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Abstract 

Reliable estimates of externality costs—such as the costs from premature mortality from exposure 
to fine particulate matter (PM2.5) —are critical for policy analysis. To facilitate broader analysis, 
several datasets of social costs of air quality have been produced by a set of reduced complexity 
models (RCMs). Using the tabulated marginal costs derived from RCMs is much easier than 
running the ‘state of the science’ chemical transport models (CTMs). However, the differences 
between these datasets have not been systematically examined, leaving analysts without guidance 
on how and when these differences matter. Here, we compare per-tonne marginal costs from 
ground-level and elevated emission sources for each county in the United States (U.S.) for sulfur 
dioxide (SO2), nitrogen oxides (NOx), ammonia (NH3), and inert primary PM2.5 from three RCMs: 
Air Pollution Emission Experiments and Policy (AP2), Estimating Air pollution Social Impacts 
Using Regression (EASIUR), and the Intervention Model for Air Pollution (InMAP). National 
emission-weighted average damages vary among models by approximately 21%, 31%, 28% and 
12% for inert primary PM2.5, SO2, NOx, and NH3 emissions, respectively, for ground-level sources. 
For elevated sources, emission-weighted damages vary by approximately 42%, 26%, 42% and 
20% for inert primary PM2.5, SO2, NOx, and NH3 emissions, respectively. Despite fundamental 
structural differences, the three models predict marginal costs that are within the same order of 
magnitude. That different and independent methods have converged on similar results bolsters 
confidence in the RCMs. Policy analyses of national-level air quality policies that sum over 
pollutants and geographical locations are often robust to these differences, although the differences 
may matter for more source- or location-specific analyses. Overall, the loss of fidelity caused by 
using RCMs and their social cost datasets in place of CTMs is modest. 

Keywords: Model Inter-Comparison, Air Quality, Externality Costs, Policy Analysis 
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1. Introduction 

When analyzing policies, products, or processes, it is critical to account for costs that are 

observed in the market as well as non-market costs, known as externalities (Baumol & Oates, 

1988). For air pollution, adverse human health effects – especially premature mortality from 

exposure to ambient concentrations of fine particulate matter (PM2.5) – result in large costs to 

society (United States Environmental Protection Agency (U.S. EPA), 2009). To estimate these 

costs, the U.S. EPA has generally employed an impact pathway assessment. This multi-step 

approach is as follows: first, Chemical Transport Models (CTMs) are used to estimate the impact 

of emissions on ambient concentrations; second, the health effects from exposure to these 

concentrations are quantified using concentration – response (C-R) functions; and finally, the 

health impacts are monetized. For premature mortality, an estimate of the willingness-to-pay to 

avoid this impact, known as the value of a statistical life (VSL), is used to monetize these impacts. 

Presently, the U.S. EPA employs a central estimate of 7.4 million in 2006 USD (U.S. EPA, 2010). 

The first step, modeling the relationship between pollutant emission and ambient PM2.5 

concentrations, is especially challenging. PM2.5 consists of a complex mixture of chemical species, 

both inorganic and organic, from diverse sources. Some PM2.5 is directly emitted to the atmosphere 

and is known as primary particulate matter. Primary PM2.5 is dominated by particulate elemental 

carbon (PEC) and organic carbon (POC) (Hand et al., 2012). However, most PM2.5 is secondary, 

meaning that it originates from gaseous emissions that react in the atmosphere to form products 

that condense into the particle phase. PM2.5 is also separated into its inorganic and organic 

components. Inorganic PM2.5 mostly results from emissions of sulfur dioxide (SO2), nitrogen 

oxides (NOx), and ammonia (NH3). These gaseous precursors are converted into sulphate (SO4
2-), 

nitrate (NO3
-) and ammonium (NH4

+) and form particulate matter through relatively well 

understood chemistry. This chemistry, however, is highly non-linear. The marginal sensitivities in 

PM2.5 concentrations to the precursor emissions depend on the initial concentrations and will 

change as the relative amounts of emissions of all three precursors change (Ansari and Pandis, 

1998). For example, recent trends in emissions have decreased the marginal effect of NH3 

emissions and increased that of NOx emissions (Pinder et al., 2008; Holt et al., 2015). Organic 

PM2.5 consists of primary and secondary organic aerosol (POA and SOA) depending on whether 

it is emitted already in the particulate phase or whether it forms from gases in the atmosphere. 

