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• Limited agreement between ambient
and personal air temperature
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ambient and personal air temperature

• Nighttime predictors included house-
hold altitude, ceiling height, and in-
come.

• Daytime predictors included housing
characteristics and GPS-tracked alti-
tude.

• Time in agricultural labour was predic-
tive in women and time travelling in
men.
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Characterizing personal exposure to air temperature is critical to understanding exposuremeasurement error in
epidemiologic studies using fixed-site exposure data and to identify strategies to protect public health. To date,
no study evaluating personal air temperature in the general population has been conducted in a low-and-
middle income country.
Weused data from the CHAI study consisting of 50 adultsmonitored in up to six non-consecutive 24 h sessions in
peri-urban south India. We quantified the agreement and association between fixed-site ambient and personal
air temperature, and identified predictors of personal air temperature based on housing assessment, self-
reported, GPS, remote sensing, and wearable camera data.
Mean (SD) daytime (6 am–10 pm) average personal air temperature was 31.2 (2.6) °C and mean nighttime
(10 pm–6 am) average temperature was 28.8 (2.8) °C. Agreement between average personal air and fixed-site
ambient temperatures was limited, especially at night when personal air temperatures were underestimated
by fixed-site temperatures (MBE = −5.6 °C). The proportion of average personal nighttime temperature vari-
ability explained by ambient fixed-site temperatures was moderate (R2

mar = 0.39); daytime associations were
stronger for women (R2

mar = 0.51) than for men (R2
mar = 0.3). Other predictors of average nighttime personal
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air temperature included residential altitude, ceiling height, and household income. Predictors of average day-
time personal air temperature included roof materials, GPS-tracked altitude, time working in agriculture (for
women), and time travelling (for men). No biomass cooking, urban heat island, or greenspace effects were
identified.
R2
mar between ambient fixed-site and personal air temperature indicate that ambient fixed-site temperature is

only a moderately useful proxy of personal air temperature in the context of peri-urban India. Our findings sug-
gest that people living in houses at lower altitude, with lower ceiling height and asbestos roofing sheetsmight be
more vulnerable to heat. We also identified households with higher income, women working in agriculture and
men with long commutes as disproportionately exposed to high temperatures.

© 2019 Elsevier B.V. All rights reserved.
1. Introduction

There is growing evidence of the health effects of thermal stress in
low-and-middle income countries (LMICs) (Green et al., 2019). Studies
in India have estimated significant associations between heat and in-
creased mortality and morbidity (Fu et al., 2018; Salve et al., 2018), as
well as decreased worker productivity (Venugopal et al., 2016). Yet, re-
cent evidence has also revealed a larger contribution of moderately cold
temperatures to mortality than moderately hot and extremely hot and
cold temperatures, which can be partly explained by the higher fre-
quency of moderately cold days in parts of India (Fu et al., 2018). Mod-
ifiers of temperature-mortality associations include physiological
factors such as gender, age, and pre-existing chronic diseases and mor-
bidities; but also potentially other factors that may relate to tempera-
ture exposure such as occupation and socio-economic status (Ingole
et al., 2017; Son et al., 2019).

Personal monitoring of environmental exposures is increasingly fea-
sible with low cost devices, with possibility of improved, individual-
level exposure assessment in epidemiologic studies (Tonne et al.,
2017a). While in air pollution epidemiology there is an increasing use
of wearable sensors to measure personal exposure to air pollutants
(Steinle et al., 2013), temperature epidemiology studies have predomi-
nantly relied on ambient (i.e., measuring the background, environmen-
tal air temperature away from local sources of heat) fixed-site
temperature measurements (Gasparrini et al., 2015) or gridded
modelled ambient temperatures (Fu et al., 2018) as proxies of personal
exposure (i.e., the contact between an individual and air temperature at
exposure surfaces of the skin and lungs). Exposure measurement error
in population studies when using fixed-site or gridded estimates has
not been well characterized, largely due to the general lack of data on
personal air temperature (Kuras et al., 2017). Identifying predictors of
personal exposure can inform potential risk prevention strategies
needed to protect public health (Lioy, 2010). This issue is increasingly
a priority as part of climate change adaptation strategies given that
heat waves are expected to be longer, more frequent, and more severe
(Murari et al., 2015) due to global warming (IPCC, 2014) by the second
half of the century in India.

