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• First high spatial resolution national
LUR models for both NO2 and PM2.5 in
China

• Satellite data and kriging are comple-
mentary inmaking predictionsmore ac-
curate.

• Variable selection models perform simi-
lar or better than PLS models.

• 1 km2 resolution prediction maps will
be publicly available for future research.
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Outdoor air pollution is a major killer worldwide and the fourth largest contributor to the burden of disease in
China. China is the most populous country in the world and also has the largest number of air pollution deaths
per year, yet the spatial resolution of existing national air pollution estimates for China is generally relatively
low.We address this knowledge gap by developing and evaluating national empirical models for China incorpo-
rating land-use regression (LUR), satellite measurements, and universal kriging (UK). Land use, traffic andmete-
orological variables were included for model building. We tested the resulting models in several ways, including
(1) comparing models developed using forward variable selection vs. partial least squares (PLS) variable reduc-
tion, (2) comparing models developed with and without satellite measurements, and with and without UK, and
(3) 10-fold cross-validation (CV), Leave-One-Province-Out CV (LOPO-CV), and Leave-One-City-Out CV (LOCO-
CV). Satellite data and kriging are complementary in making predictions more accurate: kriging improved the
models in well-sampled areas; satellite data substantially improved performance at locations far away from
monitors. Variable-selection models performed similarly to PLS models in 10-fold CV, but better in LOPO-CV.
Our best models employed forward variable selection and UK, with 10-fold CV R2 of 0.89 (for both 2014 and
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2015) for PM2.5 and of 0.73 (year-2014) and 0.78 (year-2015) for NO2. Population-weighted concentrations dur-
ing 2014–2015 decreased for PM2.5 (58.7 μg/m3 to 52.3 μg/m3) andNO2 (29.6 μg/m3 to 26.8 μg/m3).Weproduced
the first high resolution national LUR models for annual-average concentrations in China. Models were applied
on 1 km grid to support future research. In 2015, N80% of the Chinese population lived in areas that exceeded
the Chinese national PM2.5 standard, 35 μg/m3. Results here will be publicly available and may be useful for ep-
idemiology, risk assessment, and environmental justice research.

© 2018 Elsevier B.V. All rights reserved.
1. Introduction

Long term exposure to air pollutants such as fine particulate matter
(PM2.5) and nitrogen dioxide (NO2) has been associated with many ad-
verse health effects, including respiratory and cardiovascular diseases,
and increased mortality (Pope III et al., 2011; Kaufman et al., 2016). Ep-
idemiological research on the health effects of air pollution exposure in-
creasingly relies on high spatial resolution air pollution predictions
(Beelen et al., 2008; Cesaroni et al., 2014). Land-use regression (LUR)
and other empirical modeling approaches are useful tools to improve
the accuracy of air pollution exposure estimates and to explore
within-urban variability of outdoor air pollutants. LUR employs ground
observations and geographic covariates to build a regressionmodel and
to estimate concentrations at locations without monitoring data, typi-
cally at a city-wide scale (Hoek et al., 2008). Variables corresponding
to emission sources (e.g. traffic, population density, nearby pollutant
emissions) and dispersion conditions (e.g. elevation, vegetative indices,
meteorology) are often included in an LUR model. More recently, LUR
and other geostatistical approaches have been used to model fine
scale air pollution concentrations over large areas (Novotny et al.,
2011; Sampson et al., 2013; Vienneau et al., 2013; Knibbs et al., 2014;
Young et al., 2016). Unlike city-wide models, national LUR models typ-
ically rely on routine monitoring data instead of purpose-designed
monitoring. As a rule of thumb, typically ~40–100 monitors are neces-
sary to build a robust LUR model at a city or regional scale (Basagaña
et al., 2012; Wang et al., 2012), whereas continental scale models
have typically used ~300–900 monitors (Novotny et al., 2011;
Sampson et al., 2013; Knibbs et al., 2014; Young et al., 2016).

In our study, we sought to test several aspects of national-scale spa-
tial LURmodel in China and build robustmodels for both PM2.5 and NO2

for nationwide predictions. Since LUR often incorporates hundreds of
variables, variable selection procedures are indispensable for conven-
tional LUR models. Recent studies have used variable reduction ap-
proaches such as PLS regression in national LUR-like models, which
could effectively choose predictors from dimension-reduced compo-
nents of all the variables without variable selection procedures and
avoid multicollinearity and overfitting (Sampson et al., 2013; Young
et al., 2016). However, no one has evaluated whether PLS models
could outperform conventional variable selection models. Inclusion of
satellite-based air pollution data in LUR has been shown to improve
model performance (Vienneau et al., 2013; Knibbs et al., 2014; Bechle
et al., 2015). Geostatistical methods such as universal kriging (UK)
have also been found to improve model performance when combined
with LUR in continental scale models (Sampson et al., 2013; Young
et al., 2016). However, these techniques have not been systematically
evaluated in a national empirical model for China.

China is experiencing severe and widespread air pollution, along
with rapid economic development and urbanization in recent years (Li
and Zhang, 2014). PM2.5 and NO2 are two of the major air pollutants
in China, which have great health impact on Chinese people. Public
health studies conducted on national or regional scales have been criti-
cally important for China in advancing environmental policies to im-
prove air quality (J. Liu et al., 2016; Zheng et al., 2017). However,
many cohort studies in China still use monitoring data at the district
level as the exposure metric due to lack of publicly-available high reso-
lution data sets of air pollution concentrations (W. Liu et al., 2016; Guo
et al., 2018). Owing to limitations of data access and lack of publicly-
available nationwide monitoring data prior to 2012, LUR models were
rarely reported in China. Most reported studies focused on city or re-
gional scale models that relied on limited number of GIS variables
(Chen et al., 2010; Meng et al., 2015; Wu et al., 2015; C. Liu et al.,
2016). In recent years, satellite-data-driven national models have been
emerging in China, which typically estimate the daily relations between
a pollutant (e.g., PM2.5, NO2) and satellite-derived aerosol optical depth
(AOD) (Ma et al., 2014, 2015; You et al., 2016; He and Huang, 2018) or
satellite-derived NO2 (Zhan et al., 2018). However, existing satellite-
based models typically have relatively coarse spatial resolution (10 to
50 km) which may miss intra-urban variations. Additionally, missing
data due to cloud cover and weather conditions may increase uncer-
tainty of these daily satellite-based predictions. Inaccurate spatial esti-
mation of air pollution may lead to measurement error caused by
spatial misalignment in environmental epidemiology (Gryparis et al.,
2008). Accurate annual models are important and necessary for esti-
mating long-term exposure of air pollution and to investigate chronic
health outcomes. Incorporating detailed point-based local indicators of
air pollution such as road information and land use variables in an
LUR framework could provide higher resolution predictions and better
model precision. However, no such models have been developed for
the entire country in China by now.

