
Fine Particulate Air Pollution from Electricity Generation in the US:
Health Impacts by Race, Income, and Geography
Maninder P. S. Thind,† Christopher W. Tessum,† Ineŝ L. Azevedo,‡ and Julian D. Marshall*,†
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ABSTRACT: Electricity generation is a large contributor to fine
particulate matter (PM2.5) air pollution. However, the demographic
distribution of the resulting exposure is largely unknown. We
estimate exposures to and health impacts of PM2.5 from electricity
generation in the US, for each of the seven Regional Transmission
Organizations (RTOs), for each US state, by income and by race.
We find that average exposures are the highest for blacks, followed
by non-Latino whites. Exposures for remaining groups (e.g., Asians,
Native Americans, Latinos) are somewhat lower. Disparities by
race/ethnicity are observed for each income category, indicating
that the racial/ethnic differences hold even after accounting for
differences in income. Levels of disparity differ by state and RTO.
Exposures are higher for lower-income than for higher-income, but disparities are larger by race than by income. Geographically,
we observe large differences between where electricity is generated and where people experience the resulting PM2.5 health
consequences; some states are net exporters of health impacts, other are net importers. For 36 US states, most of the health
impacts are attributable to emissions in other states. Most of the total impacts are attributable to coal rather than other fuels.

1. INTRODUCTION

Fine particulate matter (PM2.5) is the largest environmental
health risk in the United States (US) and globally.1,2 PM2.5 is
associated with increased mortality rates from, e.g., cardiovas-
cular disease (ischemic heart disease and stroke), chronic
obstructive pulmonary disease, and lung cancer.3−5

Fuel combustion emits PM2.5 directly (“primary PM2.5”) as
well as sulfur dioxide (SO2) and oxides of nitrogen (NOx),
which can react with ammonia (NH3) in the atmosphere to
form PM2.5 (“secondary PM2.5”).

6 The US Environmental
Protection Agency (US EPA) estimates that in 2014, electricity
generating units (EGUs) contributed 67% of SO2, 13% of
NOx, and 3% of primary PM2.5 emissions nationwide.7 In 2014,
coal-fired EGUs generated ∼39% of the electricity in the US
and contributed to 97%, 86%, and 81%, respectively, of SO2,
NOx, and PM2.5 total electricity emissions.7 Although the
health damages associated with these emissions continue to be
important, EGU emissions have declined in recent decades7,8

owing to environmental regulations9 and a transition from coal
to natural gas driven largely by market prices.
Existing estimates of annual PM2.5-related mortality from

EGUs in the US include the following: (i) for year 2005:
52 000 (Caiazzo et al. 2013),10 41 500 (Dedoussi et al.
2014),11 19 000 (Penn et al. 2017),12 38 000 (Fann et al.
2013);13 (ii) for year 2010: 17 050 (Lelieveld et al. 2015);14

(iii) for year 2014: 10 400 (Tessum et al. 2019);15 and (iv) for
year 2016 projected emissions: 17 000 (Fann et al. 2013).13

Levy et al. (2009)16 modeled the monetized damages
associated with 407 coal-fired power plants in the United
States. Buonocore et al. (2014)17 estimated monetized health
impacts of PM2.5 from individual power plants and normalized
to “per-ton emitted” using the Community Multiscale Air
Quality (CMAQ) Model. Penn et al. (2017)12 also quantified
impacts from EGUs by state, finding 21 000 premature
mortalities per year from EGU emissions (PM2.5 and ozone
[O3]). Mortality estimates vary among studies owing to
differences in methods, models, concentration−response
functions, and years considered (total EGU emissions are
decreasing over time).
The consideration of how exposure to air pollution differs by

the demographic group is relevant to environmental justice
(EJ).18 Several studies have estimated health-impact disparities
for air pollution from various source sectors,19−27 but few
studies have investigated EJ aspects of electricity generation in
the US. Studying EGUs in the US, Levy et al. (2007)28

quantified health benefits and the change in the spatial
inequality of health risk for potential EGU pollution control
strategies. They report 17 000−21 000 fewer premature deaths
per year for hypothetical power-plant control scenarios in the
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US that aim to determine optimal control strategies. Martenies
et al. (2017),24 studying PM2.5 health disparities in Detroit,
Michigan, reported disproportionate burdens to Hispanics/
Latinos owing to industrial emissions and to low-income
populations owing to traffic emissions. Tessum et al. (2019)
reported that although minorities are exposed to air pollution,
they consume less and so, therefore, are less “responsible” for
the generation of those emissions.15 We are unaware of any
prior national-scale investigation of EJ aspects of total PM2.5
from electricity generation.