Most studies that havemeasured personal air temperature exposure
are based on occupationally exposed individuals (Runkle et al., 2019;
Sugg et al., 2019, 2018; Uejio et al., 2018; Xiang et al., 2014) and may
therefore have limited generalizability to the general population. The
few studies that have performed personal monitoring of temperature
in the general population have been conducted in high-income coun-
tries (Basu and Samet, 2002; Bernhard et al., 2015; Brook et al., 2011;
Kuras et al., 2015). Of these, one study included residents of rural com-
munities (Bernhard et al., 2015) and two considered factors other than
ambient temperature that could affect personal exposure
(e.g., household income, education, and occupation), and those factors
were self-reported (Bernhard et al., 2015; Kuras et al., 2015). Although
previous studies have usedGPS derived location to investigate the influ-
ence of location and time-activity on personal temperature in occupa-
tionally exposed populations (Sugg et al., 2018), to our knowledge, no
previous studies to date have evaluated how personal exposure to
temperature is influenced by objectively-measuredmicroenvironments
derived from wearable cameras.

Here, we use a data-driven approach to identify predictors of per-
sonal air temperature in a sample of the general population in peri-
urban south India. Our specific objectives were to 1) quantify the agree-
ment and association between ambient fixed-site and personal air tem-
perature exposure and 2) identify additional predictors of personal
exposure to air temperature based on housing assessment, self-
reported, GPS, remote sensing, and wearable camera data.

2. Materials and methods

2.1. Study population and monitoring sessions

We used data from the panel study of the Cardiovascular Health ef-
fects of Air pollution in Telangana, India (CHAI) project (Tonne et al.,
2017b). CHAI was approved by the Ethics Committees of Parc de Salut
Mar (Barcelona, Spain), the Indian Institute of Public Health-
Hyderabad (Hyderabad, India), and the National Institute of Nutrition
(Hyderabad, India). CHAI builds on the Andhra Pradesh Children and
Parents Study (APCAPS) cohort (Kinra et al., 2014), which included
6944 participants distributed in 28 villages in a peri-urban area south
of the city of Hyderabad, India (Fig. S1). CHAI added extensive ambient
and personal air pollution monitoring in a random gender and village-
stratified sample (n = 401) of the APCAPS population. A random sub-
sample of 60 CHAI participants was also included in the panel study,
whose objectivewas to identify locations and activitieswithhigh partic-
ulate air pollution concentrations using ambient, GPS, wearable camera,
and personal air pollution monitors (Milà et al., 2018) (Fig. 1). The
Köppen-Geiger climate classification (Beck et al., 2018) of the study
area is tropical wet and dry, characterized by warm temperatures
(coldest monthly air temperature above 18 °C) and a marked dry
season.

Each panel participant was monitored in up to six 24 hour non-
consecutive sessions within 6 monitoring rounds set up between May
2015 and February 2016 (1st: 2015-05-13 to 2015-06-21, n = 63;
2nd: 2015-06-24 to 2015-07-26, n = 52; 3rd: 2015-08-04 to 2015-
09-09, n = 40; 4th: 2015-09-09 to 2015-10-13, n = 40; 5th: 2015-
12-12 to 2016-01-04, n = 39; 6th: 2016-01-07 to 2016-02-20, n =
37). Sessions were distributed across the four seasons of the study
area: summer (March–May), monsoon (June–August), post-monsoon
(September–November), and winter (December–February). The start
of the monitoring campaign in summer 2015 happened to coincide
with a heat wave affecting Telangana and other Indian states (Liberto,
2015), during which monitoring was temporally suspended to avoid
an additional burden and ensure thewellbeing of the study participants,
who inmany cases had outdoor occupations involving physical activity.
Monitoring sessions were scheduled so as to minimize the impact on
participant's daily routines; they typically started at 8 am at the
participant's residence and finished 24 h thereafter at the same location.
A trained technicianwas present at both times to install and remove the
monitoring devices, give instructions to the participants, answer ques-
tions, and administer a post-monitoring questionnaire. Participants



Fig. 1. Data integration graphical summary.
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were instructed to place the rucksack near themwhen not wearing it to
minimize measurement error.