Here we developed high-quality national LUR models for China that
employed open-source GIS-derived land use and meteorological vari-
ables. Satellite data were incorporated to provide additional informa-
tion especially at locations where monitors are sparse. A point of
interest or POI is a feature on a map (or in a geodataset) that occupies
a particular point. The number of different types of POIswithin a certain
buffer length could be used as proxy of different emission sources. Since
air pollutants such as PM2.5 and NO2 are typically more concentrated
near their source regions and in the boundary layer, we calculated
boundary-layer-height-averaged wind speed (BLHA-WS) as a potential
predictor to account for diffusion and transport conditions of air
pollutants.

Contributions of this paper to the literature include (1) first use of
categorized POI data (e.g., gas stations, Chinese restaurants) and
BLHA-WS as potential predictors in a national LUR model; (2) robust
evaluation of satellite data and UK when these are incorporated in an
LUR model in China, accounting for performance near and far from
monitoring locations; (3) comparing model performance with forward
variable selection and partial-least-squared (PLS) variable reduction
methods; and (4) by focusing on long-term average concentrations,
providing high spatial resolution prediction maps of PM2.5 and NO2 (1
× 1 km2) in China, with evaluation of national, regional, and within-
urban variations. The publicly available predictions given here will be
useful in advancing environmental and health studies in China, includ-
ing in epidemiology and environmental health.

2. Materials and methods

2.1. Monitoring data

Daily mean ground-level PM2.5 and NO2 concentrations for two
years (January 1st, 2014 to December 31st, 2015) were obtained from
the China Environmental Monitoring Center (CEMC, http://113.108.

http://113.108.142.147:20035/emcpublish/
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142.147:20035/emcpublish/). Measurements and quality control follow
regulations of Chinese Ambient Air Quality Standards (GB 3095—2012)
and Ambient Air Quality Index (AQI) technology (HJ 633—2012). Sta-
tions missing N25% of daily mean measurements for each pollutant
were excluded; annual averages were calculated for each remaining
monitor. Finally, 902 and 893 monitors were used to build PM2.5 and
NO2 models in 2014, while the numbers increased to 1419 and 1418
in 2015 due to the massive construction of monitoring sites in China
since 2012.

2.2. Geographical predictors

We employed a combination of point, buffer, and proximity based
geographic variables resulting in 292 unique covariates. Details on
each covariate, including the various buffer lengths we employed, are
provided in Table S1 of the Supporting Information (SI).

Road network data were extracted from OpenStreetMap data sets
(available at http://download.geofabrik.de/asia/china.html), including
all roads, major roads, secondary roads and railways. We calculated
total length of roads (all, major, and secondary) and railways within
16 buffer lengths from 100 m to 10 km. We also calculated distance to
nearest major roads, secondary roads and railways.

The percentage of land cover types for eight categories was com-
puted within 11 sizes of moving windows (from 300 m to 30 km).
Land cover type data setswere derived from the Finer ResolutionObser-
vation and Monitoring of Global Land Cover data set (FROM-GLC) with
30 m resolution (Gong et al., 2013), resampled from sinusoidal projec-
tion to Albers projection system using nearest neighbor assignment.

Five types of POIs (i.e., gas stations, heat suppliers, polluting facto-
ries, bus stops and Chinese restaurants)were extracted using Amap Ap-
plication Programming Interface (API) (available at http://lbs.amap.
com/api/webservice/guide/api/search/) based on categories and key-
words (see Section S4 in the SI). Categorized POIs may indicate local
land uses that are not well captured by other variables and have been
used in city-scale LUR, but to our knowledge have not previously been
employed in a national LUR model. For example, Chinese restaurants
are restaurants with Chinese-style cooking, which are important source
of air pollution in China (Wu et al., 2017). To capture both local and re-
gional transport of air pollutants, we calculated POI counts using 22
buffer lengths from 100 m to 50 km.

Previous research suggests that remotely sensed fire count data
could improve PM2.5 prediction accuracy, andwill have good prediction
power when the buffer zone reach 50 km (Hu et al., 2014). To capture
fire emissions, we used number of fire spots within 10 buffer lengths
from 5 km to 100 km using Moderate-resolution Imaging
Spectroradiometer (MODIS) Global Monthly Fire Location Product
(MCD14ML, available at https://earthdata.nasa.gov/active-fire-data).

Other potential predictor variables included elevation (China 1 km
Digital Elevation Model data based on Shuttle Radar Topography Mis-
sion, available at http://www.resdc.cn), population density calculated
from Landscan 2015 population data set (Bright et al., 2016), Normal-
ized Difference Vegetation Index (NDVI) & Enhanced Vegetation Index
(EVI) (derived fromMODISMOD13A3monthly NDVI data set, available
at https://lpdaac.usgs.gov/data_access/data_pool), and coordinates (x
and y coordinate in China Albers Equal Area Conic coordinate system).

2.3. Meteorological data

Boundary layer height, temperature (at 2 m), dew point tempera-
ture (at 2m), surface pressure andwind speed (at 10m)were extracted
from the European Reanalysis (ERA) Interim reanalysis data monthly
means of daily means product (Dee et al., 2011). We derived precipita-
tion data from a 0.25° × 0.25° interpolated observational product based
on 2419monitoring stations in China (available at http://data.cma.cn/).
Relative humidity (RH) and BLHA-WS were also calculated (for details,
see Section S1 and S2 in the SI) (Apte et al., 2012). All meteorological
data were averaged to annual means and re-sampled to 1 km grid
cells using bilinear interpolation, which performs linear interpolation
first in one direction, and then again in the other direction.

