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A B S T R A C T

Background: Limited evidence exists on the effect of particulate air pollution on blood glucose levels. We
evaluated the associations of residential and personal levels of fine particulate matter (PM2.5) and black carbon
(BC) with blood glucose and diabetic status among residents of 28 peri-urban villages in South India.
Methods: We used cross-sectional data from 5065 adults (≥18 years, 54% men) included in the Andhra Pradesh
Children and Parents Study. Fasting plasma glucose was measured once in 2010–2012 and prevalent prediabetes
and diabetes were defined following the American Diabetes Association criteria. We estimated annual ambient
PM2.5 and BC levels at residence using land-use regression models and annual personal exposure to PM2.5 and BC
using prediction models based on direct measurements from a subsample of 402 participants. We used linear and
logistic nested mixed-effect models to assess the association between exposure metrics and health outcomes. For
personal exposures, we stratified analyses by sex.
Results: Mean (SD) residential PM2.5 and BC were 32.9 (2.6) μg/m3 and 2.5 (2.6) μg/m3, respectively; personal
exposures to PM2.5 and BC were 54.5 (11.5) μg/m3 and 5.8 (2.5) μg/m3, respectively. Average (SD) fasting blood
glucose was 5.3 (1.3) mmol/l, 16% of participants had prediabetes, and 5.5% had diabetes. Residential PM2.5

and BC were not associated with higher blood glucose levels. Personal PM2.5 (20 μg/m3 increase) and BC (1 μg/
m3 increase) were negatively associated with blood glucose levels in women (PM2.5: −1.93, 95%CI: −3.12,
−0.73; BC: −0.63, 95%CI: −0.90, −0.37). In men, associations were negative for personal PM2.5 (−1.99,
95%CI: −3.56, −0.39) and positive for personal BC (0.49, 95%CI: −0.44, 1.43). We observed no evidence of
associations between any exposure and prevalence of prediabetes/diabetes.
Conclusions: Our results do not provide evidence that residential exposures to PM2.5 or BC are associated with
blood glucose or prevalence of prediabetes/diabetes in this population. Associations with personal exposure may
have been affected by unmeasured confounding, highlighting a challenge in using personal exposure estimates in
air pollution epidemiology. These associations should be further examined in longitudinal studies.

1. Introduction

Over the last decade, air quality has improved in some high-income
regions but worsened in many low- and middle-income regions such as

South Asia (Brauer et al., 2016; Health Effects Institute, 2018). Simi-
larly, Type 2 diabetes mellitus (T2DM) prevalence varies around the
world. The majority (80%) of prevalent cases of T2DM are in less de-
veloped regions, particularly in Asia (Ramachandran et al., 2010). India
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and China are expected to have the largest number of people with
T2DM in the world by 2030 (Wild et al., 2004).

Emerging evidence suggests that long-term air pollution may be
associated with higher levels of fasting blood glucose (Thiering et al.,
2013; Wolf et al., 2016; Chen et al., 2016; Thiering et al., 2016; Khafaie
et al., 2018; Li et al., 2018; Toledo-Corral et al., 2018; B.Y. Yang et al.,
2018; Dang et al., 2018). The observed associations have been generally
stronger for gaseous pollutants than particulate pollutants (Wolf et al.,
2016; B.Y. Yang et al., 2018; Dang et al., 2018). However, results from
studies assessing fine particulate matter (PM2.5) are heterogeneous;
with some studies (Wolf et al., 2016; B.Y. Yang et al., 2018) and a
pooled analysis (Dang et al., 2018) suggesting weak or null associa-
tions.

Long-term exposure to particulate air pollution has also been linked
to higher risk of development of T2DM (Rao et al., 2015; Kolb and
Martin, 2017; Dendup et al., 2018; Alderete et al., 2018; Dang et al.,
2018). Recent epidemiological evidence suggests that long-term ex-
posure to PM2.5 is associated with T2DM incidence (Hansen et al., 2016;
Requia et al., 2017; Qiu et al., 2018; Bowe et al., 2018) and prevalence
(Qiu et al., 2018; Liu et al., 2016; Honda et al., 2017; Mazidi and
Speakman, 2017; B.Y. Yang et al., 2018; Y. Yang et al., 2018). Although
positive associations are supported by various pooled analyses (Balti
et al., 2014; Janghorbani et al., 2014; Wang et al., 2014; Eze et al.,
2015a; He et al., 2017), not all existing evidence has reported positive
associations (Rao et al., 2015; Puett et al., 2010; Dzhambov and
Dimitrova, 2016; Strak et al., 2017; O'Donovan et al., 2017; Renzi et al.,
2018).

The current literature on the association between air pollution and
T2DM and its traits is limited to North America and Europe (Balti et al.,
2014; Janghorbani et al., 2014; Eze et al., 2015a; Dendup et al., 2018;
Alderete et al., 2018) and urban areas in China (Brook et al., 2016;
Jiang et al., 2016; Qiu et al., 2018; B.Y. Yang et al., 2018; Y. Yang et al.,
2018). There is a need to expand research to highly exposed popula-
tions living in rural or peri-urban areas where the sources and chemical
makeup of particles may differ relative to urban areas.

