacting 

pollutants. 
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Two important pollutants associated with transportation are diesel PM 

(predominantly from non-passenger vehicles) and ozone (a highly reactive, secondary 

pollutant). To my knowledge, estimates of density-emissions elasticity for diesel PM do 

not exist, and I do not expect εe for passenger vehicles to be an accurate estimator of εe 

for diesel PM. Because diesel vehicle emissions are concentrated near specific land uses 

(e.g., highways and freight centers), I expect ambient concentrations in US urban areas to 

be more spatially heterogeneous for diesel emissions than for passenger vehicle 

emissions (SCAQMD, 1999). The density-emissions elasticity for diesel PM may be 

negative, because increasing population density is likely to increase the efficiency with 

which organizations can deliver the goods and services that require diesel consumption. 

However, there is currently no good basis for estimating this parameter. 

The approach for primary pollutants developed in this investigation could be 

extended to secondary pollutants (Marquez and Smith, 1999). For example, 

investigations of how changes in VKT affect ozone concentrations can yield a pseudo-

emission factor, defined as the attributable change in the average mass of ozone in an 

urban area divided by the change in VKT (Carter, 1989). Similar metrics could be 

explored for changes in the size of an urban area or the spatial distribution of precursor 

vehicle emissions. Factors influencing such metrics include climate and meteorology, 

topography, total precursor emissions (i.e., including non-vehicle emissions), and the 

spatial and temporal distribution of emissions and of changes in emissions. Vehicle 

emissions may reduce ozone concentrations locally (because fresh NO emissions remove 

ozone) but increase ozone concentrations in areas that are downwind of the emissions. 

Average ozone concentrations are lower indoors than outdoors because the absence of 
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direct sunlight reduces ozone formation and because reactions with indoor surfaces 

increase ozone destruction (Weschler, 2000). 

 

Non-health impacts of vehicle emissions 

The health effects attributable to inhalation of emissions are only one of many 

impacts associated with motor vehicles and urban form (Delucchi, 1996). Emissions 

occur throughout the lifecycle of all components of the transportation infrastructure, 

including vehicles, fuels, and roads. Impacts of the transportation system include local 

and global environmental damage (e.g., habitat loss, urban heat island effects, and global 

climate change). Among non-pollution health effects, urban form may influence exercise 

levels, obesity, mental health, and other “quality of life” issues (Frank and Engelke, 

2001; Frumkin, 2002). 

Actions that reduce one impact might not reduce other impacts. As an example, 

Table 7-4 presents policies that influence greenhouse gas (GHG) and toxic emissions, 

and population inhalation of vehicle emissions. Some actions exhibit co-benefits between 

these impacts; others exhibit trade-offs. 

 

Other issues 

An important limitation to the approach employed here is the assumption that 

individuals are exposed to the same attributable concentration. Differences in exposures 

among individuals and among subpopulations are important components of society’s 

overall air quality concerns. (This topic is explored in Chapter 6.) While the results of 
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this investigation indicate that sprawl may reduce total population inhalation of motor 

vehicle emissions, the exposure change is not expected to be uniform across the 

population. Sprawl may reduce the population average exposure while increasing 

exposures for persons living near transportation corridors, especially if people living at 

the urban edge commute to downtown locations. 

A second important limitation is that, unlike in Chapters 3 and 6, I use here the 

average ambient concentration as a proxy for the average exposure concentration. In 

some situations (e.g., benzene concentrations in vehicles), attributable exposure 

concentrations are likely to be greater than attributable ambient concentrations; in other 

situations (e.g., particulate matter in a mechanically ventilated building), the reverse is 

true. In a specific urban area, correlations are likely among population density, building 

type and age, the ratio of indoor-to-outdoor pollution concentrations, and time spent in or 

near vehicles. Such considerations may be important in understanding a specific 

individual’s or subpopulation’s exposures.  