2.4. Satellite-based air pollution data

To reduce the influence of possible deficiency of monitoring sites
and improve the modeling accuracy, we incorporated satellite-based
air pollution data. Satellite measurements of air pollution are derived
from observations; in general, they reflect ambient conditions and
therefore contributions from all emission sources. Satellite-based esti-
mates have been previously developed for ground-level PM2.5 (Zheng
et al., 2016; Xue et al., 2017) and NO2 (Novotny et al., 2011; Vienneau
et al., 2013; Young et al., 2016). We employed a publicly available 0.1°
resolution global annual Satellite-Derived PM2.5 product (http://fizz.
phys.dal.ca/~atmos/martin/?page_id=140), which combined AOD re-
trievals from the NASAMODIS, Multi-angle Imaging SpectroRadiometer
(MISR), and Sea-ViewingWide Field-of-View Sensor (SeaWIFS) instru-
ments with GEOS-Chem output to estimate ground-level PM2.5. There
are two versions of the 0.1° satellite PM2.5 data set, one as described
above and a product calibrated to ground-based measurements using
geographically-weighted regression (GWR) (Van Donkelaar et al.,
2016). We employed the non-GWR data set, to avoid including satellite
data calibrated to measurements from monitoring sites used for con-
structing our models. Previous studies suggest tropospheric NO2 col-
umn data are sufficient to track spatial patterns in ground-level NO2

(Knibbs et al., 2014; Bechle et al., 2015).We directly employedmonthly
mean Ozone Monitoring Instrument (OMI) tropospheric NO2 column
data with 0.125° resolution from the Derivation of OMI tropospheric
NO2 (DOMINO) product (version 1.0.2, collection 3; available at http://
www.temis.nl). A previous study has suggested that satellite NO2 data
could improve PM2.5model performance (Zheng et al., 2016), therefore,
we also included satellite NO2 data as a potential predictor in our PM2.5

model.We calculated annual averages for 2014 and 2015 and then con-
verted all of the satellite data into 1 × 1 km2 grid cells using bilinear
interpolation.

2.5. Statistical model building

We developed geostatistical models for mainland China for both
PM2.5 and NO2 for the years of 2014 and 2015. We used R X64 3.4.0
‘stat’ and ‘gstat’ packages (Pebesma andHeuvelink, 2016). To determine
the added value of UK and satellite data, we developedmodels with and
without UK, and with and without satellite data.

2.5.1. Forward variable selection
At the first stage, forward variable selection approach was used to

build a linear model. For each pollutant (PM2.5, NO2) and year, we ex-
plored four potential regression models: satellite PM2.5 included; satel-
lite NO2 included; both satellite PM2.5 and NO2 included; and, without
satellite data. We followed conventional supervised forward stepwise
regression, with 290 to 292 independent variables as inputs in our var-
iable selection procedures (Eeftens et al., 2012). Briefly, the indepen-
dent variable most correlated with the dependent variable was added
to the model. In subsequent steps, the remaining variable that gave
the largest improvement in adjusted R2 was added to the model if
(1) the variance inflation factor (VIF, a check for multi-collinearity) of
the variable was b5; (2) the p-value of the variable was b0.05; and
(3) the direction of existing variables in the model did not change, in
order to make sure that selected variables were significant without
multi-collinearity. This procedure was repeated until the increase in
adjusted-R2 for an additional variable was b0.5% or no variable met
the aforementioned criteria. We allowed multiple buffer lengths per
variable (e.g. major road length) to be selected into the model as long
as they follow our criteria (Henderson et al., 2007).

http://113.108.142.147:20035/emcpublish/
http://download.geofabrik.de/asia/china.html
http://lbs.amap.com/api/webservice/guide/api/search/
http://lbs.amap.com/api/webservice/guide/api/search/
https://earthdata.nasa.gov/active-fire-data
http://www.resdc.cn
https://lpdaac.usgs.gov/data_access/data_pool
http://data.cma.cn/
http://fizz.phys.dal.ca/~atmos/martin/?page_id=140
http://fizz.phys.dal.ca/~atmos/martin/?page_id=140
http://www.temis.nl
http://www.temis.nl


Table 1
Descriptive statistics of monitoring data.

Pollutant Year N Min 25th Mean Median 75th Max SD

PM2.5 (μg/m3) 2014 902 17.2 46.4 61.4 61.0 73.0 136.2 20.0
PM2.5 (μg/m3) 2015 1419 9.9 39.1 52.4 52.0 62.4 128.8 18.4
NO2 (μg/m3) 2014 893 6.5 28.8 37.8 37.7 46.6 78.2 12.8
NO2 (μg/m3) 2015 1418 5.8 22.4 31.8 31.4 40.1 75.9 12.4
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We also tried alternative metrics (e.g., F value, 10-fold R2, adjusted
R2, Akaike Information Criterion (AIC)), and alternative algorithms
such as backward selection, to see whether those attributes strongly in-
fluenced results from the model-building process.

Monte Carlo iterations were used to evaluate the over-fitting risk;
we simulated reduced data availability via Monte Carlo sampling (500
iterations per number-of-monitors) at lower number of monitors, and
then compared model fitted and cross-validated model performance.
Other regression diagnostic tests included checking the normality of re-
siduals, heteroscedasticity, and spatial autocorrelation of residuals using
Moran's I.

2.5.2. Universal kriging
At the second stage, we incorporated a spatial smoothing approach

(UK). Krigingwill account for spatial autocorrelation in themodel resid-
uals. We leveraged a first-order polynomial function in UK as the exter-
nal drift, whose independent variables were obtained from the forward
selection stage. Then the spatial dependencewasmodeled using the ex-
ponential variogrammodel (for details, see Section S5 in the SI).