2. MATERIALS AND METHODS
We estimate PM2.5-related health impacts from fossil-fuel-fired
EGUs at the national scale, for each Regional Transmission
Organizations (RTO), and, in terms of emissions and impacts
(i.e., as a source vs receptor for pollution), for each US state.
We use the year 2014 as our reference year. We characterize
impacts disaggregated by race and income.
US Regional Transmission Organizations (RTOs) are

electricity power markets responsible for dispatching more
than 60% of the net electricity generation in the US (eGRID
2014 and 2016).29 The seven US RTOs are Midcontinent
Independent System Operator (MISO), California Independ-
ent System Operator (CAISO), Electric Reliability Council of
Texas (ERCOT), Southwest Power Pool (SPP), Pennsylva-
nia−New Jersey−Maryland (PJM) Interconnection, New York
Independent System Operator (NYISO), and New England
Independent System Operator (NEISO). Coal intensity is the
greatest for MISO and SPP (>50% of generation comes from
coal), followed by ERCOT and PJM (32 and 43%,
respectively); the remaining RTOs (CAISO, NYISO,
NEISO) are low coal (<5%) (Figure S1; data from eGRID
2014).29 RTO demographics (Table S1) also differ by region;
CAISO and ERCOT have >50% non-white population. We
use RTOs as one of our units of analysis because they
represent important geographic regions for electricity gen-
eration; they generally carry out electricity dispatch, which
strongly impacts fuel use and emissions; and, they typically
operate and make decisions independently.30

Multiple air-quality models are used in regulatory and
research communities to link emissions with ambient
concentrations, each with strengths and weaknesses.17,31−53

Chemical Transport Models (CTMs) represent a state-of-the-
science understanding of atmospheric chemistry and physics;
they provide the most robust estimates available (i.e., the most
robust representation of chemistry and physics) when time and
computational constraints are not limiting.49−53 CTMs are
time- and resource-intensive. Reduced-complexity models
(RCMs) are a less-intensive alternative.17,31−48 RCMs are
potentially less accurate than CTMs, but their reduced
complexity allows for a far greater number of runs, thereby
opening the door to sensitivity analyses, Monte Carlo
approaches, longer simulation duration, and new under-
standings of source−receptor relationships. The RCM
employed here, the Intervention Model for Air Pollution
(InMAP),37 employs smaller-sized grid cells than in conven-
tional CTMs, thereby opening the door to the fine-scaled
analysis generally thought to be important for EJ questions.
Analyses carried out here would not be feasible using a
conventional CTM, with current computational capacity.
Other studies have demonstrated that InMAP and other
RCMs can answer questions that could not be modeled using
conventional CTMs.28,54−58

Details of InMAP, including model design, operation, and
validation, are available elsewhere.37,59 Briefly, InMAP is an
Eulerian grid model that predicts the change in annual-average
PM2.5 concentration attributable to a change in annual
emissions, based on steady-state solutions to equations
representing pollution emission, transport, transformation,
and removal. InMAP’s representation of chemistry and
meteorology is simplified relative to a conventional CTM,
but it incorporates spatially varying parameters (e.g., rate
constants) that are obtained from a CTM simulation. InMAP
reflects the spatially varying rates of formation of PM2.5, based
on the (spatially varying) chemistry of the atmosphere (i.e.,
based on a CTM and a baseline [all-sources] emission
inventory, here, the WRF-Chem model coupled with the
National Emission Inventory [NEI]). Model runs carried out
here focus only on emissions, concentrations, and health
impacts from EGUs. The grid-cell size in InMAP varies from 1
km × 1 km (typically in urban areas) to 48 km × 48 km
(typically in rural areas), depending on the gradient in the
population density and pollutant concentrations. As configured
here, InMAP also incorporates information about population,
demographics, and concentration−response functions; we,
therefore, use it to estimate concentrations and health impacts
from EGU-attributable PM2.5. Specifically, InMAP output for
each grid cell includes annual-average PM2.5 concentration
(μg/m3), the number of premature deaths by race and
household income category, population size, and baseline
mortality.
For research questions considered here, InMAP requires

three main inputs:

