
Articles
https://doi.org/10.1038/s41893-019-0261-y

1Department of Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, MN, USA. 2Department of Economics, University of  
New Mexico, Albuquerque, NM, USA. 3Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA. 4Department of 
Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN, USA. 5Bren School of Environmental Science and Management, University of 
California, Santa Barbara, CA, USA. 6Department of Applied Economics, University of Minnesota, Saint Paul, MN, USA. 7Oxford Martin Programme on the 
Future of Food, University of Oxford, Oxford, UK. 8Nuffield Department of Population Health, University of Oxford, Oxford, UK. *e-mail: hill0408@umn.edu

Agriculture provides the world with food but also damages 
the environment in ways that harm human health. It is a 
major contributor to climate change1, water pollution2 and 

degraded air quality3,4, with the potential for even greater impact as 
demand for food increases from a growing and more affluent global 
population5. Understanding the current environmental effects of 
agriculture, and linking them to dietary choices, is a critical chal-
lenge for the coming century6. We explore the human health effects 
of air pollution caused by the production of maize—a key agricul-
tural crop in the United States that is used for animal feed, ethanol 
biofuel and human consumption. Our focus is on the contribution 
of maize production to increased atmospheric concentrations of 
PM2.5—a major cause of premature mortality in the United States 
and globally7–9. We also estimate the climate change damages of US 
maize production from greenhouse gas (GHG) emissions.

We consider air emissions of pollutants from farms and the 
supply chains that produce the chemical and energy inputs used in 
agricultural crop production. We compile geographically explicit 
county- and subcounty-specific data on maize production, inputs 
and yields (Fig. 1 and Supplementary Dataset 1), and on maize-
related emissions of pollutants that contribute to atmospheric 
PM2.5. These emissions include primary PM2.5, which is released 
from fuel combustion and dust, and secondary PM2.5 precursors 
that form PM2.5 in the atmosphere, including ammonia (NH3), 
sulfur oxides (SOx), nitrogen oxides (NOx) and volatile organic 
compounds (VOCs). We produce a spatially explicit emissions 
inventory10,11 of primary PM2.5 and secondary PM2.5 precursors 
(Fig. 2), from which we estimate maize-related increases in the 
atmospheric concentration of PM2.5, spatial transport of this 

PM2.5 with air movement patterns, exposure of populations to 
this PM2.5, and resulting health and economic effects12. We also 
perform a simultaneous accounting of maize-related emissions of 
GHGs, which include carbon dioxide (CO2), nitrous oxide (N2O), 
methane (CH4) and black carbon.

We find that maize production in the United States causes an 
estimated 4,300 cases annually of premature mortality due to PM2.5 
(Fig. 3 and Table 1). Geographically in the United States, increased 
concentrations of PM2.5 (Fig. 3a), mortality (Fig. 3b) and county 
contribution to mortality (Fig. 3c) are located in the ‘Corn Belt’13, 
where most US maize production occurs (Fig. 1a). The top 5 maize-
producing states (Iowa, Illinois, Nebraska, Minnesota and Indiana) 
are responsible for 61% of US maize production and 54% of 
instances of maize-dependent premature mortality (2,313 deaths). 
Maize grown in Illinois, the second-largest producing state (15% 
of US production), results in the most deaths annually of all states  
(795 deaths, or 18% of the total).

PM2.5-related human health damages per tonne of maize pro-
duced vary widely by location (Figs. 3d and 4). High per-tonne 
damages come from maize produced in the Eastern Corn Belt (for 
example, Indiana, Michigan and Ohio), near major Central Corn 
Belt metropolitan areas (for example, Chicago, Milwaukee and 
Minneapolis/Saint Paul) and to the east and south of the Corn 
Belt (for example, Pennsylvania, North Carolina and Texas). These 
higher-than-average impacts result from: (1) closer proximity of 
farms to the high population densities of urban centres; (2) lower 
yields than in the highest maize-producing regions (Fig. 1b); and  
(3) higher use of animal manures as fertilizer, which can result 
in higher NH3 emissions than synthetic fertilizers. Conversely, 
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production in rural areas of the Central and Western Corn Belt 
tends to have the lowest damages per tonne.

The dominant contributor to maize production-related PM2.5 
concentrations is emissions of NH3 from synthetic nitrogen fer-
tilizer and manure application (Fig. 5), which account for 71% of 
attributable deaths. Minor contributors to increased PM2.5 concen-
trations include NOx and primary PM2.5 from fuel combustion by 
farm equipment, and primary PM2.5 dust from cultivation. On aver-
age, 86% of the human health damages from maize production are 
from on-farm activities; the rest are from upstream supply chain 
processes, primarily the production and transport of fertilizer.