2.5.3. Partial least squares (PLS)
Some previous empirical models for the US were built using partial

least squares (PLS) (Sampson et al., 2013; Young et al., 2016). PLS re-
duces the dimensions of themanypredictor variables and avoids having
to use a variable selection procedure. To evaluate the comparative per-
formance of variable-selectionmodels and PLSmodels,we also built PLS
models with and without satellite data, andwith andwithout UK, using
all potential predictors for 2015. Selection of PLS components were
based on 10-fold CV results, using the R command selectNcomp, which
checks whether the root-mean-squared-error (RMSE) of models with
fewer components are significantly larger than in themodelwith global
minimum RMSE. The most parsimonious model not significantly worse
than themodel with global minimumRMSE was selected (see Fig. S6 in
the SI). Details of our model building approaches are described else-
where (Young et al., 2016). Briefly, the satellite data were used directly
as a covariate in the PLS procedure and spatially varying PLS compo-
nents were used in building UK models.

2.6. Cross-validation and model assessment

Our coremodel evaluationmainly used two types of cross-validation
approaches: conventional 10-fold cross-validation (10-fold CV, as de-
fault CV method), and Leave-One-Province-Out cross-validation
(LOPO-CV). These approaches divided the data into model-building
and model-testing sub-sets. For conventional cross-validation, all mon-
itoring sites were randomly divided into 10 groups. Nine groups were
then used to train the model and the remaining one group to test the
model. This process was repeated 10 times, until all the groups were
tested, resulting in “out-of-sample” predictions at all monitoring sites.

Most monitors are in cities, and often are somewhat near to (in the
same city as) other monitors. To explore model performance at loca-
tions without a nearby monitor, we performed LOPO-CV on each
model, wherein we consecutively excluded monitors from one
province.

To further address the city-scale performance of our national
models, we additionally conducted Leave-One-City-Out cross-
validation (LOCO-CV), wherein we excluded all monitors from a city
during model-building, and then compared model results against
(held-out) monitoring data for that city.

Statistics from 10-fold CV and LOPO-CV/LOCO-CV used to assess
model performance includemean-square-error-based R2 (assessing de-
viation around the 1:1 line) (Szpiro et al., 2011) and RMSE. In addition,
in order to demonstrate model differences spatially, we calculated and
mapped differences between the national predictions of the different
models.
3. Results

3.1. Model results and comparison

For 2014 and 2015, respectively, the number of monitors that met
our inclusion criteria was 893(NO2)/902(PM2.5) and 1418(NO2)/1419
(PM2.5). Descriptive statistics for those input data are in Table 1. Sub-
stantial variability of both pollutants and the drop of annual mean con-
centrations from 2014 to 2015 can be observed in the table. The large
difference in the number of monitors between 2014 and 2015 is the re-
sult of a rapidmonitoring network expansion in China since 2012; there
were a total of 944 monitors in 2014 and 1494 in 2015. Most monitors
were located in the eastern part of China, where population density is
relatively high, while the number of monitors in the western part was
very sparse (see Fig. S1 in the SI). According to the detailed information
of monitoring sites, most of them were set near public institutions and
schools, and a few of them were set near industry or busy roads. Fig. 1
presents the R2 of the 2015models based on variable selection method.
Table 2 shows the summary of all the models built for 2015 (2014
model results are presented in Table S8 in the SI).

3.1.1. Variable-selection models without UK
Detailed descriptions of all the linearmodels based on variable selec-

tion are in Tables S6 and S7 in the SI. PM2.5 models explained 69%–76%
variation in 2014 and 62%–71% in 2015. Including satellite-derived
PM2.5 and NO2 together greatly improved 10-fold CV R2 for PM2.5

(e.g., 16% improvement in 2015) compared to non-satellite model.
The prediction ability of satellite-derived PM2.5 was slightly better
than satellite-derived NO2 when only using one set of satellite data.
The best linear model based on variable selection (PM2.5-4) suggests
that agricultural emission source (percentage of cropland), indirect traf-
fic/urbanization indicators (number of gas stations/bus stops, road
length) and meteorological conditions (BLHA-WS, RH) are important
predicting factors to PM2.5 models. In 2015, the number of gas stations
within 10 km and BLHA-WS increased 3.9% and 2.5% of explained vari-
ance respectively for our best linear model for PM2.5 (PM2.5-4), which
were most important variables except for satellite PM2.5.

Similarly, including NO2 satellite data substantially improved the
NO2 model CV R2, e.g., by 12 percentage points in 2015, whereas
satellite-derived PM2.5 was not selected into any NO2 model (hence, it
is not displayed for NO2 models in Fig. 1). Model CV R2's were lower
for NO2 than for PM2.5 (0.61 [NO2] vs. 0.76 [PM2.5] in 2014; 0.66 [NO2]
vs. 0.71 [PM2.5] in 2015). Key predictor variables for the NO2 models in-
cluded urbanicity (percentage of impervious surfaces, percentage of for-
est, number of heating suppliers), indirect traffic/urbanization
indicators (number of gas stations/bus stops) andmeteorological condi-
tions (BLHA-WS). In 2015, the number of heat suppliers within 7500m
and BLHA-WS increased 5.7% and 1.9% of explained variance respec-
tively for our best linear model for NO2 (NO2-2), which were also the
most important variables except for satellite NO2. Model buffer lengths
were generally smaller forNO2 than PM2.5, consistentwith PM2.5 being a
more regional pollutant than NO2.

Results from our test to evaluate the potential for over-fitting in our
year-2015 models is presented in Fig. 2 (year-2014 results are in Fig. S2
in the SI). The evaluation metric (model R2) converges at ~ 400–450
monitoring sites, suggesting that the number of monitoring sites in
our models were more than sufficient, with little risk of over-fitting.