(1) Annual emissions of VOC, NOx, NH3, SO2, and primary
PM2.5 for each EGU; we employ US EPA’s 2014
National Emission Inventory (NEI).7 For point sources,
such as the EGUs, the NEI provides stack attributes
including height, diameter, temperature, and exit
velocity.

(2) Census data on population (by block group) and
household income (tract) for 2014 from the 2014
American Community Survey (ACS).60 Demographic
groups given in the ACS are self-reported white non-
Latino, white Latino, black non-Latino, black Latino,
Asian Latino, Asian non-Latino, Native American non-
Latino, Native American Latino, mixed/other non-
Latino, and mixed/other Latino. In our summaries,
“non-white” refers to all categories except white non-
Latino; “black”, “Asian”, and “Native American” include
both Latino and non-Latino ethnicities. “Latino” refers
to white Latinos, black Latinos, Asian Latinos, Native
American Latinos, and mixed/other Latinos (according
to the 2014 ACS, Latinos are 65% white, 31% mixed/
other, 2% black, 1% Native American, and 0.3% Asian).
Census income data are divided into 16 income groups
for each of six racial categories: white non-Latino, white
Latino, black, Asian, Native American, and mixed/other
race groups. Therefore, following the Census data, our
summaries present income-based results for “white
Latino” category and not all “Latinos”. We calculate
the percentage of households in each income category in
a given census tract and apply those percentages to
population counts at the block group level (matching
census tracts to the block groups that they contain) to
calculate an estimate of people in each income group.
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(3) Baseline all-cause mortality data are for the year 2014
from the National Center for Health Statistics (NCHS)
Office of Analysis and Epidemiology (OAE) at the
Centers for Disease Control and Prevention (CDC).61

Race-specific health impacts are calculated using all-
cause mortality rates for the entire population of all age
groups. Our analysis does not differentiate impacts by
age group. Literature-derived estimates of mortality rates
and the concentration−response (C−R) function are
not sufficiently robust to allow race-ethnicity-specific
values for those two parameters. Consistent with prior
research11−17,27 and in keeping with EPA norms,62−64

we assume that all PM2.5 particles are equally toxic.

We employ an expression derived from Krewski et al.
(2009)65 for our PM2.5 concentration−response function,
which is used to estimate PM2.5-related health impacts (Cox
proportional hazards model):

P

number of premature deaths

(e ) 1)
all cause mortality rate

100 000

(PM linear coefficient PM )2.5 2.5= −

× ×
‐

×[ ]

Here, PM2.5 linear coefficient is assumed to be ln(1.078)/10 =
0.00751, i.e., a 7.8% increase in the number of premature
deaths for every 10 μg/m3 increase in the concentration of
PM2.5. [PM2.5] is the concentration of PM2.5, P is the total
population. Mortality is then estimated as

deaths per 100 000 people
number of premature deaths

population
100 000= ×

We estimate premature mortality at the national scale, for each
RTO, for each US state, and for each race/ethnicity and race/
ethnicity−income group. We run InMAP for all EGUs to
estimate impacts at the national scale. We also run InMAP
separately for coal-fired EGUs, natural gas-fired EGUs, and all
other fuel-type EGUs to estimate impacts by fuel-type at the
national scale. Finally, we apportion health impacts by
constituents of PM2.5 at the national scale: primary PM2.5,
particulate SO4 (pSO4), particulate NO3 (pNO3), particulate
NH4 (pNH4), and secondary organic aerosol (SOA; caused by
VOC emissions). We run InMAP separately for each RTO. For
each of 49 geographies in the contiguous US (i.e., the 48 states
plus the District of Columbia; for brevity, we refer here to
these 49 geographies as “states”), we use the InMAP Source−
Receptor Matrix (ISRM) to estimate impacts from EGUs
within and across state boundaries.66 Total number of
premature deaths, by race and income, are aggregated by
RTO and by state. In some cases, analyses are constrained by
available Census data. For example, Census data on ethnicity
are available for whites, blacks, Asian, Native Americans, and
mixed/other groups, i.e., each racial group is differentiated by
ethnicity (Latino/non-Latino). In contrast, for combined race
and income data, demographic data is differentiated by
ethnicity for whites only, not for other races; results by
income categories are available for six racial/ethnic categories
(white non-Latino, white Latino, black, Asian, Native
American, and mixed/other race groups), reflecting the
race−income data available from the US Census. If robust,