At a value of statistical life (VSL) of US$9.1 million (2017$) 
(range: US$3.3–14.8 million), which measures willingness to pay to 
reduce the risk of death14, total annual PM2.5-related damages from 
maize production in the United States are US$39 billion (range: 
US$14–64 billion). Production-weighted PM2.5-related damages, 
which vary widely depending on production location (Fig. 6), aver-
age US$121 t−1 of harvested maize grain, or 62% of the US national 
average market price of maize for the past decade15 of US$195 t−1.

The economic damages of PM2.5 from maize production exceed 
those from its GHG emissions. At a social cost of carbon (SCC) of 
US$43 (2017$) per tonne of CO2e GHGs (range: US$13–67)16, the 
total annual GHG-related damages of the 112 million tonnes of 
CO2e GHGs resulting from US maize production are US$4.9 bil-
lion (range: US$1.5–7.5 billion). Average GHG damages are 
US$15 t−1 of maize (Fig. 6), dominated by emissions of CO2 and 
N2O. Consistent with previous work11, the highest per-tonne 
damages occur on the periphery of and beyond the Corn Belt 
(Fig. 7). Total annual average PM2.5 + GHG-related damages 
are US$136 t−1 (Fig. 6), or 70% of the national decadal average 
maize market price15. In many regions of the United States, the 
PM2.5 + GHG-related damage costs of producing maize exceed its 

market value, including in 40% of maize-growing counties and 
39% of maize-growing states.

Maize is a dominant crop on the US agricultural landscape 
and a major contributor to premature mortality from reduced air 
quality—largely from NH3 emissions caused by nitrogen fertiliza-
tion. Maize receives nearly half of the nitrogen fertilizer applied in 
the United States17, and is a major source of NH3 emissions in the 
United States, responsible for ~21% of emissions from agriculture 
and ~18% of emissions from all sources18. Our work suggests the 
importance of targeted emissions reductions, especially of NH3, 
in areas of high impact or low production efficiency for reducing 
the human health impacts of maize production. NH3 reductions 
of 16–88% can be achieved by the use of precision agriculture, 
as well as optimum fertilizer types and application methods19.  
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Fig. 1 | County-level uS maize production. a, Production. b, Yield. Averages 
from 2010–2014 are shown15.
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Fig. 2 | emissions per square kilometre of primary PM2.5 and secondary 
PM2.5 precursors from uS maize production. Emissions are shown for 
primary PM2.5 and the secondary PM2.5 precursors NH3, NOx, SOx and 
VOCs. Emission sources include on-farm and supporting supply chain 
activities. Isolated dark spots represent major sources of supply chain 
emissions other than farm fields, including fertilizer production facilities 
and power plants.
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Such practices may also increase nitrogen use efficiency, thereby 
providing an economic benefit to farmers20. Targeted placement 
of maize production could include providing incentives for 
farmers in high-damage-causing regions to switch to less fertil-
izer-intensive crops. Incentives focused on rewarding good prac-
tices in the right locations could offer large benefits per tonne of 
maize produced.

The maize production damage costs considered here are only 
part of the air pollution damages and the full environmental and 
health costs of maize. Maize-dependent air quality reductions 
contribute to morbidity-related medical costs and reduced qual-
ity of life. Similarly, the NOx and VOCs emitted from maize pro-
duction contribute to ground-level ozone formation that impacts 
environmental and health costs. Our focus here has been on the 
production of maize, but nearly all maize is transformed before 
its final use by consumers. Nearly 90% of maize grown in the 
United States is used for animal feed or ethanol biofuel21, both of 
which lead to further emissions of primary PM2.5 and secondary 
PM2.5 precursors, as well as GHGs18,22. Notably, 55% of US emis-
sions of NH3 are from animal production. Approximately 10% 
of maize grown in the United States is consumed as sweeteners, 
starch, cereals or beverages, which require further processing, 
transport, storage and preparation, all of which directly or indi-
rectly release air pollution. For these reasons, our estimates more 
reflect maize as a commodity than maize as a food.

Growing recognition of the environmental damage caused by 
agriculture, coupled with an increased desire by consumers to eat 
healthier and less impactful diets, has spurred interest in link-
ing the nutritional and environmental effects of foods. Recent 
work has revealed the environmental benefits of healthier dietary 
choices, yet the dominant environmental focus has been on cli-
mate change and ecosystem effects rather than on how crop-
dependent environmental degradation affects human health23–26. 
This is despite reduced air quality being known to be the single 
largest environmental health risk factor globally27. Although agri-
culture is known to impact air quality28–30, our work shows that 
maize-dependent reductions in air quality are a surprisingly large 
source of harm to human health. The approach we have taken 
here can be extended to other food crops, animal agriculture 
and other countries, to better understand the full suite of health  
consequences of dietary choices.
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Fig. 3 | PM2.5 impacts of uS maize production. a, Atmospheric total PM2.5 (primary PM2.5 + secondary PM2.5) concentrations attributable to US maize 
production. b, Annual mortality per squared kilometre from total PM2.5 attributable to US maize production (that is, where people die as a result of US 
maize production). c, County-level annual mortality from total PM2.5 attributable to US maize production (that is, how many people, somewhere in the 
United States, die annually from all maize production in a given county). d, County-level mortality per million tonnes of maize produced in a given county 
(that is, how many people, somewhere in the United States, die annually as a result of the production of one million tonnes of maize in a given county).