SOA is formed from the oxidation of volatile organic compounds (VOCs), but the yield of organic 
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PM2.5 varies substantially among VOC precursors. By contrast to the inorganic components, the 

sources and behavior of both POA and SOA are less well understood (Robinson et al., 2007). 

While scientific understanding of organic PM2.5 formation is advancing rapidly, this updated 

understanding is still being incorporated into the CTMs and thus, into the resulting social costs. 

The major removal mechanism for PM2.5 is via precipitation. Hence, PM2.5 can be transported for 

several days downwind, affecting populations up to approximately 1,000 km away from the point 

of emission (e.g., Evans et al., 2002). On the other hand, primary PM2.5 emitted in urban areas will 

have a large impact in the immediate vicinity. As a result, models of PM2.5 must reproduce the 

behavior of a complex physical and chemical system, and they require both sufficiently high 

resolution near sources as well as a long-range spatial extent to capture all the health impacts of a 

single source. 

CTMs are the ‘state-of-the-science’ tool for predicting how much PM2.5 is formed from a given 

set of emissions, but the complexity of these models limits their applicability. To improve the 

availability and accessibility of air quality modeling and cost estimates, the air quality research 

community has produced a set of new models, known as reduced-complexity air quality models 

(RCMs) and associated sets of marginal social costs, i.e., monetized damages per pollutant (in 

USD per tonne of emission). In this paper, we compare three RCMs and their datasets that provide 

estimates of externality costs from air pollution: the Air Pollution Emission Experiments and 

Policy (APEEP) model (Muller & Mendelsohn, 2007) updated to AP2 (Muller et al., 2011), the 

Estimating Air pollution Social Impacts Using Regression (EASIUR) model (Heo et al., 2016a; 

2016b), and the Intervention Model for Air Pollution (InMAP) (Tessum et al., 2017). We select 

these three RCMs as they provide comprehensive estimates covering the entire continental United 

States (U.S.) at relatively high spatial resolution (county level or finer).   

In this inter-comparison, we have three main aims:  

i. Provide guidance on how and when the differences matter between these three 

RCMs. While these RCMs are documented in the peer-reviewed literature, the differences in the 

social cost datasets have not been systematically examined.  

ii. Compare the results from the RCMs to the CTMs. Since the RCMs are, by 

definition, less physically detailed than the CTMs, there is also a potential loss of fidelity. This 

type of comparison can help justify their use for certain applications and allow users to judge the 

robustness of the results from the RCMs.  
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iii. Evaluate the uncertainty in the air quality models. While it is recognized that 

evaluating the uncertainty in the air quality benefits is critical as the effects of changing PM2.5 

levels on mortality constitute a key component of the U.S. EPA's approach for assessing potential 

health benefits for air quality regulations (National Research Council, 2002), characterizing the 

full uncertainty in the air quality model is especially challenging (e.g., Fraas & Lutter, 2013). As 

the three RCMs take fundamentally different approaches to the air quality modeling, they may be 

understood to produce largely independent estimates. Hence, comparing and quantifying the 

differences between the independently derived estimates of social costs from the RCMs also 

provides an indication of the uncertainty of how emissions are transformed into ambient 

concentrations.  

 

2. Review of CTMs and RCMs for Assessing Air Quality Social Costs 

Predicting the impacts of emissions on ambient concentrations is usually done using a 

comprehensive CTMs. CTMs are three-dimensional mechanistic models that predict ambient 

concentrations of pollutants using mass balance principles and accounting for emissions, transport, 

and dispersion by winds, chemical transformations, and atmospheric removal processes. CTMs 

are the most scientifically detailed and rigorous tools available for linking emissions to ambient 

concentrations. Examples of CTMs include the Comprehensive Air Quality Model with 

Extensions – CAMx (ENVIRON, 2016), Community Multi-scale Air Quality Model – CMAQ 

(Appel et al., 2017), and Weather Research and Forecasting model coupled with Chemistry – 

WRF-Chem (Powers et al., 2017). Running full CTMs is intensive enough in terms of expertise, 

time, and resources that their usage is generally limited to air quality researchers and regulatory 

authorities, such as the U.S. EPA’s regulatory impact assessment for revisions to the National 

Ambient Air Quality Standards (NAAQS) and state agencies as part of the accompanying State 

Implementation Plans (SIPs). Even then, many states do not have in-house capabilities to run 

CTMs, relying on consultants or regional associations for their modeling needs. Despite the 

availability of RCMs, however, it is prudent to use a full CTM to assess the likely impact of major 

air quality policies before their implementation to ensure the best estimates of benefits for 

comparison to costs. Additionally, the comprehensive CTMs constitute the benchmark against 

which simpler models can be judged.  