more-detailed demographic informations were publicly avail-
able, it would be straightforward to update our estimates.
Population-weighted concentrations are calculated as

follows:

P

P

population weighted average PM concentration

( PM )i
n

i i

i
n

i

2.5

1 2.5

1

=
∑ × [ ]

∑
=

=

Here, Pi is the number of people of a specific demographic
group in grid cell i, [PM2.5]i is the concentration in grid cell i,
and n is the total number of grid cells.
Damages are presented in terms of three types of metrics:

(a) We compute total damages in terms of deaths, by
aggregating deaths (from total PM2.5) in each grid cell
for each state, RTO, and nationally and each race/
ethnicity and race/ethnicity−income group in each
spatial scale. For mortality rate in terms of deaths per
100 000 people, health impacts are normalized to the
respective population in each geographic scale, race/
ethnicity and race/ethnicity−income groups.

(b) We estimate “risk gap” for state-level mortality estimates
to quantify the difference in environmental health risk
(deaths per 100 000 people per year) between the most-
and least-exposed group in a state. The advantage of this
metric is that it does not force a preselection of specific
groups to compare (e.g., blacks relative to whites, Asians
relative to population average, lowest income relative to
highest income) but instead is flexible across geog-
raphies to which groups are most and least exposed in
that state.

(c) We compute the deaths per unit of electricity service
provided (deaths per TWh) for the state, RTO, and
nationally. This metric facilitates nationwide compar-
isons of the impacts of EGUs.

3. RESULTS
3.1. Total Premature Deaths and Deaths Per Unit of

Electricity: Nationally, Regionally, and by State.
3.1.1. Total National Damages. For 2014, we estimate
∼16 400 PM2.5-related premature deaths attributable to EGUs,
for an average of ∼4 deaths/TWh electricity generated,
corresponding to a total national population-weighted estimate
of ∼0.82 μg/m3 of EGU-PM2.5. Most of the deaths (∼14 200
deaths or ∼86%; see Table 1) are attributable to EGUs that are
in an RTO (the rest are caused by EGUs that are not in an
RTO).
Deaths per unit energy generated (Table 1) vary

substantially among regional grids, by up to a factor of ∼30
(MISO vs CAISO), with higher values in coal-heavy grids
(MISO, SPP). Total attributable premature deaths vary even
more by state (Table S2) from ∼1850 deaths/year
(Pennsylvania) to ∼1 death/year (Montana). Among states,
deaths per unit electricity generation (units: deaths/TWh) for
each state (Table S3) vary from 0.02 (Vermont) to 14
(Indiana).
Of the ∼16 400 premature deaths from EGUs nationwide,

we estimate that the vast majority (∼15 200 or ∼93%) is from
coal EGUs, ∼800 (5%) from natural gas EGUs, and ∼460
from other fuel EGUs (Figure S2). Similar patterns hold in
most states: coal-fired EGUs are the largest contributor to total
EGU-PM2.5 deaths (Table S4). Nationally, most EGU-PM2.5
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impacts (∼73%) are from pSO4, which is dominated by sulfur
emissions from coal EGUs; contributions by other species
(Figure S3) are 15% (pNO3), 11% (primary PM2.5), 1%
(pNH4), and ∼0% (SOA).
3.2. Differences in Damages by Demographic Group.

3.2.1. Race. We find that year 2014 mortality rates from EGU-
PM2.5 are largest for black people, second largest for white non-
Latino people, and lower-than-average for Asian, Native
American, and Latino people (Figure 1). Differences by race
vary by RTO (Figure S4) and species (Figure S5).