Table 1 | Maize production, total mortality and mortality  
per million tonnes by state

State 106 t maize Deaths Deaths  
per 106 t maize

Iowa 55.4 539 9.7

Illinois 49.0 795 16.2

Nebraska 38.1 269 7.1

Minnesota 32.1 245 7.6

Indiana 22.7 465 20.5

South Dakota 17.0 172 10.1

Ohio 13.8 288 20.9

Kansas 12.7 126 9.9

Wisconsin 11.9 168 14.1

Missouri 10.2 145 14.1

Michigan 8.5 145 17.1

North Dakota 8.2 55 6.7

All others 42.8 897 21.0

Total 322.3 4,309 13.4

Annual average production from USDA for the years 2010–201417. Deaths are the estimated total 
deaths (that is, occurring anywhere in the United States) attributable to maize production in the 
specific state.
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Methods
Emissions inventory. Geographically explicit emissions inventories of 
pollutants contributing to increased atmospheric concentrations of PM2.5 
(primary PM2.5, SOx, NOx, VOCs and NH3) and GHGs (CO2, N2O, CH4 and 
black carbon) were compiled using a modified version of the GREET.net 2015 
(Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) 
life-cycle assessment model from Argonne National Laboratory31. This version 
(GREET-Chemical, Spatial, and Temporal (GREET-cst)) incorporates spatial 
data on emissions sources10,18,32–34, tracks NH3 emissions by linking each unit 
process in GREET to a process-specific emissions profile from the National 
Emissions Inventory (NEI)18 developed by the US Environmental Protection 
Agency, and estimates fugitive dust release from agricultural activities34–36. For 
the analysis presented here, GREET-cst was run once for each of the top 2,000 
maize-producing counties, which together account for 99.9% of US maize 
production15. In each run, GREET-cst was populated with county-specific 
agricultural data for 2010–2014 (Supplementary Dataset 1), as described in the 
following section.

The output of each GREET-cst run was a spatially explicit national 
inventory of emissions of each pollutant attributable to maize production 
in a given county, including on-farm emissions and emissions of upstream 

supply chain processes including fuel, electricity, and agrichemical production, 
transportation and distribution. Emissions attributable to maize production in 
a given county need not occur within that county (for example, emissions from 
fertilizer production facilities, which are often sited far from where the maize is 
grown). For each PM2.5-related pollutant (primary PM2.5, SOx, NOx, VOCs and 
NH3), the output of all 2,000 GREET-cst runs was aggregated to produce an 
emissions inventory for US maize production and its supporting supply chains 
(Fig. 2). These inventories were used as inputs into the air quality modelling 
and impact assessment, as described in the final section of the Methods. We 
note that the method used here—parameterizing GREET-cst with county-
specific maize production data—improves on previous related work in which 
a single run of GREET-cst, which used US national average maize production 
parameters, was used to estimate maize production air quality damages in the 
study of maize ethanol and other transportation fuels33.

County-level agricultural data. County-level agricultural data for 2010–2014 were 
compiled from publicly available sources. Maize yield (t ha−1 yr−1) and production 
data (t county−1 yr−1) were from Quick Stats from the United States Department 
of Agriculture (USDA) National Agricultural Statistics Service15, and acreage data 
(ha county−1 yr−1) were from the USDA Farm Service Agency37.  
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Fig. 4 | illustrative results of PM2.5 impact assessment using the top maize-producing county in each of the top five maize-producing states. a, 
Atmospheric total PM2.5 concentrations attributable to on-farm and supporting supply chain processes for maize grown in a single county. Emissions 
attributable to maize produced in a given county may occur outside that county (for example, from fertilizer production). b, Mortality attributable to total 
PM2.5 concentrations in a. Further examples of this relationship between total PM2.5 concentrations and increased mortality as estimated by InMAP are 
shown for the 6th–20th top maize-producing states in Supplementary Figs. 1–3.
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Maize-specific synthetic fertilizer rates (kg ha−1 yr−1) and fertilized acreage data (%)  
were from the USDA Economic Research Service17. Fertilizer type data were from 
the NEI18. Manured maize crop acreage (ha state−1 yr−1) and application rates 
(kg ha−1 yr−1) were from the Economic Research Service Agricultural Resource 
Management Survey Farm Financial and Crop Production Practices38,39. Maize 
pesticide application rates (kg ha−1 yr−1) and types (acetochlor, atrazine, glyphosate 
and metolachlor/S-metolachlor) were from 2010 and 2014 National Agricultural 
Statistics Service surveys15. For all data, where county-level data were missing, 
state-level data were used. Where state-level data were missing, national-level  
data were used.