2.2. Data sources

2.2.1. Personal air temperature
Continuous personal air pollutionmonitoringwas conducted using a

RTI MicroPEM v3.2A monitor (MicroPEM, RTI International, Research
Triangle Park, NC 27709, USA) attached to the strap of a rucksack
(Fig. S2). The device included a low-voltage, precision centigrade tem-
perature sensor (P/N TMP-36GT9Z-ND, Analog Devices Inc., Norwood,
MA, USA) that recorded ambient temperature every 30 s. The sensor
was located in the sample flow stream, downstream of the filter. Ac-
cording to the manufacturer, the temperature range of the device was
−40 °C to 100 °C; accuracy at 25 °C was ±3 °C. Upon deployment of
the device, the initial temperature of the sensorwas calibratedwith am-
bient temperature (measuredwithHTC-1 LCDDigital ThermometerHy-
grometer) using the MicroPEM Docking Station software (version 2.0).
The same software was also used to download the data after monitor-
ing. We computed 1-minute average temperature time series from the
raw data (Fig. S3).

We performed a 4-hour laboratory experiment with four MicroPEM
units used in the CHAI panel, a heater (Selecta Incubat), and a calibrated
high-precision (±0.1 °C accuracy) thermohygrometer (Testo 635-2;
used as reference) to evaluate the following for the MicroPEM temper-
ature sensor: 1) agreement and reproducibility of measurements, 2) ac-
curacy compared to the reference, and 3) responsiveness to
temperature changes. Detailed description of the methods, materials,
and results from the experiment is available in Methods S1. Briefly, we
found that while agreement between MicroPEM temperature sensors
was excellent (intraclass correlation coefficient, ICC=1), their response
time was slow, resulting in differences in air temperature compared to
the reference (root mean square error, RMSE = 1.7–2.1 °C among the
four MicroPEM units) with successive 5 °C temperature increments
every 30 min.

2.2.2. Ambient air temperature
Hourly ambient temperature was recorded at a fixed-location site in

the north of the study area (Digit THL, LabJack Corporation, Lakewood,
CO 80227 USA) (Fig. S1). Ambient monitoring started one month later
than personal monitoring (June 2015); we therefore imputed data for
May 2015 using temperature data from Hyderabad south airport lo-
cated 16 km away from the ambient north site (Fig. S1) following previ-
ously used methods for ambient fixed-site air pollution imputation in
the CHAI project (Milà et al., 2018). Namely, wefitted a linear regression
model to ambient north site temperature using airport temperature and
hour categorical indicators as predictors. The model had an adjusted-R2

of 0.94; we used this model to predict north site hourly temperature for
May 2015.

2.2.3. Questionnaires and housing assessment
CHAI participants completed a baseline questionnaire containing in-

formation about time-invariant demographic (age, gender), socioeco-
nomic (education, occupation) and household (income, assets)
characteristics. Bedroom materials, dimensions, and number of win-
dows were assessed by a trained technician. Furthermore, a post-
monitoring questionnairewas administered at the end of eachmonitor-
ing session. The questionnaire included a series of questions about total
daily time spent in certain activities (e.g., cooking) and locations
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(e.g., travelling), aswell as a diary of activities and locationswith hourly
slots.

2.2.4. GPS
Panel participants' longitude, latitude, and altitude were recorded

every 30 s through a GPS device (Etrex 20; Garmin, Inc., Fig. S4) partic-
ipants carried in a secured backpack. The accuracy of the GPS in the
study area was 4 m; we inspected and cleaned the tracks to exclude
points with abrupt changes of position (N1 km) and cold starts (N50 m
from residence at the start of the session). The front door of all partici-
pants' households was geocoded by field workers. We identified points
within the Hyderabad ring road (identified through aerial tracing of
OpenStreetMap) to explore potential urban heat island effects (UHI).
We also applied a map-matching spatiotemporal clustering algorithm
(Donaire-gonzalez et al., 2016; Sanchez et al., 2017) to the GPS tracks
to identify locations visited during the monitoring. Detected clusters
at a linear distance smaller than 10 m from the participant's home
were labelled as “home” whereas the rest of clusters were considered
“places other than home”. A point was considered to belong to a cluster
if the distance in timeand spacewasb10m/30min, respectively. The re-
maining points were classified as “trips”.