The overall average mortality rates from EGU-PM2.5 are 5.3
for all people, 6.6 for blacks, 5.9 for white non-Latinos, and 3.6
averaged across the remaining groups (Figure 1). We assessed
the spatial distribution by race-ethnicity of mortality rate
density (i.e., per km2) from EGU-PM2.5 (Figure S6A−C) and
to identify where each group is most impacted. For example,
for Native Americans, the density of deaths is greater in
western Oklahoma than in most locations. Subdividing by fuel-
type (Figure S7) reveals that blacks are the most-exposed
group for all three fuel categories. For natural gas, exposures
are higher than average for blacks, Asians, and Latinos and
lower than average for white non-Latinos. For coal emissions,
relative exposures are similar to Figure 1 except that Native
Americans are slightly more exposed to coal emissions than
Asians are.
3.2.2. Income and Race. Differences by race are observed

across all income categories (Figure 2). Thus, differences by

race/ethnicity (Figure 1) are not “merely” income differences;
race/ethnicity differences are present even after accounting for
differences in income (Figure 2).
On average, exposures are higher for lower-income house-

holds than for higher-income households. Considering Figure
2 (deaths per 100 000 people attributable to EGU-PM2.5), the
difference between most- and least-exposed income group is
∼1.0 for the overall population; the same difference is 1.5 for
white non-Latino, 0.9 [black], 0.3 [white Latino], 0.5 [Asian],
0.9 [Native American], and 0.8 [mixed/other]. The difference
between most- and least-exposed race is 3.6 for the overall
population, 4.0 for the lowest-income population, and 2.8 for
the highest-income population. Thus, differences by race are
larger than differences by income.
Based on results in Figure 2, if we calculate the risks by race,

but making the adjustment that all race/ethnicity groups have
an income distribution equal to the national average
distribution, then mortality rates from EGU-PM2.5 (deaths
per 100 000 people) would be 5.3 for all people, 6.4 for blacks,
5.9 for white non-Latinos, and 3.2 averaged across the
remaining groups. Here too, analyses reveal that exposure
differences by race are observed even after accounting for
income differences.
Race−income results differ substantially by RTO (Figure

S8), for example, exposures are higher for white non-Latino
income groups than for black income groups for CAISO,
MISO, NEISO, and SPP but not ERCOT, NYISO, and PJM.
We estimate exposures by household income group, for each

state, from total EGU-PM2.5; Figure 3 shows the most-exposed
income category in each state and the risk gap (premature
deaths per 100 000 people) between most- and least-exposed
household income group. The “$10 000−$15 000 per year”
household income category is the most-exposed category for
19 out of 49 states (risk gap varies between 0.06 and 3.6 for
these 19 states). Overall, low-income categories are most
exposed in a majority of the states [38 states], followed by
middle income [5 states] and upper income [6 states]. The gap
between most- and least-exposed household income category is
sizeable (>2 premature deaths per 100 000 people) in only
three states (Maryland [3.5], Virginia [3.6], Indiana [2.9];
total population = 21 million).

3.3. Health Damages by State. Our results estimate
EGU-PM2.5 health impacts, with each state as a source and a
receptor of pollution (Figure 4). The maps reveal geographic
differences between where EGU emissions are produced and
where exposures and health impacts are experienced. For
example, Texas experienced an estimated total of ∼1360 EGU-

Table 1. Estimated Deaths Per Unit Electricity Generation
by RTO

total deaths
attributable to

RTO’s
emissions percent of generation by fuela

RTO

annual net
generation
(TWh)a

total
deaths

deaths
per
TWh

coal
(%)

natural
gas (%)

oil, biomass,
and other
fossil fuels

(%)

CAISO 170 45 0.3 0.5 59 4
ERCOT 365 1788 4.9 32 46 0.7
MISO 691 5649 8.2 56 19 4
NEISO 110 48 0.4 5 43 10
NYISO 140 162 1.2 3 42 4
PJM 809 4868 6.0 43 17 2
SPP 238 1599 6.7 59 19 0.8

aFrom year 2014 in eGRID.29

Figure 1. Deaths per 100 000 people attributable to PM2.5 from
electricity generation in the US in 2014.