In addition, there is a need to study more specific markers of
combustion-related particles such as black carbon (BC). Exposure to BC
has been linked to cardiovascular and cardiorespiratory health (Hoek
et al., 2013; Luben et al., 2017; Magalhaes et al., 2018), but to a lesser
extent to metabolic health (Wolf et al., 2016; Strak et al., 2017; Renzi
et al., 2018; Rajkumar et al., 2018). Most of these studies have been
conducted in urban areas of high-income countries, where BC is a good
indicator of road traffic emissions, particularly from diesel-powered
vehicles (Querol et al., 2013). In contrast, in rural areas where use of

unclean fuels for household energy (e.g., firewood, charcoal) is pre-
valent, BC is a good indicator of emissions from biomass burning (Reid
et al., 2005).

Examining the association between long-term PM2.5 and BC and
blood glucose levels in South Asians is particularly relevant. South
Asians are exposed to high levels of indoor and outdoor air pollution
and have a high-risk metabolic profile. They are particularly susceptible
to insulin resistance, diabetes, and cardiovascular diseases
(Unnikrishnan et al., 2014) and develop diabetes at earlier ages than do
white Europeans (Sattar and Gill, 2015). We investigated whether re-
sidential or personal levels of PM2.5 and BC were associated with blood
glucose or diabetic status among South Asian adults living in peri-urban
India.

2. Materials and methods

2.1. Study population and ethics

This study uses cross-sectional data from the third follow-up of the
Andhra Pradesh Children and Parents Study (APCAPS). APCAPS is an
intergenerational study in South India composed of adults born in
1987–1990 together with their parents and siblings (Kinra et al., 2014).
The third follow-up of APCAPS was conducted between 2010 and 2012
(Fig. 1) and included questionnaire and health data for 6227 adults
aged ≥18 years (excluding pregnant women). APCAPS participants
lived in 28 villages in a peri-urban area (22 km×35 km) southeast of
Hyderabad city, Telangana (Fig. S1).

APCAPS was approved by the London School of Hygiene & Tropical
Medicine (London, UK) and the National Institute of Nutrition (NIN)
(Hyderabad, India). Signed consent forms were obtained from all par-
ticipants.

2.2. Outcome assessment and definition

We collected one blood sample per participant in clinics established
in the study villages as part of APCAPS. Participants attended morning
clinics and were instructed to fast overnight and asked to sit for 10min
before venous blood withdrawal. Fasting plasma glucose was measured
on the same day of blood collection using the glucose oxidase/perox-
idase-4-aminophenazone-phenol (GOD-PAP) enzymatic method
(Trinder, 1969). Ambient temperature and relative humidity were
measured at Hyderabad International Airport weather station (Fig. S1)
(data publicly available).

Definitions for prediabetes and for diabetes are as follows. We

Fig. 1. Timeline (in years) of data collection as part of the CHAI and APCAPS studies.
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defined prediabetes using the criteria of the American Diabetes
Association (American Diabetes Association, 2014) (i.e., fasting glucose
≥5.6mmol/l and< 7 mmol/l). We defined diabetes (yes/no) when
fasting glucose was ≥7mmol/l (American Diabetes Association, 2014)
and/or participant either having self-reported diabetes or self-reported
physician-diagnosed diabetes. Since we could not distinguish between
Type 1 and Type 2 diabetes, we present the overall prevalence of dia-
betes.

2.3. Air pollution assessment

We used estimates of annual average concentrations of PM2.5 and
BC. Ambient monitoring was conducted during 2015–2016 within the
framework of the CHAI project (Fig. 1), as previously described (Tonne
et al., 2017). We collected 24-h gravimetric samples in 23 fixed-mon-
itoring sites in the study area for a total of 21 days over two seasons
(i.e., post-monsoon and summer) (Sanchez et al., 2018). Annual
average concentrations at participants' residential address were esti-
mated with land-use regression (LUR) models using geographic vari-
ables available for 2012–2013 (Fig. 1). The LUR models explained 58%
of the variability in annual PM2.5 concentrations and 79% variability in
the BC concentrations. Further details of ambient monitoring, dis-
tribution of measured concentrations at monitoring sites, and LUR
model development can be found elsewhere (Sanchez et al., 2018).
CHAI was approved by the Ethics Committees of Parc de Salut MAR
(Barcelona, Spain), the Indian Institute of Public Health (Hyderabad,
India), and the NIN.

In secondary analysis, we used estimates of annual personal ex-
posure to PM2.5 and BC as additional measures of exposure. We mea-
sured personal exposure twice during 2015–2016 (Fig. 1) in a subset of
402 participants (random sample stratified by sex and village) in two
different seasons. Participants wore a gravimetric sampler for at least
24 h, obtaining 610 participant-days of PM2.5 measurements and 569
participant-days of BC measurements. We used 67 potential time-in-
variant predictors of exposure (including individual and household
characteristics from baseline questionnaire and general time-activity
patterns from post-monitoring questionnaire) (Fig. 1) to predict per-
sonal exposure to PM2.5 and BC in all participants. Spearman correla-
tions between measured and predicted personal levels and main pre-
dictors of personal exposure to PM2.5 and BC are presented in Table S1.
Briefly, the main predictors of personal PM2.5 exposure in men were
active smoking, occupation, and time spent cycling, and in women were
occupation of the head of the household, time near biomass stove and
primary stove type. For BC, the main predictors in men were occupa-
tion, ambient levels, time spent working, and sedentary time, and in
women were again time near biomass stove and primary stove type as
well as time spent in a motorized vehicle. More details on the prediction
model can be found elsewhere (Sanchez et al., 2019).