2.2.5. Wearable camera
Panel participants carried a wearable camera (Autographer, OMG

Life, Oxford, UK) that took photographs of the environment in front of
the participant (180° approximately) every 35 s (Fig. S2). The battery
life of the device was 10 h; participants were instructed to turn off the
device at night when light conditions were poor. Participants had the
option to turn off the camera when they wanted privacy and at the
end of each monitoring session they could review and delete images
they did not want to be part of research data. The resulting photographs
were annotated by two trained technicians according to a set of loca-
tions (e.g., outdoors), activities (e.g., eating), and objects (e.g., biomass
stove) set a priori. As a result, each photograph was assigned a Boolean
value as having/not having a given item. The annotation protocol and
validation have been described in detail elsewhere (Salmon et al.,
2018).We constructed 1min regular Boolean time series for each anno-
tation from the photograph timestamps following previously published
methods (Salmon et al., 2018).

For photographs annotated as “outdoors”, we also derived a Green
View Index (GVI) to identify the presence of greenspace. We used the
open-source Treepedia GVI algorithm (MIT Senseable City Lab, n.d.) to
detect the proportion of pixels in the photographs that corresponded
to greenspace. This approach has been previously applied to Google
Street View data (Li et al., 2015). Briefly, the procedure uses a normal-
isation of the red, green, and blue spectral image components, then em-
ploys an image segmentation algorithm to generate thematic images,
and finally applies a series of rules to differentiate green vegetation fea-
tures from the rest (Li et al., 2015; MIT Senseable City Lab, n.d.). An ex-
ample of the GVI algorithm applied to a wearable camera photograph is
shown in Fig. S5.

2.2.6. Remote sensing
We downloaded two cloudless Sentinel 2A (multi-spectral instru-

ment) level-1C (top of atmosphere) images from the Copernicus Open
Access Hub (ESA, n.d.) for the study area. The selected images
corresponded to the summer (2016-04-09) and post-monsoon (2016-
11-25) seasons. We used the Sen2cor v.2.5.5 processor (Louis et al.,
2016) to perform atmospheric correction and obtain level-2A bottom-
of-atmosphere products. We derived Normalized Difference Vegetation
Index (NDVI, (NIR − red) / (NIR + red)) at 10 m spatial resolution
(Fig. S6) to identify spatial patterns of greenspace in the study area.
We intersected NDVI (pure intersection and 100 m buffer mean) with
the GPS tracks and the geocoded households using the post-monsoon
image for monitoring sessions conducted in monsoon and post-
monsoon (wet seasons), and the summer image forwinter and summer
(dry seasons) (Fig. S6).

2.3. Data management

There were 271 24 h monitoring sessions corresponding to the 60
participants of the panel. We included 227 sessions (83%) correspond-
ing to 50 participants in our analyses after excluding sessions with
self-reported or accelerometer (in rucksack) detected non-compliance
with wearing the equipment. Excluded male participants of the CHAI
panel were younger than the included ones, while excluded women
were less likely to work in agricultural-related occupations (Salmon
et al., 2018). For nighttime analyses, 8 (3.5%) sessions were further ex-
cluded because the participant did activities other than sleeping at
night, and another 12 (5.3%) were excluded because the participant re-
ported not sleeping in the bedroom where room characteristics were
recorded.

We integrated all sources of data to create three different datasets
for analysis based on whether participants were sleeping and the time
unit of analysis: 1) nighttime (10 pm–6 am; one observation per ses-
sion, n = 207), 2) daytime (6 am–10 pm; one observation per session,
n = 227), and 3) hourly daytime (6 am–10 pm; one observation per
hourwithin session, n=2713). More than 90% of the panel participants
self-reported sleeping between 10 pm and 11 pmwhile a 80% still slept
from 5 am to 6 am; percentages before and after this period were lower
(56% sleeping between 9 pm and 10 pm, 25% sleeping between 6 am
and 7 am). The three datasets contained average personal temperatures
corresponding to the time ranges of the dataset and average ambient
fixed-site temperatures matching personal monitoring date and time
spans; time-invariant participant and household characteristics and
season were also available in all datasets. The nighttime dataset in-
cluded NDVI and altitude at the geocoded household, while the daytime
datasets included NDVI and altitude averages computed using the cor-
responding GPS tracks. Daytime datasets also contained daily/hourly
time spent in different locations and activities according to the GPS al-
gorithm, the diary and other self-reported activities, andwearable cam-
era annotations; as well as average daily/hourly GVI.