Figure 2. Deaths per 100 000 people by income group and race/
ethnicity. Icon area is proportional to population size.
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PM2.5 premature deaths in 2014 (Figure 4A), most of which
(∼1160, or >80%) are attributable to EGU emissions
occurring inside Texas (Figure 4B); the remainder (∼200
deaths/year in Texas) were attributable to PM2.5 in Texas
caused by EGU emissions outside of Texas. EGU emissions in
Texas caused an additional ∼524 deaths/year in states other
than Texas (Figure 4C). Thus, Texas is a net exporter of EGU-
PM2.5 deaths: the number of premature deaths per year caused
by Texas EGU emissions (∼1684; the sum of ∼1160 in-state
plus ∼524 out-of-state) exceeds the number of EGU-PM2.5

premature deaths in Texas (∼1360) by ∼325 (Figure 4D). For
some states (e.g., Arizona), damages from their EGU emissions
are large in many downwind states; for other states (e.g.,
Washington), damages are more local (Figure S10A). As
expected, many of the net importing states are on the East
Coast (Figure 4D). A bar chart of Figure 4 (Figure S11)
reveals the comparison between health impacts among
different states.
States with the largest EGU-PM2.5 mortality are Pennsylva-

nia, Texas, Ohio, New York, Indiana, Virginia, Maryland,
Kentucky, North Carolina, New Jersey, Illinois, and Florida;
states with the smallest values are New Hampshire, South
Dakota, Nevada, New Mexico, Maine, Arizona, Utah, North
Dakota, Vermont, Wyoming, Oregon, Idaho, and Montana.

Figure 3. Most-exposed household income group in thousand US
dollars (for overall population) and risk gap (units: deaths per
100 000 people attributable to EGU-PM2.5 from all EGUs in the US)
between the most- and least-exposed household income group in each
US state. The income group that is the most exposed is shown for
states where the gap in the mortality rate is greater than 1 death per
100 000 people. The remaining states are unlabeled because the gap
between most- and least-exposed income group is small (less than 1
per 100 000 people). A version of the map displaying labels for all
states is shown in Figure S9. Risk gap is shown by color gradation.

Figure 4. Deaths from EGU-PM2.5 by state. (A) Total deaths in each state from EGUs throughout the US, (B) total deaths in-state from EGUs in
that state, (C) total deaths out-of-state from EGUs in that state, (D) net imports (negative values) or exports (positive values) of deaths. Values in
D are calculated as B + C − A. Range limits for color bars in A, B, and C are by quantiles.
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The states with the largest import−export mortality imbalance
are New York, Virginia, Maryland, New Jersey, North Carolina,
and Ohio, which are net importers, i.e., the impacts from other
states exceed impacts onto other states; Missouri, Texas,
Kentucky, Illinois, West Virginia, and Indiana are the largest
net exporters (i.e., the impacts to other states exceed impacts
from other states). Among the largest net importing states,
New York, Maryland, and New Jersey import the largest share
of out-of-state impacts from Pennsylvania [29%, 36%, and
49%, respectively], North Carolina’s largest share of out-of-
state impacts comes from Kentucky [16%], Ohio from Indiana
[37%], and Virginia from West Virginia [20%]. A similar
number of states are net importers versus net exporters of
EGU-PM2.5 mortality (24 states and 24 states, respectively);
importers (exporters) are more likely to be found in the
Eastern (Western) portion of the US.
Our results reflect that EGU emissions travel great distances.

For example, when considering states as receptors, in 39 states,
a majority (>50%) of EGU-PM2.5 mortality is attributable to
EGU emissions in other states (Figure S12). When considering
states as sources, in 35 states, a majority (>50%) of the state’s
EGU-PM2.5 mortality impacts occurs outside of that state
(Figure S10B).
3.4 Variations by Geography and Race. 3.4.1. Regional