Fig. 1.Model performance for year-2015 models. (Sat. = satellite) Other statistics (e.g., RMSE; results for year-2014) are in the SI.
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The difference between 10-fold CV R2 and LOPO-CV R2 is slightly larger
in PM2.5models than inNO2models (e.g. 0.71 vs. 0.67 for PM2.5 and 0.66
vs. 0.65 for NO2 in 2015), suggesting that NO2 predictors are slightly
more capable of capturing spatial variance at locations far away from
training samples, but differences are modest. We also classified model
R2 by rural, suburban and urban areas based upon population density
using our best performing linear models (PM2.5-4 and NO2-2) (see
Fig. S3 in the SI). The PM2.5 linear models yielded the best predictions
in urban areas (CV R2: 0.79 in 2014, 0.73 in 2015); NO2 linear models
Table 2
Summary of all the models built for 2015 (VS = variable selection, PLS = partial least
square, Sat.= satellite, UK=universal kriging, LOPO=LeaveOne Province Out, the shad-
ing rows are the final selected models).
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gave best predictions in rural areas (CV R2: 0.64 in 2014, 0.71 in
2015), but also performed well in urban areas.

3.1.2. Variable-selection models with UK
Fig. 1 also presents the results of model performance of variable-

selection models with addition of UK. Incorporating UK improved the
10-fold CV R2 for PM2.5 and NO2; increases were 0.17 to 0.27 for non-
satellite models, 0.12 to 0.18 for satellite models. The differences in
10-fold CV R2 between kriging models with and without satellite data
were small (ranging from 0.00 to 0.03), however, under LOPO-CV,
krigingmodels were improvedwith the addition of satellite data (R2 in-
creased 0.08 to 0.11). Under 10-fold CV, the best models (PM2.5-6 and
NO2-4) consistently included satellite data with UK.

3.1.3. Comparison with PLS models
Using 10-fold CV R2, model performance for PM2.5 and NO2was sim-

ilar for PLS models with satellite data and UK (R2: 0.89 [PM2.5], 0.76
[NO2] in 2015) as for conventional variable-selectionmodels with satel-
lite data and UK. However, using LOPO-CV, PLS models with satellite
data and UK had R2 values of 0.66 (PM2.5) and 0.60 (NO2) – slightly
worse than similar variable-selection models with satellite data and
UK (0.68 and 0.65 for PM2.5 and NO2, respectively). Our PLS models
used from 6 to 8 components. Because PLSmodels performed no better
than the conventional variable-selection models (see Table 1 and
Table S8 in the SI), and in the case of LOPO-CV were worse, we chose
the variable-selection model with satellite data and UK as our core
model.

3.2. Model predictions and assessments

Fig. 3 shows our annual predictionmaps for China based on our best
performing models (PM2.5-6 and NO2-4) in 2015 (for 2014, see Fig. S11
in the SI), consisting of 9.6 million 1 × 1 km2 grid cells. The most pol-
luted areas for PM2.5 were in the Beijing-Tianjin-Hebei urban agglomer-
ation: predicted annual-average concentrationswere above 85 μg/m3 in
2014 and above 75 μg/m3 in 2015. In eastern and northern China, PM2.5

concentrationswere similar (above 60 μg/m3 in 2014 inmost areas). Re-
gions in central and western China including Hunan and Hubei prov-
inces and the Sichuan basin also exhibited comparatively higher
concentrations of PM2.5. Also, PM2.5 concentrations were high in the
southern part of Xinjiang autonomous region where transported dust
from deserts might be a major source. For NO2, the most polluted
areas were urban areas, especially the Beijing-Tianjin-Hebei urban ag-
glomeration, Shandong province, the Yangtze River Delta and the
Pearl River Delta. These regions are more economically developed and
densely populated and have more industrial sources.



Fig. 2.Median and interquartile range R2 forMonte Carlo random sampling for n trainingmonitors employed inmodel building (left: 2015 PM2.5 LURmodelwith satellite data; right: 2015
NO2 LURmodelwith satellite data). Fitting uses Nmonitors to fit themodel; holdout uses Nmonitors to build themodel and the rest ofmonitors to test themodel; 10-fold usedNmonitors
to build and test model using 10-fold CV; LOPO used N monitors to build and test model using LOPO-CV. (N = 28, 70, 140, 210, 280, 355, 425, 500, 570, 640, 710, 850, 990, 1135, 1280).
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Maps for predictions from the various approaches (see Fig. S8 in the
SI) suggest consistent patterns in spatial variation of the pollutants.
However, the inclusion of satellite data had a more regional impact,
and typically provided information in areas with few monitors (e.g.
Xinjiang, Tibet and Northeastern China). Krigingmainly created adjust-
ments in urban areas, where monitor density was greater.

Fig. 3 also shows year-2015 spatial predictions from the four models
(with and without satellite data; with and without UK) along transects
across two major cities in Northern and Southern China (Beijing and
Guangzhou). For PM2.5 models, although the addition of satellite data
and kriging resulted in better model performance, the spatial concen-
tration gradients became smoother with some potential loss of spatial
variations. For predicted concentrations, differences between satellite
and non-satellite models were comparatively smaller for NO2 than for
PM2.5. Within-urban variation was greater for NO2 predictions than
PM2.5 predictions. The patterns described here are for 2015; patterns
for 2014 were similar (see Fig. S11 in the SI).

We used predictions derived from CV of our best national models
(PM2.5-6 andNO2-4) to calculate citywide R2 and RMSE for 10major cit-
ies. We selected the 10 cities with the largest number of monitors. 10-
Fold CV and LOCO-CV were used for model evaluation. As shown in
Table 3, in 2015, 10-fold CV R2 values of PM2.5 model ranged from
0.02 to 0.79, with RMSE ranging from 3.9 to 6.8. Although city-scale R2

of PM2.5 model were relatively poor (most cities are below 0.10), the
RMSE values in these cities were excellent (most below 5.0); that result
suggests that the PM2.5 model was accurately predicting (average) con-
centrations in each city, but that within-city spatial variability was ei-
ther too low or not well captured by the model. In contrast, the NO2

model in most cities performed reasonably well (eight cities had a 10-
fold CV R2 N 0.50). Table 3 also shows that the standard deviation values
for PM2.5 were much lower than the values for NO2, further indicating
that there is much more within-city variability in the NO2 concentra-
tions than the PM2.5 concentrations. LOCO-CV reflected model perfor-
mance when models were built excluding the monitors in the specific
city; for cities with monitors, performance for our final models (PM2.5-
6 and NO2-4) will generally be better than LOCO-CV results. Under
LOCO-CV, the RMSE values were higher in Northern cities such as Bei-
jing, Tianjin and Shenyang, where concentrations of air pollutants
were also relatively high.