To address the challenges with running CTMs, a number of RCMs have been developed. The 
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magnitude of the social costs of air pollution suggests that it would be useful to have models like 

RCMs that facilitate the quantification of the costs and their uncertainty as part of routine policy 

analysis. Further, the availability of simpler and more accessible models would greatly expand the 

community of people who could quantify the public health costs of air pollution, including city 

planners, affected industries, and citizen groups. Those who run CTMs can find RCMs useful 

when they want to explore quickly a broad range of emissions scenarios. In this paper, we describe 

and compare results from three such models, which are described in detail below: AP2, EASIUR, 

and InMAP. We also briefly describe other RCM efforts. 

APEEP and its updated version, AP2, employs a source-receptor (S-R) matrix framework to 

map emissions to ambient concentrations at the county-level (Muller & Mendelson, 2007, Muller 

et al., 2011). The contribution of emissions in a source county (S) to the ambient concentration in 

a receptor county (R) is represented as the (S, R) element in a matrix. In the module for PM2.5 

formation, the model contains S-R matrices that govern how PEC, SO2, NOx, NH3, and VOC map 

to PM2.5. Each of these matrices accepts annual (U.S. short tons per year) emission vectors to 

produces predictions of annual means. For each of these matrices, the model distinguishes among 

emissions released at four different effective height categories: ground-level emissions, point 

sources under 250 meters, point sources between 250 meters and 500 meters, and point sources 

over 500 meters. AP2 employs the approach to estimating the NH4
+, SO4

2- and NO3
- equilibrium 

embodied in the Climatological Regional Dispersion Model (CRDM), a national-scale Gaussian 

dispersion model (Latimer, 1996). In the equilibrium computations, ambient NH4
+ reacts 

preferentially with SO4
2-. Second, ammonium nitrate (NH4NO3) is only able to form if there is 

excess NH4
+. To translate VOC emissions into secondary organic particulates, AP2 employs the 

fractional aerosol yield coefficients estimated by Grosjean and Seinfeld (1989). While APEEP was 

evaluated against a 2002 annual average baseline run produced by CMAQ, AP2 predictions are 

tested against Air Quality System (AQS) monitoring data. Calibration coefficients are used to 

adjust AP2 predictions to jointly minimize mean fractional error and mean fractional bias. We use 

AP2 in the text to clarify that we are comparing the results from the updated version of the original 

APEEP.  

The EASIUR model (Heo et al. 2016a; 2016b) estimates marginal social costs for four 

species—inert primary PM2.5, SO2, NOx, and NH3—in a 36 km × 36 km grid covering the 

continental U.S. The social costs are provided for four seasons and for three emissions elevations 
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(ground-level, 150 m, and 300 m). The EASIUR model was derived by running regressions on a 

CTM data set consisting of small emissions perturbations occurring at 100 sample locations. 

CAMx was run to calculate social costs of the four species at the sample locations (randomly 

chosen based on population size) across the nation. Then, the resulting per-tonne social costs were 

regressed as a function of exposed population and atmospheric variables such as temperature and 

atmospheric pressures using half of the sample locations as training for the regression and half as 

out-of-sample evaluations. Finally, using the regression models, per tonne social costs were 

estimated at all the cells in the 36 km × 36 km grid. In addition, an EASIUR-based source-receptor 

model was developed from the regression results (Heo et al., 2017). The source-receptor version 

was used to estimate concentrations for comparisons made in this study.  