Transmission Organizations. The most-impacted race/
ethnicity varies by RTO (Figure S13): white non-Latino for
NEISO; Asian [CAISO and NYISO]; white Latino [ERCOT];
black [PJM and MISO]; and Native American [SPP]. MISO
and SPP (the two RTOs with >50% of generation from coal;
Table 1) are the only RTOs where more than 50% of total
premature deaths occurs outside RTO boundaries (Figures
S14 and S15).
3.4.2. States. Environmental justice aspects of EGU-PM2.5

vary by state and by EJ metric employed (Figures 5 and S16,
Table S5). For example, the impacts in Texas from nationwide
emissions are greater for blacks than any other race-ethnicity
group, with a gap of ∼2.4 deaths/100 000 people between the

most-exposed (black) and least-exposed (white Latino) group.
In contrast, in Oklahoma, impacts are greatest for Native
Americans, with a gap of ∼2.1 deaths/100 000 people between
the most-exposed (Native American) and least-exposed
(Asian) group. Among the seven states with the largest gaps
by race (Figure 5; >2 premature deaths per 100 000 people),
one can find examples where the most-exposed group is white
non-Latino (Maryland, Pennsylvania, Virginia), black (Ken-
tucky, Texas), white Latino (Mississippi), and Native
American (Oklahoma); in total, these seven states comprise
64 million people (compared to 21 million people in the three
analogous states (i.e., risk gap >2) from Figure 3). A map,
analogous to Figures 3 and 5, but combining race/ethnicity
and income, is in the Supporting Information (Figure S17).
Impacts within each state by fuel-type and race-ethnicity are in
Table S6.

4. DISCUSSION
Previous studies have estimated the total damages associated
with PM2.5 from the US electricity sector. This work
complements those findings by systematically analyzing the
damages for different geographical boundaries (RTOs and
states) and for different demographic groups (race and
income).
We find that blacks are disproportionately affected by EGU-

PM2.5 nationally, but most-exposed race/ethnicity varies by
state and by RTO. Differences by race/ethnicity hold across all
income groups. Exposures are higher for lower-income than for
higher-income households, but differences by race/ethnicity
are larger than differences by income.
A substantial portion of the health risks in most states is

attributable to out-of-state emissions, reflecting that EGU-
PM2.5 is a long-range pollutant. Some states are net imports of
harm, others are net exporters. Regarding issues related to
cross-state damages, EPA regulations such as the Cross-State
Air Pollution Rule (CSAPR)67 address air pollution from
upwind states that crosses state lines and affect air quality in
downwind states. Our findings highlight the interstate nature
of EGU-PM2.5 impacts: PM2.5 mortality impacts in a state often
are highly impacted by out-of-state EGU emissions.
Our estimate of total premature deaths (∼16 400 EGU-

PM2.5 premature deaths in 2014) is on the low end of the
range given in the literature (see above); reasons include (1)
reduced emissions in 2014 relative to 2005 and (2) differences
in concentration response functions used in other studies (see
below).
Our investigation considers exposure and health impacts

from EGU-PM2.5, instead of proximity to EGUs, as considered
by previous studies.68 Previous work68 reported that the
proportion of the population living within 30 miles of a power
plant is greater for blacks than whites. Power plants are mostly
located in rural areas, but the long-range transport of emissions
can impact downwind population groups at varying magni-
tudes and distances. In considering an effective policy for
reducing EGU impacts and disparities in impacts, it is
important to consider the spatial distribution of emissions
and populations, and the long-range transport of PM2.5 and its
emission precursors.
Future research could usefully explore the impact on results

of (1) alternative models and modeling approaches, (2) grid-
cell size, (3) alternative concentration−response functions
(e.g., a supralinear C−R) or allowing the C−R to vary by
source, geography, or chemical components,69−72 (4) health

Figure 5. Most-exposed race-ethnic group and risk gap (units: deaths
per 100 000 people) between the most- and least-exposed race-ethnic
groups in each US state from total EGU-PM2.5 emissions in the entire
US. Race-ethnicity labels are displayed for states with a gap in the
mortality rate greater than 1 death per 100 000 people. The remaining
states are unlabeled because the gap between most- and least-exposed
race-ethnicity groups is relatively small (less than 1 per 100 000
people). A version of the map displaying labels for all states is in
Figure S16. Risk gap is shown by color gradation.