Fig. 4 shows cumulative exposure nationally for PM2.5 and NO2,
based on best performing models (PM2.5-6 and NO2-4). For PM2.5,
N90% of people in year-2014 lived in locations that exceeded China's na-
tional standard, 35 μg/m3 (same as WHO IT1); this number reduced to
83% in 2015. Average concentrations were above 75 μg/m3 PM2.5 for
N20% of people, and above 40 μg/m3 NO2 for N20% of people.
4. Discussion

Our research developed and rigorously tested national prediction
models for PM2.5 and NO2 in China using large open-source data sets
and state-of-the-art modeling. Factors influencing air quality may vary
by year; we built separate models for each year (2014; 2015) and pol-
lutant. Our final models (PM2.5-6 and NO2-4) incorporated satellite
data and UK and exhibited good predictive power (10-fold CV R2: 0.89
[PM2.5], 0.73 to 0.78 [NO2]).

4.1. Model performance

We compared model performance of our variable-selection models
with PLS models. Although PLS obviates the need for variable selection
and deals with multi-collinearity, it is computationally intensive for
making national predictions since all of the geographic variables need
to be used for extracting the individual PLS components. In addition,
not all potential variables are correlated with the dependent variables
(PM2.5 andNO2); since PLS uses all of the variables, this aspect raises po-
tential concern of overfitting. Further, it is not straightforward to dem-
onstrate the contribution of each geographic variable to overall model
predictions. We found that PLS (alone or combined with UK) performs
similarly to, or in some cases not as well as, multivariate linear regres-
sion with variable selection (alone or combined with UK).

Performance of our final PM2.5 models (PM2.5-6) were comparable
to those reported from previous studies in the US (10-fold CV R2 0.89
vs. 0.88), (Sampson et al., 2013) while performance of the NO2 models
was slightly worse than that reported from the US (10-fold CV R2 0.78
vs. 0.85) (Young et al., 2016); potential explanations include that in
China relative to the US monitoring sites might be located more un-
evenly, or explanatory variableswe employed are less relevant to pollu-
tion, or pollution may be generally less correlated with land use.

Some previous studies used geographically weighted regression
(GWR) instead of LUR to account for spatially varying coefficients of
impacting factors in national models (Ma et al., 2014; You et al.,
2016), but they did not intensively evaluate model performance in
sparsely monitored areas. We also tested GWR for PM2.5 based on our
LUR variables. However, the final CV results based on GWR (10-fold
CV R2 = 0.80 and 0.81 for 2014 and 2015, respectively) were no better
than our method based on LUR with UK (10-fold CV R2 = 0.89 for both
2014 and 2015). Under LOPO CV, the R2 of GWRmodels were extremely
low (R2 = 0.61 and 0.01 for 2014 and 2015, respectively) due to sub-
stantial bias at regions where monitors are sparse (e.g. Xinjiang,
Tibet), indicating potential difficulty in using GWR in regions with
sparsely monitored areas.



Fig. 3. National (top) and city-level (middle) predictions derived from our best models (PM2.5-6 and NO2-4) in 2015 and profile plots (bottom) of concentrations in two major cities in
China based on four different models (left:PM2.5 right:NO2). Profile plots are derived from 1 × 1 km2 estimates along the transect shown for each city. Monitor locations are indicated
with triangle symbols in city-level maps along with corresponding monitor concentration.
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Most existing large scale empirical models in China are daily models
based on constructing relations between satellite data and ground ob-
servations (details regarding existing models are in Table S10 in the
SI). Reported overall R2's of thesemodels are 0.62 to 0.80. Very fewpub-
lications reported annual R2. Zhan et al. usedmachine learning tomodel
daily PM2.5 in 2014 at 50 km grid cells in China, yielding an annual R2 of
0.84 based on 10-fold CV (Zhan et al., 2017). Xue et al. estimated daily
PM2.5 in 2014 with 0.1° spatial resolution combined satellite data and
CMAQ model output, yielding an annual R2 of 0.87 based on site-
based CV (Xue et al., 2017). Zhan et al. predicted 0.1° spatial resolution
daily NO2 from 2013 to 2016 using random forest and spatiotemporal
kriging, yielding an annual R2 of 0.68 (Zhan et al., 2018). Our parsimoni-
ousmodelswith relatively low computational cost had comparable per-
formance without requiring complex algorithms. Furthermore, our
method provided very fine scale predictions at 1 km resolution while
explicitly assessing the relationships between the pollutants and land
use variables. Prior research has applied the LUR approach for smaller
regions in China; for example, Yang et al. developed a regional LUR for
the Pearl River Delta region (Yang et al., 2017).

4.2. Contribution of satellite data and UK

While satellite NO2 could be used as a proxy of anthropogenic NOx

emissions which are highly related to energy consumption (Zhang
et al., 2012), we also incorporated satellite NO2 as a potential predictor
in PM2.5 models. When including all potential predictors, both satellite
PM2.5 and satellite NO2 were consistently selected into PM2.5 models,
while only satellite NO2 was consistently selected into NO2models. Sat-
ellite data substantially improved LOPO-CV performance of the models,
suggesting that satellite data provides additional spatial information on
air pollutant concentrations that land use and meteorological variables
could not provide. It is worth noting that satellite NO2 could



Table 3
City-scale performance of final national models for 2015. (LOCO = Leave One City Out, Obs. = Observations, SD = Standard Deviation).