2.4. Covariates

Data on relevant covariates were collected through anthropometric
measurements in the clinic and an interviewer-administered baseline
questionnaire (available at: http://apcaps.lshtm.ac.uk/questionnaires/)
(Fig. 1). We calculated body mass index (BMI) as measured weight (in
kg) divided by the square of measured height (in m). We calculated
waist-to-hip-ratio by dividing waist circumference (in cm) by hip cir-
cumference (cm). Dietary intake over the past year was evaluated
through a semi-quantitative food frequency questionnaire (FFQ). We
obtained average daily consumption of sugar and sweets, alcohol,
fruits, and carbohydrates from the FFQ (Bowen et al., 2012). We also
collected the type and duration of all physical activities performed the
preceding week (including sleep and sedentary time). Each activity was
characterized by its Metabolic Equivalent Task (MET) (Matsuzaki et al.,
2015). Physical activity level was categorized into extremely inactive or
sedentary (< 1.7 MET-week), moderately active (≥1.7 to< 2 MET-

week), and vigorously active (≥2 MET-week). Socio-economic status
(SES) was evaluated through education attainment (without any type of
formal education / with either primary, secondary or tertiary educa-
tion) and standard of living index (SLI) of the household, categorized
into tertiles. SLI is a composite index based on assets and characteristics
of the household, including vehicle ownership and use of clean cooking
fuel (Kinra et al., 2014).

2.5. Data analysis

Participants with missing data on sex (n=4), household ID
(n= 89), glucose levels (n= 61), and estimates of residential exposure
levels (n= 546) were excluded from the main analysis. Among those
participants without self-reported or clinical diagnosis of diabetes, we
excluded those with no information on fasting status at the time of
blood draw (n=109) and those who did not fast for at least 8 h before
blood collection (n=353), leaving 5065 participants for main analyses
(81%). We used multiple imputation (n=20) to replace missing values
in covariates using the method of chained equations (Buuren and
Groothuis-Oudshoorn, 2011) and pooled regression results using Ru-
bin's rules (Rubin, 1987).

Given the multilevel nature of our data (2245 households nested
within 28 villages), all regression models were built using nested
mixed-effects models. The main results are expressed as within-village
variation of PM2.5 or BC: we used the difference between the household
exposure and the village mean exposure (within effect) as the main
exposure while controlling for the mean exposure of the village (be-
tween effect) (see the Supplementary material for model details). This
method is conceptually equivalent to considering village as a fixed ef-
fect (see Section 3.3), but has the advantage of adjusting for the be-
tween-group unobserved effects using fewer degrees of freedom (Bell
and Jones, 2015).

We applied linear mixed regression models to assess the association
between residential exposure to PM2.5 and BC and concentrations of
fasting blood glucose. From this analysis, we excluded participants
taking any type of anti-diabetic medication (insulin and/or oral drugs)
(n= 86). Fasting blood glucose was log-transformed (natural log
transformation) to improve normality of residuals. Results are ex-
pressed as a percent change in the geometric mean of the outcome ([eβc
- 1] × 100; where β is the regression coefficient and c is the exposure
increase) (Barrera-Gómez and Basagaña, 2015) for a 1 μg/m3 increase
in residential PM2.5 and for a inter-quartile range (IQR) increase in
residential BC (0.1 μg/m3).

We combined participants with prediabetes and diabetes to assess
the association of residential PM2.5 and BC with prevalent prediabetes/
diabetes using unconditional logistic mixed regression models.
Prediabetes and diabetes were combined due to low numbers of parti-
cipants with diabetes in some villages (Fig. S2). Results are expressed as
adjusted odds ratios for a 1 μg/m3 increase in residential PM2.5 and for a
IQR increase in residential BC (0.1 μg/m3).

We selected age and sex as a priori confounders given their strong
association with all exposure metrics and outcomes. Selection of other
covariates was based on previous evidence. We used three models with
progressive confounder adjustment: i) models adjusted for age, sex, and
village mean exposure (model 1); and ii) models further adjusted for
intake of sugar and sweets (in g/day), physical activity level (extremely
inactive or sedentary/moderately active/vigorously active), education
attainment (with/without), alcohol consumption (in g/day), active
smoking (current smoker/former or non-smoker), environmental to-
bacco smoke (ETS) in the household (yes/no), SLI (in tertiles), and
primary cooking fuel (biomass/clean) (model 2, the main model). Since
BMI, waist-to-hip-ratio and hypertension can be considered either
confounders or potential causal intermediates between air pollution
and diabetes, in an additional model we further adjusted model 2 for
BMI (in kg/m2), waist-to-hip-ratio (in cm; Spearman correlation with
BMI was 0.5), and physician-diagnosed hypertension (yes/no) (model
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3). To explore sensitivity of our main analyses, we checked: the ro-
bustness of fasting status by excluding participants who did not fast for
at least 12 h (n= 743) rather than 8 h, and the potential influence of
between-village variability in confounding variables by dropping one
village at a time from main model 2.

In secondary analyses, we used estimates of personal exposure to
PM2.5 and BC as exposures. We included 5155 participants for personal
analyses (83%). We added 90 participants with complete personal ex-
posure data (but missing data on residential exposure). The distribution
of personal exposure estimates was similar across villages if compared
to ambient exposure estimates (Figs. S3 and S4) so confounding by
unaccounted factors at the village level was unlikely. We therefore
fitted mixed-effects models using the untransformed exposure without
adjustment for the village-mean exposure.