Finally, my analysis does not address the effects of changes in fuels and vehicle 

technologies. Aggressive programs have led to demonstrable and substantial reductions 

in on-road emissions of many criteria and toxic air pollutants (Kean et al., 2001; Kean 

and Harley, 2000). In cases where inhalation intake of vehicle emissions is not reduced 

by infill development alone, combining infill with efforts to further reduce vehicle 

emissions may permit overall inhalation intake to decrease. Historically, vehicle 

improvements over time have substantially reduced emissions per mile, thereby offsetting 

increases in VKT (Kahn, 2000). 
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Conclusions 

Urban land area and population change over time, with or without planning. I 

analyze the impact of changes in land area and population on per capita inhalation of 

primary passenger vehicle emissions. Depending on the density-emissions elasticity (εe), 

infill development has the potential to reduce motor vehicle emissions yet increase per 

capita inhalation of these emissions, while sprawl has the potential to increase vehicle 

emissions but reduce inhalation of these emissions. Under the idealized conditions 

considered here, for εe greater than –0.5, constant-density growth and sprawl minimize 

intake for increasing and constant population, respectively. For εe less than –0.5, infill 

and contraction minimize intake for increasing and constant population, respectively. 

Data on density-emissions elasticity (εe) are lacking, but published values for density-

VKT elasticity (εv) are between 0 to –0.7. To interpret the model results (which are based 

on εe), I assumed that εv is a reasonable proxy for εe, and also that data on εv from cross-

sectional studies provides useful predictive information for describing changes in 

response to growth over time in any given urban area. To the extent that these 

assumptions are reasonably accurate, then merely increasing population density while all 

other aspects of urban form are unchanged appear unlikely to reduce VKT enough to 

reduce average per capita intake of motor vehicles emissions. Rather, to reduce health 

impacts of transportation emissions relative to constant-density growth, infill 

development would have to include urban design features that strengthen the density-

VKT relationship, such that the condition εe < -0.5 is satisfied. 

An ultimate goal in air quality management is to minimize adverse health effects 

of air pollution. In the case of motor vehicle emissions, major progress has been achieved 
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through technological developments such as fuel reformulation and on-board emission 

controls. Urban planning may also reduce vehicle emissions and their associated health 

effects. To do so will require a better understanding of the relationships among urban 

form, vehicle use, vehicle emissions, and inhalation intake of those emissions.  This 

investigation offers early progress toward such understanding.
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Table 7-1: Mathematical description of the three changes in urban population and area(a) 

Name of change 
in urban form 

Change in urban population, 
area, and density 

Incremental change in normalized pollutant intake associated with 
incremental change in urban population and area 

Infill 
Population increases;  
land area is constant; 

density increases. 
  

1
    

A
)ε(D

P
I eVKT

A

* +
=

∂
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Sprawl 
Population is constant;  

land area increases; 
density decreases. 
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Constant-density 
growth 

Population increases; 
land area increases; 
density is constant. 
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∂
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(a) Here, I* is the normalized intake (d-1), P is the population, A is the urban land area (km2), DVKT is the average daily per 
capita vehicle-kilometers traveled, εe is the density-emission elasticity defined in Equation 7-1, and ρ is the population density 
(km-2). 
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Table 7-2: The change in urban population and area that minimizes intake, depending on the density-emissions elasticity and 
the change in population(a)  

 
 Population is increasing Population is constant Population is decreasing 

εe < –0.5 Infill  
(dA/dt = 0) 

Contraction  
(dA/dt < 0) 

Constant-density 
contraction (dρ/dt = 0) 

εe > –0.5 Constant-density growth 
(dρ/dt = 0) 

Sprawl  
(dA/dt > 0) 

Constant-land-area 
contraction (dA/dt = 0)  

(a) Here, t = time (y), εe = density-emissions elasticity, A = land area (km2), and ρ = population density (km-2). 
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Table 7-3: Two- and three-parameter density-VKT equations and attributable changes in 
normalized intake(a) 

 
  Neighborhood-scale data  Urban-scale data 

    Chicago Los Angeles San 
Francisco  Atlanta New York 

City 

Population (million)  7.3 14.0 5.9  3.0 17.1 
Land area (km2)  9,700 23,400 17,700  4,600 10,300 
Average density (km-2)  753 597 336  650 1,660 
Total vehicle-kilometers 
traveled per day (million)  136 256 112  162 424 

Average vehicle-kilometers 
traveled per capita per day  29.9 29.5 30.4  54.4 24.8 