InMAP (Tessum et al., 2017) combines simplified representations of atmospheric chemistry 

and physics with output from WRF-Chem to calculate annual-average marginal changes in 

concentrations of PM2.5 caused by marginal changes in emissions of SO2, NOx, NH3, VOCs, and 

inert primary PM2.5 using a three-dimensional spatial grid with horizontal resolution ranging 

between 1 km × 1 km in highly populated areas to 48 km × 48 km in unpopulated areas and over 

the ocean. InMAP operates independently of the underlying CTM, and InMAP users would only 

need to also use a CTM or access the raw CTM output data if they were interested in applying 

InMAP to a new spatial or temporal domain (e.g., outside of the continental U.S.). We used an 

InMAP-based source-receptor matrix (ISRM; Goodkind et al., 2019) to predict the health impacts 

and to calculate social costs of emissions in every InMAP grid cell at three emission heights 

(ground level, low stack height point sources, and high stack height point sources) and used the 

social cost of emissions from each county centroid in comparisons here.  

There are other RCMs that we review here, but do not include in our inter-comparison. The 

Co-Benefits Risk Assessment (COBRA) screening model is another RCM, developed by the U.S. 

EPA, which provides marginal social costs at county-level resolution (U.S. EPA, 2018). COBRA 

and AP2 share the core framework for modeling the air quality impacts of a unit of emission. Both 

models are built around the CRDM (Latimer, 1996) and then calibrated to existing air quality 

modeling and measurements. There are minor differences in the treatment of the elevated sources, 

the approach to the simplified chemistry and the calibration approach. Because COBRA and AP2 

are built on the same core air quality modeling, marginal social costs from COBRA are typically 

very similar to those from AP2. We only review AP2 in this paper. 
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U.S. EPA’s Response Surface Model (RSM), with its benefit per ton values, is another similar 

tool (Fann et al., 2009; Fann et al., 2012; U.S. EPA, 2015). Compared to the RCMs evaluated here, 

RSM has lower spatial resolution, only providing average impacts for nine urban areas plus the 

U.S. overall average. An advantage of RSM, however, is that it can capture some of the nonlinear 

responses in the PM2.5 chemistry, which can occur with larger changes in inorganic PM2.5 levels 

(e.g., Holt et al., 2015). We also do not review related tools such as Environmental Benefits 

Mapping and Analysis Program (BenMAP), which is focused on estimating health outcomes and 

does not include any air quality modeling. Rather, it requires ambient concentrations as inputs 

rather than emissions (U.S. EPA, 2017). The RCMs evaluated in this manuscript use a similar 

approach to health effect and economic valuation as employed in BenMAP. Other studies also 

have provided marginal social cost values but for limited regions of the US or limited emissions 

sectors, including the Direct Decoupled Method (DDM) of Bergin et al. (2008), regression-based 

approaches developed by Buonocore et al. (2014) and Levy et al. (2009), and source-based 

estimates from Goddard Earth Observing System with Chemistry model (GEOS-Chem) (Caiazzo 

et al., 2013).  

3. Methods and Models 

Here, we evaluate the performance and the damage estimates from three RCMs. One of the 

first applications of the RCMs has been to develop marginal damage estimates, i.e., those that 

result from small perturbations of emissions. The results from the model, expressed in US dollars 

(USD) of damage per tonne of emissions, are specified at a minimum for a type of pollutant, a 

location, a population and at least implicitly, for a given time period (e.g., a year). All results in 

this manuscript are expressed in 2010 USD.  

First, we assess the RCMs in terms of their ability to predict observed PM2.5 concentrations 

and their composition. We compared concentration estimates against annual average 

concentrations provided by U.S. EPA’s Air Data (available at https://www.epa.gov/outdoor-air-

quality-data). A caveat is that, given nonlinearities in PM2.5 formation discussed above, one does 

not necessarily expect that the marginal values from the RCMs will predict realistic PM2.5 

concentrations. Using the 2005 National Emissions Inventory (NEI), AP2 estimated 

concentrations directly using its county-level source-receptor model. By contrast, EASIUR and 

InMAP combined the 2005 NEI with each RCM’s marginal damage estimates in a spatially 

disaggregated way, i.e., the emissions of each species in each model source location make a linear 
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contribution to all model locations. These contributions are then summed at each downwind 

“receptor” location to represent the RCM’s prediction of PM2.5. The latter approach assumes that 

the nonlinearities in the chemistry are not large. As a representative CTM, we also show the 

performance for WRF-Chem (Grell et al., 2005, as configured in Tessum et al., 2015). See Table 

S1 for information on the configuration of WRF-Chem. 