Since prediction models of personal exposure were developed se-
parately for men and women (Sanchez et al., 2019), we stratified sec-
ondary analyses by sex. We were interested in capturing the total per-
sonal exposure to particles regardless the source so we did not adjust for
covariates representing sources of particulate air pollution (i.e.
smoking, occupation, and type of primary cooking fuel). We fitted: i)
models adjusted for age (model P1); ii) models further adjusted for
sugar and sweets intake, physical activity level, education attainment
and alcohol consumption (model P2); and iii) models further adjusted
for BMI, waist-to-hip-ratio, and physician-diagnosed hypertension
(model P3). For personal models, we expressed results as the percent
change of 8-h fasting blood glucose level and as odds ratio for prevalent
prediabetes/diabetes, all expressed as IQR increase in personal PM2.5

(20 μg/m3) and 1 μg/m3 increase in personal BC. All analyses were
conducted in R (version 3.5.0) using packages “mice” (Buuren and
Groothuis-Oudshoorn, 2011) and “lme4” (Bates et al., 2015).

3. Results

3.1. Descriptive characteristics

The 5065 participants included in main analysis were 38 (SD: 13)
years old, predominantly men (54%), and predominantly without any
type of formal education (53%) (Table 1). Most participants (58%) used
biomass in their households as primary cooking fuel. Compared to men,
women had less formal education, were physically more active, were
non-smokers and consumed much less alcohol per day. We identified
16% of participants as meeting the criteria for prediabetes and 5.5% for
diabetes (21% all together); prevalence was similar between men and
women. Among participants with diabetes (n=281), 39% were phy-
sician-diagnosed, 3.5% were taking insulin, 31% were taking anti-dia-
betic oral drugs, and 2.5% were taking both. Among participants with
physician-diagnosed diabetes (n=109), 25% did not know or re-
member the name of the medication they were taking. Fasting blood
glucose levels did not correlate with ambient temperature (Pearson r:
−0.05) or with relative humidity (Pearson r: −0.01) the same day of
the blood collection. Averages of long-term residential PM2.5 and BC
were 33 μg/m3 and 2 μg/m3, respectively. Averages of personal PM2.5

and BC were 54 μg/m3 and 6 μg/m3, respectively, with higher personal
concentrations in women than men (Table 1).

3.2. Main results

Within-village residential concentrations of PM2.5 and BC were not
statistically significantly associated with 8-h fasting blood glucose le-
vels in any model (Table 2). For reference, crude effects are shown in
Table S2. In model 2, we estimated an increase of 0.54% of 8-h fasting
blood glucose (95% Confidence Interval (95%CI): −0.77%, 1.86%) for
a 1 μg/m3 increase in within-village PM2.5. For within-village BC, point
estimates were smaller, although CIs were narrower. Associations be-
tween residential exposure to PM2.5 and BC and prevalence of pre-
diabetes/diabetes were consistent with the null hypothesis of no

association (Table 2).

3.3. Sensitivity of main results

Results were similar in sensitivity analyses restricted to participants
having fasted for at least 12 h (instead of 8 h) (Table 2). Results were
also similar in sensitivity analyses treating village as a categorical fixed
effect (Table S3).

To gain further insights into whether the results of our main ana-
lyses (Model 2) were driven by a small number of villages we repeated
the main analysis leaving out one village at a time (Figs. S5, S6). For
PM2.5, results varied somewhat when excluding villages 14 and 33 from
analysis, but the overall conclusions were unchanged. For BC, results
were consistent with the model including all villages.

3.4. Secondary results

In the analysis between personal exposure and glucose levels (Table
S4), we observed statistically significant associations between higher
personal exposure to PM2.5 (20 μg/m3 increase) and BC (1 μg/m3 in-
crease) and lower blood glucose in women (PM2.5: −1.93%, 95%CI:
−3.12%, −0.73%; BC: −0.63%, 95%CI: −0.90%, −0.37%). In men,
only positive associations were found for personal BC (0.49%, 95%CI:
−0.44%, 1.43%).

In the analysis between personal exposure and prevalence of pre-
diabetes/diabetes, associations were generally negative and included
the null in both sexes (Table S4); except for the association of personal
BC in women, which was negative and statistically significant (OR
model 2: 0.93; 95%CI: 0.89; 0.98).

4. Discussion

We evaluated associations between residential and personal ex-
posure to PM2.5 and BC with fasting blood glucose and prevalence of
prediabetes/diabetes in a peri-urban population living in South India.
We observed that residential PM2.5 and BC concentrations were not
associated with concentrations of fasting blood glucose or with a higher
prevalence of prediabetes/diabetes. Our results were consistent across a
range of sensitivity analyses. In secondary analyses, we observed ne-
gative associations between personal exposure to PM2.5 and BC and
blood glucose levels and null associations for prevalence of pre-
diabetes/diabetes.