Number of data points  31.5 1471 1048  47 

        
Using DVKT = k ρe        

k  69 52 56  335 

e  –0.10 –0.07 –0.08  -0.31 

r2  0.57 0.20 0.27  0.35 

εv  –0.10 –0.07 –0.08  -0.31 
Infill (∂I*/∂P|A, units: d-1 

person-1)  0.27 0.18 0.21  0.55 0.17 

Sprawl (∂I*/∂A|P, units: 
d-1 km-2)  -91 -49 -32  -97 -76 

Constant-density growth 
(∂I*/∂P|ρ, units: d-1 

person-1) 
 0.15 0.10 0.11  0.40 0.12 

        
Using DVKT = a(ρ+b)c        

a  2100 1800 2900  343 

b  1800 2800 4200  20 

c  -0.51 -0.48 -0.52  -0.32 

r2  0.74 0.31 0.43  0.35 

εv  -0.15 -0.08 -0.04  -0.306 -0.312 
Infill (∂I*/∂P|A, units: d-1 

person-1)  0.26 0.18 0.22  0.56 0.17 

Sprawl (∂I*/∂A|P, units: 
d-1 km-2)  -80 -48 -35  -101 -76 

Constant-density growth 
(∂I*/∂P|ρ, units: d-1 

person-1) 
  0.15 0.10 0.11  0.40 0.12 

(a) Here, εe = density-emissions elasticity, I*
 = normalized intake (d-1), P = population, A 

= land area (km2), DVKT = vehicle-km traveled per person per day and ρ = population 
density (km-2).
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Table 7-4: Examples of actions that increase and reduce two impacts from vehicles(a) 

 

  CO2 and toxic emissions 

  Reduction Increase 

Reduction Increased fuel-efficiency Sprawl, if –0.5 < εe < 0  Inhalation of 
emissions 

Increase Infill development, if –1.0 < εe < 0  Reduced fuel-efficiency 

(a) Here, εe = density-emissions elasticity. 
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Figure 7-1: Three changes in urban population (P) and urban area (A) investigated in this 
chapter, in terms of the impact on the incremental change in per capita intake (I). The 
first change (infill, ∂I/∂P|A) is population increase at constant land area. The second 
change (sprawl, ∂I/∂A|P) is land area increase at constant population. The third change 
(constant-density growth, ∂I/∂A|ρ) is increase in population and land area, at constant 
population density. Not shown is the opposite of sprawl: a land area decrease at constant 
population (contraction).
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Figure 7-2: Influence of density-emissions elasticity (εe) on the incremental change in per capita intake (I) with respect to a 
change in urban population (P) or urban area (A). The left plot (∂I/∂P) shows the impact of increasing population on intake 
when urban land area is constant (infill) and when population density is constant (constant-density growth). The right plot 
(∂I/∂A) shows the impact of increasing (sprawl) and decreasing (contraction) urban land areas on intake when population is 
constant. In each plot, the change in urban form that minimizes intake is the lower line. A negative value on the ordinate axis 
indicates an absolute reduction in I.  
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Figure 7-3: Comparisons of population density and average daily per capita vehicle-km 
traveled. Figure 7-3a presents data for the 47 urban areas in the US with population 
exceeding 750,000. For this dataset, the two- and three-parameter regression lines are 
indistinguishable. Figure 7-3b presents data for the 2,834 Traffic Analysis Zones in the 
Chicago, Los Angeles and San Francisco metropolitan areas. Not plotted are the 5% of 
the population density values that are greater than 7,500 km-2 and the 0.8% of the VKT 
values that are greater than 65 km person-1 d-1. Both datasets show an inverse 
relationship, with more dense areas having lower per capita VKT. 

 

 

(a) 

(b) 
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Figure 7-4: Density-VKT elasticity as a function of population density, based on data for 
the 2,834 Traffic Analysis Zones in the Chicago, Los Angeles and San Francisco 
metropolitan areas. Elasticity is independent of density with the two-parameter 
regression. With the three-parameter regression, elasticity is seen to increase in 
magnitude as population density increases.
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Chapter 8: Conclusions 

 

 This dissertation explores several aspects of human inhalation intake of urban air 

pollutants, focusing mainly on vehicle emissions. In this chapter, I summarize the 

findings from each previous chapter, discuss possible topics for future research, and then 

offer closing remarks. 