Emissions. County-specific emissions of NH3 per tonne of maize (kgNH3 t−1 
(maize produced)) were estimated from county-level annual maize yields15 
(t ha−1 yr−1) and areal emissions of NH3 (kg ha−1 yr−1) for synthetic fertilizers or 
manure. Areal emissions of NH3 from synthetic fertilizers were derived from 
fertilizer type- and location-specific NH3 emissions factors (kg NH3 emitted per kg  
fertilizer applied) from the Carnegie Mellon University Ammonia Model40 using 
fertilizer rates and types as noted above. The average production-weighted 
emissions factors for maize used in this study were: anhydrous ammonia (4.0%), 
ammonium nitrate (1.8%), ammonium sulfate (7.7%), diammonium phosphate 
(5.0%), miscellaneous (4.0%), monoammonium phosphate (5.0%), urea 
ammonium nitrate solutions (8.0%) and urea (16.3%). Areal emissions of NH3 
from manure were derived from manure rates and acreage, as noted above, using 
state-specific emissions factors18 with an average production-weighted emissions 
factor of 1.15 kgNH3 t manure applied−1. Emissions from manure, which is both 
a waste product of animal production and a fertilizer input in maize production, 
were allocated such that only emissions from manure application were attributed to 
maize production; emissions from manure handling, storage and confinement were 
attributed to animal production and thus excluded from this analysis. Over the 
2,000 counties included in this analysis, 70% of NH3 emissions were from synthetic 
fertilizers, while 30% were from manure.

County-specific emissions of fugitive dust from agricultural activities per tonne 
of maize were derived from emissions factors of harvest and non-harvest activities 
(for example, ploughing, planting and pesticide application) for conventional and 
conservation tillage practices35. As in previous work, the resulting emissions factors 
were scaled down by county-level factors for near-source removal of dust emissions 
by land cover34. These emissions factors were weighted by regional implementation 
of these practices36 to obtain regionally specific emissions factors. Over the 
2,000 counties included in this analysis, average emissions of primary PM2.5 
were 1.60 kg ha−1 for non-harvest activities and 0.54 kg ha−1 for harvest activities. 
Emissions of GHGs resulting from changes in cultivation practices or land use41,42 
were excluded from this analysis.

Upstream emissions data. Emissions from the domestic production of fertilizer, 
and from fertilizer imported from Canada and Mexico, were included as described 
in the NEI18. Emissions from fertilizer transport were allocated along county 
routes from fertilizer production facilities to maize production counties using NEI 
emissions factors and shapefiles. Emissions of other NH3-emitting processes were 
estimated and spatially allocated using NEI Source Classification Codes.

Air quality modelling and impact assessment. We employed the Intervention 
Model for Air Pollution (InMAP)12 to conduct reactive dispersion air quality 
modelling and to estimate the premature mortality in the United States attributable 
to maize production. InMAP creates spatially explicit estimates of the effect of 
emissions of primary PM2.5 and secondary PM2.5 precursors (VOCs, NOx, NH3 
and SOx) on atmospheric concentrations of PM2.5, the exposure of populations43,44 
to PM2.5, and the resulting health45 and economic14 effects. InMAP uses a variable 
spatial resolution from 1 km in urban areas to 48 km in rural areas. We used the 
concentration-response estimates from a major epidemiological cohort study 
that inferred the health effects of PM2.5 from the average annual outdoor PM2.5 
concentrations at the place of residence of study participants in the United 
States45. InMAP’s structure and evaluation of its performance—including weather 
inputs and transport–fate–exposure modelling—are described and discussed 
elsewhere12,46–49. The resulting estimates of premature mortality were monetized 
using a mean estimate of VSL of US$9.1 million (2017$), with a range of one 
standard deviation (US$5.8 million) above or below14. Estimates of climate change 
damages were monetized using the mean estimate of the SCC, US$43 t−1 of CO2e 
(2017$; 3% discount rate), with a range of US$13 (5% discount rate) to US$67 
(2.5% discount rate)16.

Data availability
Data supporting the findings of this study beyond those found in the 
Supplementary Information are available from the corresponding author upon 
reasonable request.
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