City N 10-Fold R2 10-Fold RMSE (μg/m3) LOCO R2 LOCO RMSE (μg/m3) LOCO mean (μg/m3) Obs. mean (μg/m3) LOCO SD (μg/m3) Obs. SD (μg/m3)

(1) PM2.5 model
Chongqing 17 0.06 6.8 0.24 7.1 58.9 54.7 3.0 6.7
Beijing 12 0.79 4.1 0.78 10.0 71.3 80.3 9.3 7.4
Tianjin 11 0.18 6.0 0.21 15.0 84.8 72.4 5.2 5.2
Hangzhou 11 0.76 5.4 0.78 5.9 57.6 54.3 5.8 9.5
Shenyang 11 0.55 4.3 0.44 8.6 63.7 70.7 3.0 6.6
Guangzhou 10 0.04 3.9 0.10 4.0 38.9 38.4 4.0 3.0
Wuhan 10 0.09 4.4 0.21 6.6 74.1 69.1 4.6 4.2
Changchun 10 0.34 4.2 0.54 4.9 61.1 64.2 2.4 5.5
Changsha 10 0.04 4.7 0.17 5.0 57.4 60.4 2.1 4.6
Shanghai 9 0.02 4.8 0.30 8.6 60.4 54.4 3.6 3.8

(2) NO2 model
Chongqing 17 0.65 6.4 0.76 7.8 37.9 43.1 6.6 10.8
Beijing 12 0.77 6.0 0.83 8.6 54.3 48.3 14.6 11.1
Tianjin 11 0.19 4.9 0.07 14.3 55.3 42.8 7.7 2.3
Hangzhou 11 0.78 6.3 0.83 6.8 42.1 45.3 9.5 13.7
Shenyang 11 0.66 5.9 0.75 5.2 47.3 46.0 10.7 9.7
Guangzhou 10 0.79 5.2 0.83 5.5 40.5 43.7 10.2 11.3
Wuhan 10 0.77 5.4 0.85 7.5 42.3 48.1 8.1 11.4
Changchun 10 0.71 6.7 0.79 7.5 39.0 42.6 7.8 12.9
Changsha 10 0.57 3.9 0.71 4.0 38.8 36.3 4.5 6.0
Shanghai 9 0.43 4.5 0.41 7.9 51.4 45.8 7.8 4.3
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compliment satellite PM2.5 data in PM2.5 models, serving as a proxy for
polluted urban plumes, however, satellite PM2.5 has low correlation
with NO2 concentration; satellite PM2.5 was never selected into our
NO2 models. According to model R2, satellite data contribute more to
improving models for PM2.5 than for NO2, a finding consistent with re-
sults reported previously for Europe (Vienneau et al., 2013). Previous
national models in the US show an increase in R2 of 0.22 for a PM2.5

model (Beckerman et al., 2013) and an increase in R2 of 0.12 for an
NO2 model (Young et al., 2016) by incorporating satellite data.

As shown in Tables 2 and S8, UK made substantial improvement in
10-fold CV performance, with little distinction in performance between
UK models with and without satellite data. Under extreme conditions
like LOPO-CV, performance of all models was reduced owing to predic-
tion errors in large unmonitored areas, however, UKmodels with satel-
lite data performed better in LOPO-CV than UKmodels without satellite
data. This suggests that models with UK may mask the importance of
satellite data (or possibly other regional predictors) when evaluated
with 10-fold CV, and highlights the importance of alternative CV evalu-
ation such as LOPO-CV. These findings are consistent with a previous
study in the US (Young et al., 2016) though the improvement from UK
(0.12–0.18 increase in 10-fold CV R2 for satellite models) was greater
than for the US (0.04 increase in 10-fold CV R2).

The overall performance of the PM2.5 models was consistently better
than the NO2 models, perhaps because our predictors were better at
explaining regional concentrations of a more regional pollutant such
Fig. 4. Cumulative exposure for PM2.5 and NO2 based on the best performing models (PM2.5-6
World Health Organization are shown.
as PM2.5 rather than a pollutantwithmore local sources, such asNO2. Al-
though all of our models yielded reasonable R2 and RMSE, there was
systematic underestimation for both PM2.5 and NO2, especially when
measured concentrations were high (see scatter plots in Figs. S3 and
S4 in the SI). Possible reasons for this could be some inadequacy of
our predictors in national scale modeling and possible non-linear rela-
tionships between the dependent variables and the predictors. This
finding is unsurprising; most models are better at detecting central ten-
dencies than at accurately predicting extremes.

4.3. Variable selection

Because variables selected into our final models tended to be rela-
tively stable across the different approaches (described in
Section 2.5.1), we chose a relatively simpler and more conventional ap-
proach to select variables (forward variable selection based on
adjusted-R2).

Some previous LUR studies used emission data as an important pre-
dictor (Sampson et al., 2013; Knibbs et al., 2014). However, inclusion of
emission data as potential predictormay not improve themodel perfor-
mance due to their uncertainties and possible crude spatial scale (Yang
et al., 2017). Satellite data and other GIS data could also be used as proxy
of emissions (Novotny et al., 2011; Yang et al., 2017). Since we lacked
emission data and detailed information on pollution sources, we
employed some alternative variables from open-source data sets. We
and NO2-4). For context, air quality guidelines (AQG) and interim targets (IT1-3) from the
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used number of fire spots to reflect pollution frombiomass burning, and
number of different types of POIs to reflect industrial source pollution,
heating suppliers, urban transportation and cooking fumes. POI data
was an important predictor in our final models (e.g., gas stations, bus
stops, heating suppliers), suggesting that POI data from online mapping
services (e.g., Amap, Google Maps) may provide information on local
and regional sources that are not well captured from other nationally
available data. We also incorporated percentages of eight categories of
land cover types to represent different land uses (see Table S1 in the
SI for details).

Prior studies have reported that meteorological factors like wind
speed (Liu et al., 2009), wind direction (Arain et al., 2007), precipitation
(Knibbs et al., 2014) and boundary layer height (Lee et al., 2016) are
useful for predicting PM2.5 and NO2 concentrations. Here, we incorpo-
rated BLHA-WS to represent diffusion conditions of air pollutants and
found it contributed in both PM2.5 and NO2 models. In our non-
satellite LURmodels, percentage of cropland and number of gas stations
consistently entered in PM2.5 models, while number of gas stations and
percentage of impervious land entered in NO2 models. Crop land could
be a non-negligible source of PM2.5 when generated from ammonia,
acid gases and straw burning and (for primary PM2.5) dust (Xu et al.,
2016; Zhang et al., 2016). Variables with larger buffer lengths were
more likely to be selected into PM2.5models, while buffer lengths of var-
iables selected into NO2 models were comparatively smaller. This may
be because PM2.5 is a more regional pollutant affected by long-range
transport: variables with large buffer sizes could reflect more regional
transport, while NO2 concentrations are more likely to be affected by
local pollution sources.