4.1. Comparison with previous studies

To the best of our knowledge, this is the first study to assess asso-
ciations between long-term air pollution and diabetes in South Asia.
O'Donovan and colleagues included 1839 participants from South Asian
origin residing in the UK when assessing the association between am-
bient PM2.5 and prevalence of diabetes (O'Donovan et al., 2017). They
found null associations comparable to those from our fully-adjusted
model (i.e., adjusting by ethnicity, urban/rural location, physical ac-
tivity and BMI, among others). To our knowledge, our study is also the
first conducted in a non-urban area from a lower-middle-income
country, where traffic is not explaining the spatial variation in ambient
PM2.5 (Sanchez et al., 2018) or the personal exposure to PM2.5 (Milà
et al., 2018). Our study area is mostly influenced by air pollution from
household biomass burning, agricultural crop burning, and local in-
dustry (mostly rice mills and brick kilns) (Kumar et al., 2018). This mix
of sources is what determines the composition and toxicity of particles
and the associated health effects in this area, differentiating it from
urban areas mostly dominated by traffic sources. This is the reason why
in the following sections we compare our results with previous studies
in China, which may be more comparable to our study in terms of
sources (most are nationwide studies that include rural areas with high
influence of smoke from solid fuel burning) and ambient levels (all
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reporting ambient PM2.5 levels ≥36 μg/m3).

4.2. Residential PM2.5

Our results do not provide evidence of an association between PM2.5

levels and blood glucose levels. This is consistent with a recent meta-
analysis based on longitudinal studies that found a null relationship
between ambient PM2.5 and levels of fasting blood glucose (0.02%,
95%CI: −0.05%, 0.08%) (Dang et al., 2018). There are some cross-
sectional studies, however, that have observed positive associations
(Chuang et al., 2011; Liu et al., 2016; B.Y. Yang et al., 2018). Chuang
and colleagues studied a sample of 1023 middle-aged adults (≥54 years
old) living in Taiwan and found a positive and strong association be-
tween higher county or city PM2.5 levels and higher levels of fasting
blood glucose (36.6mmol/l increase per 20 μg/m3 PM2.5 increase;
95%CI: 19.2, 53.9) (Chuang et al., 2011). Liu and colleagues conducted

a nation-wide study among middle-aged (≥45 years old) Chinese
adults, finding strong associations between PM2.5 and blood glucose
either when considering satellite-based estimates (0.26 mmol/l per
41 μg/m3 PM2.5 increase; 95%CI: 0.20, 0.32) or modelled concentra-
tions from the 2013 Global Burden of Disease study (0.22mmol/l;
95%CI: 0.16, 0.28) (Liu et al., 2016). Yang and colleagues studied>
15,000 adults (≥18 years old) living in three cities in northeast China.
They found that each 26 μg/m3 increase in PM2.5 was associated with
modestly higher levels of blood glucose (0.08mmol/l; 95%CI: 0.04,
0.12) (B.Y. Yang et al., 2018).

Regarding the prevalence of prediabetes/diabetes, we found no
evidence of associations with residential exposure to PM2.5 and BC. A
handful of studies conducted in East Asia have supported an association
between PM2.5 and prevalence of diabetes (Liu et al., 2016; Qiu et al.,
2018; B.Y. Yang et al., 2018; Y. Yang et al., 2018). Yang and colleagues
found an adjusted OR of 1.14 (95%CI: 1.03, 1.25) per each 26 μg/m3

Table 1
Participants' characteristics and levels of exposures and outcomes.

All
(n=5065)

Men
(n=2719)

Women
(n= 2346)

Individual characteristics
Age (years), mean ± SD 37.5 ± 13.4 37.0 ± 14.9 38.0 ± 11.3
Formal education
Without (either illiterate or literate) 2679 (52.9) 1029 (37.9) 1650 (70.3)
With any kind 2385 (47.1) 1689 (62.1) 696 (29.7)

Physical activity, n(%)
Extremely inactive or sedentary 3146 (65.9) 1867 (72.4) 1279 (58.3)
Moderately active 1351 (28.3) 597 (23.1) 754 (34.4)
Vigorously active 274 (5.7) 115 (4.5) 159 (7.3)

BMI (kg/m2), mean ± SD 21.1 ± 3.8 20.9 ± 3.5 21.4 ± 4.0
Waist-to-hip ratio (cm), mean ± SD 0.9 ± 0.1 0.9 ± 0.1 0.8 ± 0.1
Smoking status, n(%)
Never or former smoker 4250 (83.9) 1908 (70.2) 2342 (99.8)
Current smoker 814 (16.1) 810 (29.8) 4 (0.2)

Household characteristics
Standard of living index tertiles, n(%)
Low 1571 (33.5) 799 (31.6) 772 (35.7)
Medium 1569 (33.5) 843 (33.4) 726 (33.6)
High 1548 (33.0) 885 (35.0) 663 (30.7)

Environmental tobacco smoke, n(%)
Yes 1599 (31.6) 722 (26.6) 877 (37.4)
No 3465 (68.4) 1986 (73.4) 1469 (62.6)

Primary cooking fuel, n(%)
Clean (gas or electricity) 1961 (41.6) 1093 (42.9) 868 (39.9)
Biomass 2757 (58.4) 1452 (57.1) 1305 (60.1)

Distance to the primary road (km), mean ± SD 4.4 ± 2.8 4.5 ± 2.8 4.3 ± 2.8
Distance to the ring road (km), mean ± SD 9.5 ± 4.5 9.5 ± 4.5 9.5 ± 4.5