Second, we conduct an inter-comparison of the social costs from three models, focusing on 

four main categories of emissions that form ambient PM2.5: inert primary PM2.5, SO2, NOx, and 

NH3. To isolate the effect of the air quality modeling on the damage estimates, we harmonized the 

main inputs: baseline emissions, population, C-R function, and VSL. We select the baseline 

emission inventories and population for 2005. For the PM2.5 C-R function, we use the results from 

the American Cancer Society (ACS) epidemiological study for annual, all-cause mortality for 

adults (Krewski et al., 2009); we do not quantify morbidity effects. We apply the U.S. EPA’s VSL 

of 7.4 million in 2006 USD. We do not show results for VOCs because not all three models predict 

impacts from VOCs due in part to the uncertainties described in the introduction. Additionally, 

because neither AP2 nor InMAP accounts for the variability in SOA yield among individual VOC 

species, we are less confident that the variability between the models is representative of overall 

uncertainty in predictions of SOA impacts than we are for the inorganic species. We discuss the 

implications of the uncertainty in the damage estimates and make recommendations for how to 

approach these estimates in the results and discussion section.  

 

4. Results and Discussion: Comparison of Ambient Concentrations and Social Costs 

First, we compare the models to WRF-Chem and find that in general, they have similar 

performance. These results show some important trends, with all models, including the CTM, 

performing worse for NH4
+ and NO3

- predictions, illustrating that some PM2.5 species are more 

difficult to model and, by extension, the damage estimates for their precursors will be more 

uncertain. At the same time, the relative success in reconstructing PM2.5 concentrations from 

marginal impact estimates suggests that differences between marginal and average changes are not 

too large or mostly cancel out among different pollutants and locations. On balance, these 

comparisons boost confidence in the use of RCMs and suggest that the necessary simplifications 

inherent in them do not substantially degrade their performance compared to CTMs. EASIUR does 

not estimate damages or SOA formation from VOC emissions; hence, an estimate of total PM2.5 
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is not possible from EASIUR at the current time. Additionally, we do not include a comparison of 

InMAP’s predicted PEC concentrations against observations. In principle, InMAP can predict 

PEC; however, the NEI reports only total primary PM2.5. It is outside of the scope of this work to 

conduct the additional processing to speciate these emission into InMAP format. We show the 

results of this evaluation in Supplemental Information (Figure S1). In addition to this comparison 

with WRF-Chem, each RCM has undergone substantial validation to both CTMs and in the case 

of AP2, observed ambient concentrations. InMAP was compared against 14 separate runs from 

WRF-Chem to show that it could predict concentration changes (Tessum et al., 2017). EASIUR 

was directly derived from CAMx output with out-of-sample evaluations for independent testing 

and is thus indirectly already validated against a CTM. Further, by comparing AP2 and InMAP to 

EASIUR, they are also indirectly compared to CAMx. 

Turning to social costs, we show the summary results for ground and elevated sources in the 

US in Figure 1, respectively. For ground-level sources, emission-weighted damages for the US 

varied by approximately 21%, 31%, 28% and 12% for inert primary PM2.5, SO2, NOx, and NH3 

emissions, respectively with a range of 70,000–120,000 USD per tonne of PM2.5, 21,000–45,000 

USD per tonne of SO2, 6,400–13,000 USD per tonne of NOx, and 38,000–49,000 USD per tonne 

of NH3. For elevated sources, emission-weighted damages for the US varied by approximately 

42%, 26%, 42% and 20% for inert primary PM2.5, SO2, NOx, and NH3 emissions, respectively with 

a range of 36,000–110,000 USD per tonne of PM2.5, 20,000–35,000 USD per tonne of SO2, 6,300–

11,000 USD per tonne of NOx, and 32,000–51,000 USD per tonne of NH3. See Supplemental 

Information (Table S2) for tabulated values and calculations of variance. We report emissions-

weighted averages because aggregate health damages from a set of emissions are the sum of 

emissions rate and marginal social cost which is then summed across all source locations. 