 

Summary 

In Chapter 1, I provide motivation and background for the topics being explored. 

In Chapter 2, I introduce intake fraction as an emerging intake metric useful for health 

risk assessment and other science and policy analyses. Intake fraction, which is the 

fraction of emissions that are taken in (inhaled), is a measure of the “exposure efficiency” 

for a specific pollutant and source. In Chapter 3, I estimate the intake fraction for vehicle 

emissions in California’s South Coast Air Basin. The South Coast is an important case 

study because of the large population size (~15 million people) and because of the 

relatively high air-pollution levels. The investigation incorporates time-activity pattern 

data, an analysis of microenvironments such as in-vehicle and in-residence with an 

attached garage, and ambient monitoring station data on benzene and carbon monoxide 

during 1996-1999. The resulting estimate indicates that for every tonne of a primary, 

nonreactive pollutant emitted by a vehicle in the South Coast, ~50 grams are inhaled. The 

South Coast is an important case study, but it is not representative of typical US urban 
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areas. In Chapter 4, I explore intake fraction for vehicle emissions in urban areas 

throughout the US. The reported median value, 14 per million, is ~30% of the value of 

~50 per million reported for the South Coast. Analyzing recent tracer-gas experiments in 

Chapter 5, I estimate that the self-pollution intake fraction for school bus emissions is 

~30 per million. Based on these values, self-pollution – a micro-scale, vehicle-specific 

issue – is expected to be a significant contributor to the total health impact of school bus 

exhaust. 

The following comparison highlights the utility of these intake fraction results. 

Consider the three groups that inhale the exhaust from a specific school bus operating in 

an urban area: (1) the students on the bus, (2) people in vehicles near the bus, and (3) all 

other people in the urban area. The mass of the bus’s pollution inhaled by the students on 

the bus is comparable to, or in many cases greater than, the mass of the bus’s pollution 

inhaled by the latter two groups. For nonreactive gaseous emissions, these three groups 

inhale ~30 g, ~3 g, and ~13 g, respectively, per million grams emitted. For PM2.5 these 

three groups are estimated here to inhale ~30 g, ~3 g, and ~9 g, respectively, per million 

grams emitted. For the third group, intake fraction is lower for PM2.5 than for nonreactive 

gaseous emissions (9 per million versus 13 per million) because of the protection that 

buildings offer for particles. These calculations are derived from values in the Chapter 2 

Appendix, from the ambient vehicle intake fraction of 14 per million reported in Chapter 

4, and from the self-pollution intake fraction of ~30 per million presented in Chapter 5. 

The values given here are intended to be illustrative rather than definitive. 

This comparison, illustrated for diesel PM2.5 in cartoon format in Figure 8-1, 

yields two important findings. First, on average, a given mass of diesel emission 
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reduction is expected to have approximately three times more health benefit if it comes 

from school buses than if it comes from vehicles without self-pollution (43 versus 16 g 

per tonne for gaseous pollutants; 39 versus 12 g per tonne for PM2.5). Identifying this 

three-fold increase in effectiveness required investigating inhalation intake rate, rather 

than only emissions or ambient concentrations. Second, reducing self-pollution offers the 

potential to be a relatively simple and straightforward way to reduce inhalation of school 

bus emissions, even without necessarily reducing school bus emissions. Efforts to reduce 

self-pollution directly could significantly reduce total inhalation intake of school bus 

emissions, even if emissions were to remain constant. 

As I discuss in Chapter 2, the utility of intake fraction values increases when one 

can compare values across sources and situations. The results presented in this work offer 

progress towards a compendium of intake fraction values for a variety of sources and 

emission scenarios. 