Dietary profile
Alcohol intake (g/day), mean ± SD 83.9 ± 166.6 125.1 ± 205.7 36.1 ± 81.4
Sugar and sweets intake (g/day), mean ± SD 22.3 ± 19.5 23.0 ± 19.7 21.5 ± 19.2
Fat intake (g/day), mean ± SD 43.2 ± 23.9 48.0 ± 26.2 37.7 ± 19.6
Fruit intake (g/day), mean ± SD 132.0 ± 141.2 145.4 ± 154.9 116.5 ± 121.7
Carbohydrates intake (g/day), mean ± SD 387.3 ± 161.9 438.4 ± 177.3 328.2 ± 116.8
Vegetarian, n(%) 111 (2.2) 43 (1.6) 68 (2.9)

Cardiometabolic profilea

Fasting glucose (mmol/l), mean ± SD 5.3 ± 1.3 5.3 ± 1.3 5.2 ± 1.3
Diabetes, n(%) 281 (5.5) 161 (5.9) 120 (5.1)
Prediabetes, n(%) 816 (16.1) 458 (16.8) 358 (15.3)
Self-reported diabetes, n(%) 138 (2.7) 82 (3.0) 56 (2.4)
Physician-diagnosed diabetes, n(%) 109 (2.2) 61 (2.3) 48 (2.1)
Taking any type of anti-diabetic medication, n(%) 87 (1.7) 44 (1.6) 43 (1.8)
Physician-diagnosed hypertension, n(%) 298 (6.1) 165 (6.3) 133 (5.9)

Air pollution concentrations
Ambient PM2.5 (μg/m3), mean ± SD 32.9 ± 2.6 32.9 ± 2.6 32.9 ± 2.7
Personal PM2.5 (μg/m3), mean ± SD 54.5 ± 11.5 49.8 ± 8.9 60.1 ± 11.8
Ambient BC (μg/m3), mean ± SD 2.5 ± 0.2 2.5 ± 0.2 2.5 ± 0.2
Personal BC (μg/m3), mean ± SD 5.8 ± 2.5 4.4 ± 0.8 7.5 ± 2.7

SD: standard deviation; BMI: body mass index; PM2.5: particles< 2.5 μm in diameter; BC: black carbon.
a For personal dataset, data are reported for 5155 participants with available personal data (2801 men and 2354 women). Diabetes prevalence among participants

with personal data was 5.0% (n= 258) and prevalence of prediabetes was 15.8% (n=813).
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increase in PM2.5 (B.Y. Yang et al., 2018). Liu and colleagues found a
diabetes prevalence ratio of 1.14 (95%CI: 1.08, 1.20) for every 41.1 μg/
m3 increase in PM2.5 (Liu et al., 2016). A study conducted in Hong Kong
among older adults (≥65 years old), found an adjusted odds ratio of
1.05 (95%CI: 1.01, 1.10) per each 3.2 μg/m3 increase in ambient PM2.5

(Qiu et al., 2018). Another nation-wide study conducted among middle-
aged (≥50 years old) Chinese adults, found an adjusted OR of prevalent
diabetes of 1.27 (95%CI: 1.12, 1.43) per each 10 μg/m3 increase in
ambient PM2.5 (Y. Yang et al., 2018).

There are several reasons that could explain the differences between
our results and these Chinese studies. First, our sample size was smaller
and our exposure range narrower, thus potentially reducing the preci-
sion of our estimates and limiting our ability to detect statistically
significant associations. Second, the prevalence of diabetes reported in
most of these studies was higher (> 10%) than ours (5.5%), thus im-
proving their statistical power. Third, these studies generally focused on
older populations than our study population, who may be more vul-
nerable to the cardiometabolic health effects of air pollution.

In light of our null associations between air pollution and blood
glucose levels and prevalence of prediabetes/diabetes, it could be the
case that our high concentration levels are in the flat part of the

concentration-response curve, as previously seen for PM2.5 and incident
diabetes (Bowe et al., 2018). The curve presented by Bowe et al.
showed that the risk of diabetes moderately increases at concentrations
of PM2.5 above 10 μg/m3 and reach a plateau at 13 μg/m3, concentra-
tion much lower than the one found in our study for ambient PM2.5

(33 μg/m3). This concentration-response curve should be confirmed in
future longitudinal studies with PM2.5 concentrations higher than
17 μg/m3, where large uncertainty remains.

4.3. Residential black carbon

We also found null associations for residential BC. We are not aware
of prior studies exploring the role of long-term residential exposure to
BC in regards to metabolic health. However, few European studies have
explored long-term levels of PM2.5 absorbance, a comparable measure
to BC (Wolf et al., 2016; Strak et al., 2017; Renzi et al., 2018). These
studies found similar estimates as our study. Wolf and colleagues found
that higher PM2.5 absorbance was weakly and modestly associated with
higher fasting blood glucose in southern Germany (0.6%, 95%CI: 0.0%,
3.3%). Strak and colleagues studied a large sample of adults (≥19 years
old) from the Dutch national health survey and found that higher PM2.5

absorbance was significantly but modestly associated with higher pre-
valence of diabetes (OR: 1.04, 95%CI: 1.02, 1.06). Renzi et al. studied
more than one million adults (≥35 years old) in Italy and reported a
negative and weak association between PM2.5 absorbance and pre-
valence of diabetes (Renzi et al., 2018). Renzi and colleagues partly
attributed this lack of an association to the inability to control for
emission sources other than traffic, such as domestic heating. In our
study, the BC LUR model captured local sources of BC such as wood/gas
supply places (Sanchez et al., 2018) and our models adjusted by pri-
mary cooking fuel. However, it may be the case that we were not able to
capture the complexity of the mixture of sources in this peri-urban area.