Therefore, aggregate damages are proportional to the emissions-weighted mean. Put another way, 

if two models differ by 10% in their emissions-weighted mean, their assessment of aggregate 

damages across the country for that species would also differ by 10%. Therefore, this metric is a 

good indicator of how much two models would differ for a policy where emissions changes are 

distributed similarly to current emissions. We also compare our national results to those produced 

by Fann et al. (2009). We find that our values are within the same range with the exception of 

primary PM2.5 where Fann et al. (2009) have much higher values than the three RCMs. We show 

the tabulated comparison in Table S3.  
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Overall, these three sets of marginal costs show similar trends. First, as shown in Figure 1, for 

any given emitted species by model, the marginal social cost varies by at least one order of 

magnitude depending on the location of emissions for both ground and elevated sources. 

Additionally, we conclude that the elevated and ground level sources generally behave the same 

with most point sources having a similar or lower social cost than the ground level sources. While 

the elevation allows the plume to span a greater area, the point sources are generally in rural areas. 

There are isolated cases where the reverse is true. These exceptions occur where the point sources, 

which are primarily in rural areas, have plumes that overlap with highly populated urban centers. 

Furthermore, the difference between elevated and ground is largest for primary PM2.5 as expected. 

For secondary PM2.5, where chemical and/or physical transformation needs to take place, the social 

costs are similar. By the time the PM2.5 is formed by chemical reactions, there has been enough 

vertical mixing that the original release height has little influence. As the results are similar for the 

ground and elevated sources, we focus the rest of the discussion on the ground sources for 

simplicity.  

 In Figure 2, we show the estimates of social costs for ground-level sources from each model 

for each county in the US. Figure 2 shows that social costs are consistently higher from emissions 

in or near densely populated areas, especially the eastern U. S.. Much of the variability in impacts, 

therefore, is a simple function of the number of people downwind exposed to the resulting PM2.5. 

Third, for each RCM, the rank order of species from most damaging to least damaging (per tonne) 

is generally primary PM2.5, NH3, SO2, and NOx. Since current understanding treats all PM2.5 

components the same in terms of the health impacts, this rank order simply reflects the efficiency 

with which a tonne of emitted species forms ambient PM2.5. By definition, primary PM2.5 

emissions immediately form ambient PM2.5; hence, they have the largest efficiency and highest 

damages. For the secondary species, damages from NH3 and SO2 are moderate with NOx having 

the lowest damages. The relatively high social costs of NH3 can be understood as follows. Both 

NH3 and NOx emissions contribute to the formation of NH4NO3; but, depending on circumstances, 

either one or the other emission can be limiting. However, since the molecular weight of NH3 is 

much lower than that of NOx, a ton of NH3 represents more molecules. All else being equal, it will 

tend to have a higher marginal social cost on a per mass basis. Additionally, NH3 emissions will 

increase PM2.5 concentrations by neutralizing SO4
2-. For comparison, Holt et al. (2015) also shows 

high sensitivity of PM2.5 to NH3 emissions on a per tonne basis (Holt et al., 2015). Thus, all three 
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RCMs show similar and expected trends that are easily interpretable in terms of atmospheric 

behavior and population exposure, boosting confidence in these estimates. 

In Figures 3 – 6, we show the model inter-comparisons for each species for ground level 

sources. Similar plots for elevated sources can be found in Supplemental Information (Figures S2 

– S5). All three RCMs provide damage estimates that are highly spatially resolved with respect to 

emissions location. Whereas some application scenarios will involve nationwide emissions 

changes, others may be focused on damages from emissions in one region of the country, perhaps 

a single state or even a single county. Therefore, it is worthwhile evaluating to what extent the 

three RCMs agree in terms of spatial patterns and county-by-county damage estimates. Here, we 

find that the level of agreement varies considerably by species according to the complexity of the 

associated chemistry, mirroring how some species are inherently more difficult to model than 

others, even for a CTM (Figure S1). While all three RCMs estimate these social costs at high 

spatial resolution, the similarity of their answers depends on the species in question and the 

complexity of its atmospheric behavior. For ground-level primary PM2.5, the models have very 

similar values across all counties with Pearson’s correlation ranging from 0.73–0.81. For primary 

PM2.5, which is an inert species emitted directly in particulate form, concentrations are influenced 

only by differences in atmospheric transport and dilution. This is noted because it has been 

suggested that Gaussian dispersion modeling is not applicable at distances that exceed 100 km, yet 

we do not observe systematic biases in the AP2 estimates compared to the CTM-derived models. 