In Chapter 6, I estimate air pollution inhalation for 25,068 travel survey 

respondents in the South Coast. This investigation represents a new and promising 

method for exposure analysis. It uses individuals’ latitude and longitude to track the 

nearby modeled ambient concentration; microenvironment factors and ambient 

concentration to estimate the exposure concentration; and, activity level to determine 

breathing rate. Inhalation intake rate is the product of breathing rate and exposure 

concentration. In Chapter 6, I explore the importance of the following three issues when 

estimating an individual’s inhalation intake of air pollution. (1) People often change 

location during each day, as they go to work, shop, etc.; this movement is not accounted 

for in conventional exposure assessments, such as those that use US Census data to 
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determine location. (2) People’s breathing rates are correlated with ambient 

concentrations of many urban air pollutants: both are typically higher during the day, 

when people are active, than at night, when people tend to be asleep. Ignoring this 

correlation, for example by assuming a constant breathing rate over time, may bias 

downward estimates of inhalation intake. (3) People spend time indoors and in vehicles, 

where the exposure concentration for pollutants emitted from vehicles may differ from 

the nearby ambient concentration. Depending on the pollutant, average exposure 

concentrations may be greater than or less than average ambient concentrations. These 

results are useful to exposure modelers, who would like to know what level of detail is 

necessary when building an exposure model, and what level of error may be introduced 

by not incorporating one or more of these three issues. Among the five pollutants 

investigated, the three issues considered (mobility, time-varying breathing rates, and 

microenvironments) influence the estimated intake rate by up to a factor of 2. This 

chapter also briefly explored correlations between individuals’ inhalation intake rate and 

ethnicity and income category. These results, indicating total inhalation intake rate for the 

case study population and for specific subpopulations (e.g., specific ethnic groups), are 

useful to air quality managers, health risk assessors, and public health officials who seek 

to design effective intervention strategies to reduce the health effects of air pollution. 

Using the approach presented in this chapter, one could track changes over time in the per 

capita air pollution inhalation rate and in the distributions among the population of these 

intake rates. One could also model the effect on intake rates and intake rate distributions 

of potential transportation planning options or potential air pollution control strategies.  
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Considering an idealization of a hypothetical urban area, I explore in Chapter 7 

the impact of changes in urban population and land area on inhalation intake of vehicle 

emissions. I find that in some cases, a specific change in urban form (e.g., infill 

development when the density-emissions elasticity is negative and is greater than 0.5 in 

magnitude) may reduce per capita vehicle emissions yet increase per capita inhalation of 

these emissions. The investigation and results are potentially useful and important to 

establishing and motivating urban planning as a tool for air quality management. In 

addition, these results may be beneficial to air quality managers evaluating technical and 

policy options for meeting air quality objectives. 

In this dissertation, I present new methods and new insights about population 

inhalation of vehicle emissions. Broadly, the results suggest that air quality engineers and 

managers can and should consider inhalation of air pollution, not only emissions or 

ambient concentrations. For example, the comparison of intake fraction values for school 

buses and other vehicles yielded suggestions for effective interventions to reduce 

exposures. Further investigation of the emission-to-intake relationship will likely yield 

additional potential intervention strategies. The emerging field of exposure science is 

developing tools, metrics, and approaches that are ready to be integrated more fully into 

air quality research and management. Doing so will make the field more rigorous and 

more relevant.  

 

Future research 

Below, I highlight areas for further research that are suggested by the 

investigations in this dissertation. 
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Future investigations could extend the exploration in Chapter 2 of the policy 

implications of intake fraction. One next step would be to generate intake fraction 

estimates for all emission sources in a specific area. One could then rank emission 

sources in terms of (1) mass emissions, and (2) mass inhaled, which is estimated as the 

product of emissions and intake fraction. This approach could help environmental policy 

focus on reducing inhalation intake of air pollution. Another next step would be to 

incorporate intake fraction estimates into pollution trading regimes. The marginal impacts 

of emissions vary in space and time, yet most pollution markets do not account for this 

variability. The idea of “trading ratios” has been suggested, whereby the value of an 

emission credit would depend on the time and location of the emission or emission 

reduction. Intake fraction values could offer a useful basis for determining trading ratios. 

In Chapter 3, I calculate intake fraction of vehicle emissions in the South Coast. 

Several other intake fraction investigations are worthwhile. For example, the approach I 

employed in Chapter 3 could be applied to vehicle emission in other urban areas, 

including areas outside the US. I have focused on vehicle emissions; future work should 

explore other source categories, such as large point sources, area sources, and indoor 

releases. In this dissertation, intake fraction has only been applied to primary pollutants. 