4.4. Personal exposure to PM2.5 and black carbon

To our knowledge, this is the first study evaluating long-term per-
sonal exposure to PM2.5 and BC with blood glucose or diabetic status.
Few prior studies have used short- or mid-term direct personal mea-
surements in urban China (Brook et al., 2016; Jiang et al., 2016) and
rural Honduras (Rajkumar et al., 2018). Brook et al. studied a sample of
65 adults with the metabolic syndrome in Beijing and found null as-
sociations between personal BC and blood glucose levels in lags from
one to five days. Jiang et al. studied 371 adults living in Shanghai and
only found significant associations between 10-h personal PM2.5 and
blood glucose levels for those participants living between 50 and 100m
from a major road (1.32 mmol/l; 95%CI: 1.04, 1.61). Rajkumar et al.
assessed 24-h personal PM2.5 and BC among 142 Honduran women,
observing positive associations between personal PM2.5 and BC and
prevalence of prediabetes/diabetes (prevalence ratios of 1.49; 1.11,
2.01, for every 84 μg/m3 increase in personal PM2.5 and of 1.26; 1.13,
1.40, for every 14 μg/m3 increase in personal BC).

4.5. Potential biological mechanisms

Insulin resistance is the hallmark biological pathway for the de-
velopment of diabetes and has also been suggested as the strongest
pathway by which air pollution can affect cardiometabolic health (Eze
et al., 2015b). Some of the potential pathways by which PM2.5 could
increase insulin resistance are endothelial dysfunction or vasocon-
striction caused by oxidative stress, stimulation of the sympathetic
nervous system, and/or the creation of a systemic pro-inflammatory
state (e.g., by releasing the cytokines tumor necrosis factor-alpha (TNF-
α) and interleukin-6 (IL-6)), among other pathways previously dis-
cussed elsewhere (Brook and Rajagopalan, 2009; Rajagopalan and
Brook, 2012; Rao et al., 2015). Other pathways by which PM2.5 and
other air pollutants could contribute to the development of diabetes

Table 2
Associations between residential exposure to PM2.5 and black carbon (BC) with
blood glucose levels and prevalence of prediabetes/diabetes.

All participants

Model 1a Model 2b Model 3c

Blood glucose % change
(95%CI)

% change
(95%CI)

% change
(95%CI)

8-h fasting (n=5065)
PM2.5 0.39 (−0.91;

1.71)
0.54 (−0.77;

1.86)
0.48 (−0.78; 1.76)

BC 0.29 (−0.35;
0.92)

0.33 (−0.30;
0.97)

0.34 (−0.28; 0.95)

12-h fasting (n= 4322)
PM2.5 0.56 (−0.79;

1.93)
0.72 (−0.64;

2.08)
0.65 (−0.66; 1.98)

BC 0.34 (−0.31;
1.01)

0.40 (−0.25;
1.07)

0.39 (−0.25;1.03)

Prevalence of prediabetes/
diabetesd

OR
(95%CI)

OR
(95%CI)

OR
(95%CI)

8-h fasting (n=5065)
PM2.5 0.98 (0.81;

1.19)
0.99 (0.82;

1.21)
0.99 (0.81; 1.20)

BC 1.05 (0.95;
1.15)

1.06 (0.96;
1.16)

1.06 (0.96; 1.17)

12-h fasting (n= 4322)
PM2.5 0.94 (0.77;

1.16)
0.96 (0.78;

1.19)
0.96 (0.78; 1.19)

BC 1.00 (0.90;
1.11)

1.01 (0.91;
1.12)

1.02 (0.91; 1.13)

Results are expressed as percent change of 8-h and 12-h fasting blood glucose
concentrations, adjusted odds ratio (OR) for prevalence of prediabetes/dia-
betes, and corresponding 95% confidence intervals (95%CI) per 1 μg/m3 in-
crease in within-village fine particulate matter (PM2.5) and 0.1 μg/m3 increase
in within-village BC.

a Model 1: outcome ~ PM2.5/BC residual+ age+ sex+mean PM2.5/BC
village+ (1|village/household).

b Model 2 (main model): model 1+ sugar and sweets intake+ physical ac-
tivity+ education+ alcohol intake+ smoking+ environmental tobacco
smoke+ standard of living index+ cooking fuel.

c Model 3: model 2+body mass index+waist-to-hip-ratio+ physician-di-
agnosed hypertension.

d Diabetes was defined as fasting blood glucose≥ 7mmol/l and/or partici-
pant either having self-reported diabetes or physician-diagnosed diabetes.
Prediabetes was defined as fasting blood glucose≥ 5.6 mmol/l and< 7mmol/
l.
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include impaired renal function (Mehta et al., 2016), obesity and
weight gain (Li et al., 2016), and alterations in mitochondria and brown
adipose tissue (Rajagopalan and Brook, 2012).