Consistent with the more complex chemistry, results for cost estimates for secondary pollutants 

are more variable on average and spatially and the correlations are lower of the secondary 

pollutants: 0.54–0.73 for NH3, 0.35–0.49 for SO2, and 0.077–0.54 for NOx. The formation of 

secondary PM2.5 depends on how efficiently precursors are converted to secondary species. In the 

atmosphere, this typically depends on chemistry, deposition rates, sunlight, and the availability of 

co-reactants especially atmospheric oxidants and thermodynamic interactions between inorganic 

ions (Ansari and Pandis 1998; West et al. 1999). Additionally, the impacts of secondary pollutants 

should also more dependent on accurately predicting transport as chemical reactions can occur 

over long distances and thus expose populations further from the source. Thus, the model selection 

has a larger role as the estimates of impacts depends on both the representation for long-range 

transport and chemical processes. Since NH4
+, SO4

2- and NO3
- concentrations depend on each 

other, differences in the model predictions for one species will influence the others.  

Page 12 of 25AUTHOR SUBMITTED MANUSCRIPT - ERL-106635.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



 

13 
 

Finally, in the case of SOA impacts, we are less confident that variability between current 

RCM estimates represents true prediction uncertainty than we are for inorganic PM2.5 species. This 

is because VOCs from different emissions sources can vary greatly in their SOA production 

efficiencies and because the fundamental understanding of the formation of SOA from precursor 

VOCs is still rapidly evolving (Robinson et al., 2007). Presently, marginal social costs for VOC 

emissions are available from the InMAP and AP2 models, but the prediction of impacts from VOC 

emissions in RCMs is an area for future development. Specifically, RCMs that account for the fact 

that different sources have different mixes of VOCs and, therefore, different SOA/PM2.5 formation 

and damage costs (Jathar et al., 2014) would be desirable. When using SOA estimates from current 

RCMs, we recommend that users consider how the specific mix of VOC species that are relevant 

to their own scenarios compared to the anthropogenic average mixes implied within the RCMs. In 

cases where the VOC mixes are substantially different, chemical transport modeling with a more 

detailed treatment of VOC composition may be warranted. 

 

5. Conclusion 

The public health impacts of air pollution, mostly due to premature mortality caused by PM2.5 

exposure, dominate the benefits analysis of most rules and regulations that target the energy and 

transportation sectors. Because evaluating these impacts using a state-of-the-science CTM can be 

challenging, several recent efforts have developed RCMs to provide estimates of the marginal 

social costs stemming from a tonne of PM2.5 emissions and its precursors. In this paper, we 

compare three datasets of air quality costs derived by RCMs: AP2, EASIUR, and InMAP. We 

conclude that users can generally use marginal social costs reported by these models for decision 

and policy analysis in lieu of chemical transport modeling with only a modest loss of fidelity. 

We show that the RCMs evaluated here can predict the nationwide distribution of PM2.5 

concentrations with only a modest reduction in accuracy as compared to a CTM. Further, for 

analyses at a national scale and over many sources, the differences in the air quality modeling 

approaches reviewed in this paper are less important for the aggregate social costs. Generally, for 

the evaluation of policies that are enacted at the national level, the total costs from all models are 

within a factor of two or three. Further, the differences in the social costs as a function of species 

emitted and source location are broadly similar between models and can be readily understood 

based on the known atmospheric behavior of that species and the size of the downwind population 
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exposed to PM2.5.  

Additionally, the model estimates reviewed in this paper are derived from different air quality 

modeling approaches but with harmonized assumptions for the C-R function and the VSL. Hence, 

the range of the estimates presented here can be interpreted as a measure of the degree of 

uncertainty inherent in the air quality modeling. Understanding why two CTMs produce different 

results is challenging as it is difficult to isolate all the factors that drive the differences. We face 

the same type of challenge when comparing the RCMs. Additionally, since each RCM takes a 

different approach to abstracting the physical and chemical processes for PM2.5 and the 

meteorology, it is even more challenging to isolate the factors. Thus, we focus on the substantive 

differences – the social costs – that are affected by the modeling choices made by each RCM. In 

general, the air quality modeling differences introduced by and between the RCMs shown here are 

not large when viewed in the context of the other uncertainties in the damage estimates. These 

differences are small in comparison with other uncertainties involved in air quality decision-

making such as the C-R function and VSL. The differences in the damages are comparable to 

errors between CTMs as well as the errors between CTMs and observed ambient concentrations.  