Future research could extend the intake fraction concept to secondary pollutant such as 

ozone, which is formed as a result of chemical reactions among precursor emissions.  

An analysis that is missing from the investigations in this dissertation is a robust 

comparison against measured exposures. Calculating intake fraction from measured 

exposures is challenging because most pollutants have multiple sources. Direct 

measurement of intake fraction is not possible for most sources. Nevertheless, estimates 
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could be made from available evidence. For example, to estimate the intake fraction for 

vehicle benzene, one could start with measured benzene exposures, and then subtract 

exposures attributable to non-vehicle sources (e.g., environmental tobacco smoke). This 

approach could be used to corroborate the results presented in Chapter 3 for vehicle 

benzene intake fraction in the South Coast. 

School bus self-pollution was quantified in Chapter 5, but in general self-pollution 

has not been well studied. There is the potential that school bus self-pollution could be 

easily addressed through minor structural modifications to the buses, but more work is 

needed to generate and test potential ideas. The range of values for self-pollution in 

private passenger vehicles is important but unknown. Self-pollution is an idea that 

extends beyond vehicles; for example, residential woodstoves likely exhibit self-

pollution. 

In Chapter 6, I explored the impact on estimated intake rate of three exposure 

assessment attributes: microenvironments, time-varying breathing rates, and mobility. 

The first issue is the topic of significant research, but the second and third issues had 

received almost no attention before this dissertation. These topics are an important gap in 

the literature. One basic piece of information that is missing from the literature is the 

diurnal profile of population breathing rate. I presented two estimates for this information 

(Chapters 3 and 6). A more robust investigation would be reasonably straightforward 

(i.e., about the scope of a journal article) and highly useful to the exposure analysis 

community. 

In Chapter 7, I explored the impact on a hypothetical urban area of changes in 

urban population and land area. This investigation suggests the idea of exploring how 
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intake fraction has changed over time in specific urban areas. I have done an preliminary 

investigation into this topic, and found that over time scales of several decades, vehicle 

intake fraction increases in some urban areas and decreases in others, but the average 

intake fraction value is relatively constant over time. More work is necessary to further 

explore this topic. The research in Chapter 7 highlighted the need to better understand 

two parameters and their determinants: the density elasticity of emissions and the density 

elasticity of vehicle-km traveled. In addition, these elasticity values have been estimated 

for private passenger vehicles but not for diesel vehicles. Given the importance of diesel 

emissions to air quality and health, these elasticity parameters should be explored for 

diesel vehicles. 

 

Transportation planning and inhalation of vehicle emissions  

Globally, many cities are growing rapidly. Urban areas in developing countries 

are increasingly interested in improving air quality. As these trends continue, demand for 

urban-scale air quality solutions will increase. Consider, for example, three options that 

may help meet air quality objectives: reducing emissions from private passenger vehicles 

via technological changes (e.g., fuel reformulation), increasing availability of mass 

transit, and using transportation and land use planning to reduce transportation demand 

(as indicated, for example, by average annual distance traveled per capita in a specific 

urban area). For an urban area prepared to spend money and political capital improving 

air quality, which option offers the most effective way to reduce human inhalation intake 

of air pollution? The ideas explored in this dissertation provide useful background and 

strategies for framing and exploring this question. While reducing passenger vehicle 
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emissions has been a main focus of air quality management in the US, the cost-

effectiveness of other options such as improved mass transit should also be considered, 

especially in rapidly urbanizing developing countries (McKinley et al., 2005). 

Broadly, air quality management may be divided into technical (i.e., technology-

based) and nontechnical options. Technical options include catalytic converters, on-board 

diagnostics, and fuel reformulation. Nontechnical options, such as urban planning and 

cross-subsidies for public transportation, aim to shift individuals’ behavior. Technical 

changes to engines and fuels have successfully reduced per-mile emissions for many 

pollutants. However, there are several concerns with air quality management approaches 

that focus almost exclusively on technical options to the exclusion of nontechnical 

options. First, it remains an open question whether opportunities for easy improvement 

have been used up. Second, emission reduction equipment, when deployed at the scale of 

millions of cars, sometimes fails to perform as well as initially predicted. Third, technical 

options have not reduced total fuel consumption or carbon dioxide emissions (though 

hybrids offer the potential to do so, or at least slow the growth in consumption). 