Environmental Science & Technology Article

DOI: 10.1021/acs.est.9b02527
Environ. Sci. Technol. XXXX, XXX, XXX−XXX

F

http://pubs.acs.org/doi/suppl/10.1021/acs.est.9b02527/suppl_file/es9b02527_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.9b02527/suppl_file/es9b02527_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.9b02527/suppl_file/es9b02527_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.9b02527/suppl_file/es9b02527_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.9b02527/suppl_file/es9b02527_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.9b02527/suppl_file/es9b02527_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.9b02527/suppl_file/es9b02527_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.9b02527/suppl_file/es9b02527_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.9b02527/suppl_file/es9b02527_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.9b02527/suppl_file/es9b02527_si_001.pdf
http://dx.doi.org/10.1021/acs.est.9b02527


impacts of tropospheric (i.e., ground-level) ozone (O3)
formation from NOx and VOCs emissions from EGUs, and
(5) updated emissions for a more-recent year, such as 2017
NEI emissions.
Paolella et al. (2018)73 demonstrated the importance of fine

spatial resolution for identifying and quantifying exposure
disparities. Our approach employs a reduced-complexity air-
quality model (InMAP; ISRM) that uses a variable resolution
grid (i.e., spatially fine grid in high population density areas).
Thus, although our approach addresses the needs identified by
Paolella et al. (2018)73 (i.e., smaller-scale grid cells), we
hypothesize that grid-cell size is less important for issues
considered here because (1) EGUs typically have tall stacks,
which spread pollution and reduce the relative importance of
local conditions and (2) EGU-PM2.5 is a long-range pollutant
(secondary PM2.5 formation is dominated by emissions of SO2,
which typically takes several days to transform into PM2.5).
Future research could test whether results seen here are also
observed using other RCMs74 or a conventional CTM.
Our study employs the mortality hazard ratio of 1.078 for

all-cause mortality from the American Cancer Society (ACS)
reanalysis study (Krewski et al. 2009)65 to estimate premature
deaths using a linear C−R function with no threshold. This
C−R function is considered a US EPA standard and is
commonly used in regulatory and academic air-quality
research.54,75,76 To understand the impact of alternative
mortality hazard ratios on the premature deaths calculated in
this work, as a sensitivity analysis we use values from Lepeule
et al. (2012) (i.e., reanalysis of the Harvard Six Cities (H6C)
study) [1.14, 95% CI = 1.07−1.22],77 Vodonos et al. (2018)
[1.129, 95% CI=1.109−1.150],78 and Pope et al. (2019) [1.12,
95% CI = 1.08−1.15].79 These alternative hazard ratios
increase the national premature deaths estimated in this work
substantially: by 75% [Lepeule et al. (2012)], 62% [Vodonos
et al. (2018)], and 51% [Pope et al. (2019)]. Future research
in the PM2.5 C−R functions may benefit from relationships
that are specific to the source sector, geographical region, or
chemical constituents. Straightforward interpretation of the
values individually reported by those three studies suggests an
uncertainty of up to a factor of 2 (i.e., for Lepeule, the lower CI
relative to the central estimate) if considering the 95% CIs, an
uncertainty of 17% if considering just the three central-
tendency estimates used in this sensitivity analysis, and an
uncertainty of up to 75% if comparing those three studies
against our base-case predictions. Detailed quantification of
uncertainty in the C−R, via meta-analysis or other techniques,
is outside the scope of research for this article; however, these
comparisons suggest that our results are conservative, i.e., likely
underestimate the true health impacts from air pollution.
Health impacts of ozone from EGU emissions have been

previously modeled for the year 2005 and are estimated to be
much smaller (∼1−10% of the total impacts from EGUs in the
US) than PM2.5-related impacts.10,12,13 We studied the year
2014 because it reflects the most-current, well-vetted NEI
dataset available. Emissions and population patterns may differ
for the year 2014 than for more-recent (and future) years,
which would impact results here. In general, electricity
generation has lower emissions and uses less coal today than
in 2014.80 For that reason, total deaths per year from EGU-
PM2.5 are likely lower for the present year than for 2014.
Our analysis could be extended to other specific sectors of

the economy. We hope that results here are useful for scientists
and policymakers to understand and address disparities in air

pollution exposure by race, income, and geography. Reductions
in EGU emissions and EGU-PM2.5 would not only save lives
but also can reduce environmental and health inequalities.
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