4.4. Cross validation

Distance between a test-set monitor and its nearest training-set
neighbor for LOPO-CV ranged from28 km to1454 kmwith amean (me-
dian) value in 2015 of 184 km (148.7 km); for 10-fold CV the samevalue
(distance between test monitor and nearest training-set neighbor)
ranged from 0.3 km to 350 km with a mean (median) of 8.9 km
(3.8 km) (see also Table S4 in the SI). Fig. S13 indicates thatmost people
live in areas b50 km from the nearestmonitor. That result indicates that
LOPO-CV is amore extreme (more stringent) test ofmodel performance
than would be applicable to most people in mainland China. Average
model performance across the population should fall between 10-fold
CV performance and LOPO-CV performance. Our findings indicate that
10-fold CV may overestimate model performance at locations far from
monitors, whereas LOPO-CV likely underestimates model performance
for most people. Tables 2 and S9 show that 10-fold CV performance
was consistently better than LOPO-CV performance. This finding also
suggests that performance of both kriging and non-krigingmodels is re-
duced in unmonitored regions. Previous studies have also implemented
some approaches that non-randomly select cross-validation groups,
such as spatially clustered cross-validation (Young et al., 2016) and
isolated-site cross-validation (Xue et al., 2017), which tend to select
the test-set to be far away from the training-set. Based on the character-
istic of themonitoring sites distribution in China, we chose to use prov-
inces or cities as fixed groups to conduct cross-validation, which is
convenient for quantitatively analyzing differences in model perfor-
mance of the CV methods and in evaluating model performance at the
province or city scale (Bengio and Grandvalet, 2004).

4.5. Within-urban variability

We were able to assess within-urban variability in concentrations
using our national predictions. Compared to PM2.5 models, NO2 predic-
tions typically show more within-urban variation. Models without UK
show more within-urban spatial variation for PM2.5 than models with
UK, however, this may be an artifact of local land use data serving as a
proxy for explaining regional concentration variations. A similar
phenomenon has been shown for PM2.5 models with andwithout satel-
lite data (Beckerman et al., 2013). For PM2.5 models, land-use variables
tended to under-predict in high concentration areas like Beijing, and
over-predict in relatively low concentration areas like Guangzhou. Sat-
ellite data made less of a contribution to our NO2 models than to our
PM2.5 models. At a city scale, PM2.5 models had a relatively low R2 but
a reasonable RMSE in most cities, which might be due to undetectable
within-urban variability, or a lack of within-urban variability altogether.
NO2 models had better R2 than PM2.5 in most cities. Our city scale per-
formance is comparable to some city scale models for Beijing (R2 0.78
vs. 0.58 for PM2.5) (Wu et al., 2015) and Shanghai (R2 0.70 vs. 0.61 for
NO2) (C. Liu et al., 2016), but worse in some other locations (0.25 vs.
0.73 for PM2.5 in Tianjin) (Chen et al., 2017). Regional or city-scale
models may better capture within-urban variability than national
models such as ours, especially for PM2.5 for which pollution sources
can be complex and vary by regions in China.

Since spatial resolutions of existing national-scale empirical models
in Chinawere 3 km or larger, we also quantitatively computedmodeled
value variancewithin each 3 × 3 km2 and 10 × 10 km2movingwindow
based on 1 × 1 km2 resolution predictions derived from our best
performing models (PM2.5-6 and NO2-4, see Fig. S12 in the SI). NO2

models consistently have much higher ratio than PM2.5 models; that
finding indicates that finer resolution predictions based on our models
help to reveal with-urban variability for NO2 but less so for PM2.5.

4.6. Limitations

A critical aspect of our approach is that it relies on regulatory moni-
tors; suchmonitors often are located near specific land uses (e.g. public
institutions, parks, schools), but may not capture the full range of land
uses. Very few monitors were set as traffic sites. The average distance
to road of each monitor is larger than 500 m (see Tables S2 and S3 in
the SI), this may have led to lack of spatial gradients related to major
roads in our predictions.

Moreover, our approach used a single model with fixed variable pa-
rameters to predict PM2.5 and NO2 for the whole country, however, the
relationship between land uses and concentrations may vary by region.
Incorporation of satellite data and universal kriging help to partially
remedy this shortcoming.

Another potential limitation is lack of detailed traffic and industrial
related inputs in our study. All of our variables were extracted from
open-source data sets. The eight categories of land cover types we
employedwere extracted from land cover product from satellite remote
sensing, which may not fully represent emission sources such as indus-
try, ports, and airports. Our road data were extracted from an open-
source website, which was not officially provided by a government
agency and provides no information on traffic volume. Small-scale traf-
fic variables (buffer lengths b1000 m) were hardly selected into our
models, which may be also owing to the quality of our road data.

Finally, we did not incorporate kriging in variable selection in order
to lighten the computational load, which may have resulted in
underestimating the benefit of kriging.

5. Conclusion

We built national LUR models for ambient annual average NO2 and
PM2.5 concentrations in China and generated publicly available 1
× 1 km2 spatial resolution national prediction maps which could be
used for national-scale long-term exposure analyses. Our models lever-
aged information from ~900–1400 regulatory monitors, satellite-based
measurements of NO2 and PM2.5, and 290 land use and meteorological
variables. We find that Satellite data and UK could complement in mak-
ing predictions more accurate. We also find that parsimonious variable
selection approach provides similar or better model performance than
more computationally-intensive PLS variable reduction, an important
finding for fine spatial resolution national predictions. New variables
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for national LUR models such as categorized POI data and BLHA-WS
contribute to capturing spatial variations of PM2.5 and NO2 concentra-
tions in China. Our models are capable of providing point predictions,
such as at individual residential locations, which could be useful for
other population-based environmental health studies in China, includ-
ing in epidemiology, risk assessment, and environmental justice re-
search. The general approach could usefully be applied to future years
of data. Methodological findings here can inform future LUR research.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.scitotenv.2018.11.125.
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