Technical options are often considered to offer immediate and verifiable change, 

unlike many nontechnical options (e.g., changes in urban form occur over times scales of 

decades). To some extent this is true: a technology such as a catalytic converter can 

change a vehicle’s emissions as soon as implemented (and, at typical vehicle turn-over 

rates, within several years for a fleet), offering immediate air quality benefits. The 

effectiveness of a catalytic converter can be tested in a laboratory. At the same time, 

however, technologies often perform better in laboratory tests than when used in the “real 

world.” In addition, the time scale and effort necessary to deploy functioning control 
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technologies to a large proportion of a vehicle fleet can be multiple decades. For 

example, EPA began serious efforts to control diesel emissions in the 1990’s, following 

the passage of the 1990 Clean Air Act Amendments. Final diesel rules were passed in 

2000 and 2001, and standards for engines and fuels will take effect during 2006 – 2012 

(http://www.epa.gov/cleandiesel). Fleet turnover is anticipated to take one or two decades 

more. Thus, the time scale for this technical shift, multiple decades, is comparable to the 

time scale that would be necessary for shifts in urban form. Urban form should not be 

dismissed out of hand as requiring too much time, relative to technical options, to cause 

change. Urban planning and other approaches that aim to shift individuals’ behavior have 

the potential to be more cost effective than technical options, and they should be one tool 

among many used to improve urban air quality. 

 

Urban engineering and sustainability 

Broadly, the research in this dissertation is situated in the field of urban 

engineering, which has as its objective designing urban infrastructure systems that 

improve human health and the environment and promote quality of life. The core tools 

for this field are derived from civil and environmental engineering, public health, and 

urban planning. In US universities, these three fields are typically separate departments, 

but alternatives are possible. For example, at the University of Tokyo, considered to be 

the leading university in Japan, the Department of Urban Engineering, formed in 1962, 

combines urban planning with environmental engineering (http://www.due.t.u-

tokyo.ac.jp). 
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Three major transportation air pollution challenges are (1) to reduce the total 

health impacts of vehicle exhaust, (2) to address distributional issues among 

subpopulations, and (3) to reduce or offset climate change impacts of transportation 

energy consumption. Transforming current motor vehicles into ones with no use-phase 

toxic emissions would address two of these three issues, although upstream health 

impacts (e.g., at a power plant for electric cars) may continue to be of substantial 

concern. Transforming the basis of entire energy supply system from fossil fuels to 

renewable energy would address all three issues, assuming low lifecycle emissions from 

alternative energy supply technologies.  

Reducing urban air pollution is an important and worthwhile goal for improving 

the quality of life for urban residents. I have written elsewhere about my views on the 

difference between sustainability and quality of life improvements (Marshall and Toffel, 

2005). I believe that (1) goals for our society extend well beyond merely sustaining itself. 

Technological and urban systems can and must strive towards constant improvement, 

addressing flaws such as urban air pollution. (2) Population is a key component of 

sustainability. Any nonzero level of per-capita energy consumption is ultimately 

unsustainable if population grows without bound. (3) The challenge is to transform the 

society and technologies we currently have into those we want to have and need to have 

to be sustainable. I believe that the future is not predetermined, but rather is a result of 

our collective action (or inaction). Our actions are influenced by the available 

information, by social values and norms, and by the physical limitations of the global 

environment. With finite resources, we will need to make tradeoffs as we decide which 

path to take to get from where we are to where we want to be. The insights offered in this 
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dissertation contribute some drops to the sea of knowledge that will help us make this 

transition. 
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Figure 8-1: Diesel PM2.5 intake fraction for three mobile sources. Values shown are the 
mass of PM2.5 emissions inhaled in different locations, per million grams emitted. For 
example, owing to self-pollution, ~ 30 grams are inhaled by students on a school bus, per 
million grams emitted. For each of the three source types, there will some residences near 
the source and some further away. On average, the cumulative intake fraction for the 
whole exposed population is ~ 9 per million for US urban areas. Values are approximate 
and illustrative, rather than definitive. Illustration courtesy of The Linus Group, Berkeley, 
CA. 
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