4.6. Potential biases and statistical power

In addition to a true lack of a causal effect of air pollution on glucose
homeostasis, there are a number of additional potential explanations as
to why we did not find positive associations between air pollution and
markers of T2DM. First, the ambient and personal air pollution data
used in LUR and personal prediction models to assess exposure were
collected between 3 and 6 years after (2015–2016) the assessment of
health outcomes and the baseline questionnaire (2010−2012) (Fig. 1).
Our results are valid under the assumption that estimated air pollution
levels were representative of exposure on the order of a few years. This
assumption is plausible for residential levels where the spatial pattern
of air pollutants is unlikely to change over periods of 10–15 years
(Gulliver et al., 2011). As discussed in Sanchez et al. (Sanchez et al.,
2018), we believe that the temporal discrepancy between the GIS-de-
rived predictors and the air pollution monitoring measurements used
for LUR development possibly had little impact on the performance of
our LUR models. In contrast with ambient levels, personal levels could
have higher variability over time. However, most of the predictors of
personal exposure were collected through the baseline questionnaire at
the time of outcome measurement (2010–2012).

Second, our analyses may have suffered from limited statistical
power due to the relatively small variability in within-village exposure
and low prevalence of diabetes across villages. As a result, we obtained
fairly wide confidence intervals (particularly for PM2.5 estimates),
which may have precluded us from finding small (perhaps clinically
important) positive associations.

Third, our study population was relatively young (mean 38 years)
and lean (mean BMI 21 kg/m2), and this perhaps make it at low risk of
developing diabetes. On the other hand, it has been shown that South
Asians, when compared to other ethnicities, progress to the high-risk
prediabetes phase earlier and are diagnosed with diabetes at younger
ages (5–10 years earlier) and at lower BMI (South Asians are considered
at an increased risk of developing diabetes at BMI of 23 kg/m2) (Sattar
and Gill, 2015).

Fourth, negative associations observed for personal exposures may
indicate that we did not have data on all relevant confounders or likely
measurement error in personal behaviors influencing exposure (e.g.,
physical activity), potentially increasing the bias in the health effects
from unmeasured confounding and/or reverse causation (Weisskopf
and Webster, 2017). Personal exposure was more highly correlated with
individual characteristics predictive of health (e.g., age, physical ac-
tivity) than residential levels (Table S5). The trade-off between im-
proved exposure measurement error and higher likelihood of con-
founding with personal compared to residential-based measures of
exposure has been previously described (Weisskopf and Webster,
2017). We hypothesize that our evaluation of physical activity could
have been one of the drivers of confounding. The questionnaire's ability
to quantify the amount of light and sedentary activities is limited due to
recall (Matsuzaki et al., 2015). Light activities are beneficial for blood
glucose levels (Healy et al., 2007) and extended sedentary time is a
metabolic risk factor that should be included as an independent con-
founder in future studies (Colberg et al., 2016).

Fifth, we cannot rule out some outcome measurement error. Fasting
glucose level assessment was based on a single blood collection. More
than one blood sample would have likely reduced potential outcome
misclassification. Since misclassification was likely non-differential, it
possibly produced bias towards the null. Although fasting blood glucose
is the most extensively used test for its low cost and availability, it can
underestimate the prevalence of prediabetes and diabetes if compared
to the oral glucose tolerance test or measures of glycated hemoglobin
(HbA1c) (Gerstein, 2001; Jeon et al., 2013), which were not available

in APCAPS.
Finally, similar to most previous studies, we were unable to dis-

tinguish between Type 1 and Type 2 diabetes. However, most of the
prevalent diabetic cases are likely Type 2 (90–95% of all diabetes)
(American Diabetes Association, 2014); in our study, only 4% of phy-
sician-diagnosed participants were diagnosed before 25 years of age.

4.7. Strengths and limitations

The main strength of our contribution lies in the study population
and the exhaustive air pollution exposure assessment, including the
characterization of personal exposure, which is very uncommon in air
pollution epidemiological literature. Our study also overcomes some
limitations of previous studies such as the use of LUR models to allow
the study of small spatial contrasts in exposure, the inclusion of BC as a
better indicator of combustion-related sources than PM2.5 and the
consideration of a wide range of covariates, including dietary intake,
physical activity, and indoor air pollution indicators, not all considered
in previous studies (Chuang et al., 2011; Liu et al., 2016; Qiu et al.,
2018; B.Y. Yang et al., 2018; Y. Yang et al., 2018). An additional
strength of our study is that the study population is representative of
the general population in the study villages. We observed comparable
demographic characteristics (e.g., age, sex, education) between our
study participants and all surveyed adults from the general population
(≈100%) (Curto et al., 2019).

The main limitations of this study are discussed in Subsection 4.6,
namely exposure and outcome misclassification, limited statistical
power and residual confounding. Our study is cross-sectional and
therefore may be subject to reverse causality; e.g., diseased participants
could have changed lifestyle as a result of their disease or moved to
villages nearer Hyderabad city, where there is more accessibility to
health care services.

5. Conclusions

Our results do not support the hypothesis that increased levels of
ambient or personal PM2.5 and BC are associated with higher levels of
fasting glucose or higher prevalence of prediabetes/diabetes in this
peri-urban area of India. The lack of an association for residential
particle levels is consistent with some emerging evidence, including one
meta-analysis. To corroborate these results, associations between air
pollution and prediabetes/diabetes and its traits should be further ex-
amined in populations with similar characteristics while putting em-
phasis on longitudinal designs and objective assessments of partici-
pants' behaviors.
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