In some locations and for some pollutants, however, these differences can be more substantial; 

for example, it would be appropriate to investigate the range of benefit estimates for applications 

which are more geographically limited and especially where NOx emissions are the dominant 

concern, such as the Marcellus shale development (Roy et al., 2014) and replacing diesel engines 

for port power for shipping (Vaishnav et al., 2016). Furthermore, there are cases where the RCM-

derived social cost estimates should be applied with more caution, including when changes in 

emission occur for only a few days per year (e.g., Gilmore et al., 2010) and when there is the 

potential for non-linearity or if the change in emissions is large enough to change the underlying 

chemical regimes (see Holt et al., 2015).  

While CTMs remain the gold standard for air quality simulation and should continue to be 

used in many regulatory settings, e.g., SIPs and regulatory impact assessments (RIAs) of major 

new rules, the ease-of-use of RCMs means that they can be used by a broad range of researchers 

and analysts. This may include initial scoping of new rules or regulations as well as decision-

making in a large number of analyses where air pollution public health costs are not routinely 

considered in a rigorous and explicit fashion. Because the social cost estimates from these RCMs 

are sensible and generally consistent and because they are far simpler to use than a CTM, we 
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encourage researchers and analysts to use them in a broad range of applications when air pollution 

public health impacts may be important. Additionally, RCMs may open up more opportunities for 

assessing uncertainty. For example, in a CTM, it is impractical to conduct a Monte Carlo type 

approach to capture the uncertainty in the emission inventories. As RCMs are computational less 

expensive, these types of analyses could be implemented. Finally, the successful development of 

RCMs for the U.S. suggests that they might be developed and applied to other regions of the globe 

where air quality issues are more severe; however, this requires both suitable models and data.  
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Figure 1: Box plot of the marginal social costs (in USD/tonne) for ground and elevated source 
emissions across all US counties by pollutant and by air quality model. Red dots and lines 
indicate emission-weighted mean and median, respectively. The left and right boxes are the 25th 
and 75th percentiles and the whiskers are the 2.5th and 97.5th percentiles. See Supplemental 
Information (Table S1) for tabulated values.     
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Figure 2: Marginal social costs for ground-level emissions for each US County by pollutant and 
by air quality model (in USD/tonne). Negative values are in shown in green.  
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Figure 3: Comparison of marginal social costs from primary PM2.5 for ground-level emissions. 
Panels a, c, and e show the ratio of the social cost estimates for each county for each model pair. 
White counties indicate agreement within a factor of two. In panels b, d and f, the social costs of 
emissions (in USD/tonne) by county are plotted for each model pair to show the overall model 
agreement. R is the Pearson’s correlation coefficient.     
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Figure 4: Comparison of marginal social costs of ground-level SO2 emissions. Panels a, c, and e 
show the ratio of the social cost estimates for each county for each model pair. White counties 
indicate agreement within a factor of two. In panels b, d and f, the social costs of emissions (in 
USD/tonne) by county are plotted for each model pair to show the overall model agreement.  R is 
the Pearson’s correlation coefficient. 
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Figure 5: Comparison of marginal social costs of ground-level NOx emissions. Panels a, c, and e 
show the ratio of the social cost estimates for each county for each model pair. White counties 
indicate agreement within a factor of two. In panels b, d and f, the social costs of emissions (in 
USD/tonne) by county are plotted for each model pair to show the overall model agreement.  R is 
the Pearson’s correlation coefficient. 
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Figure 6: Comparison of marginal social costs of ground-level NH3 emissions. Panels a, c, and e 
show the ratio of the social cost estimates for each county for each model pair. White counties 
indicate agreement within a factor of two. In panels b, d and f, the social costs of emissions (in 
USD/tonne) by county are plotted for each model pair to show the overall model agreement.  R is 
the Pearson’s correlation coefficient. 
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