2.4. Statistical analyses

We calculated univariate descriptive statistics of all the variables in-
cluded in the analysis and computed a spearman correlation matrix for
continuous predictors. We calculated the Intra-class Correlation Coeffi-
cient (ICC) for personal temperatures to infer the proportion of the ex-
posure variability happening between participants. In order to describe
and plot temporal patterns in exposure, we smoothed ambient fixed-
site and personal temperature time series using generalized additive
models with a smooth term (cyclic cubic splines, suitable for cyclic pro-
cesses (Wood, 2006)) for the time of day. We stratified daytime analy-
ses by gender as previous results showed marked differences in
mobility and time-activity patterns in this population (Sanchez et al.,
2017). We investigated the agreement between average nighttime
and daytime ambient fixed-site and personal temperature using
Bland-Altman plots for repeated measures per participant (Bland and
Altman, 2007). We evaluated the association between average night-
time and daytime ambient fixed-site and personal air temperature
using linear mixed models with a random intercept per participant to
account for the repeated measurements per participant. We used the
marginal R2 (R2

mar), i.e., the proportion of variance explained by the
fixed effects, as a measure of the strength of the association
(Nakagawa and Schielzeth, 2013).

We identified predictors of nighttime, and gender-stratified daytime
and hourly daytime average personal temperature exposure using the
full datasets previously described. Within each dataset, we discarded
predictors with little variability, i.e., if N90% of the observations had
the same value (e.g., having air conditioning (AC), or time spent cooking
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for daytime in men). We examined missing data patterns in each
dataset; the data sourcewith themostmissing entrieswas thewearable
camera (18.1% missing in daytime dataset) followed by GPS indicators
(8.8% missing in daytime dataset) (Table S1). We multiply imputed
missing data using the method of the chained equations (van Buuren
and Groothuis-Oudshoorn, 2011); assumptions, models, and details
about the multiple imputation are given in Methods S2. In order to se-
lect the relevant exposure predictors, we used an automated stepwise
procedure that was able to accommodate the repeated measures de-
sign, the multiply imputed data, and the temporal autocorrelation in
hourly daytime models. A complete description of the procedure is
given in Methods S3. We computed R2

mar across the final models fitted
in each of the imputed datasets.

Analyses were done in R v3.5.3 (R Core Team, 2019) using the fol-
lowing packages for data management and visualization (Grolemund
and Wickham, 2011; Hijmans, 2019; Hunziker, 2017; Iannone, 2019;
Pebesma, 2018; Salmon, 2017, 2016, 2013; Wickham, 2017, 2016), im-
putation (van Buuren and Groothuis-Oudshoorn, 2011), and modelling
(Bates et al., 2015; Jaeger, 2017; Pinheiro et al., 2018; Wood, 2006). We
used ArcGIS (v10.2.1), Spatialite (v4.1.1), and QGIS (v2.12.3 Lyon) to
clean GPS data. GVI was computed using the Treepedia package (MIT
Senseable City Lab, n.d.) in Python 3.6.4. Supplementary maps were
done in QGIS (v2.18.1 Las Palmas).

3. Results

3.1. Characteristics of the study population and exposures

3.1.1. Time-invariant characteristics of the study population
Mean age of the study participants was 43.2 (standard deviation, SD

13.7) years; women were older than men and had lower literacy
(Table 1). Most participants had manual occupations in the agriculture,
Table 1
Study population time-invariant individual and household characteristics.

All (n =
50)

Women (n
=
25)

Men (n =
25)

Age - AM (SD) 43.2
(13.7)

47.2 (9.1) 39.2
(16.4)

Occupation - N (%)
Manual 42 (84%) 21 (84%) 21 (84%)
Non-manual 2 (4%) 1 (4%) 1 (4%)
Unemployed 6 (12%) 3 (12%) 3 (12%)

Education - N (%)
Illiterate 29 (58%) 20 (80%) 9 (36%)
Primary studies 8 (16%) 3 (12%) 5 (20%)
Secondary/superior studies 13 (26%) 2 (8%) 11 (44%)

Household income N 15,000 Indian rupees -
N (%)

12 (24%) 6 (24%) 6 (24%)

Number of household assets - AM (SD) 4.2 (1.5) 4.4 (1.8) 4 (1.3)
Air conditioning at home - N (%) 3 (6%) 2 (8%) 1 (4%)
Household type - N (%)

Separate house 43 (86%) 23 (92%) 20 (80%)
Shared house/apartment 7 (14%) 2 (8%) 5 (20%)

Bedroom wall material - N (%)
Brick 43 (86%) 22 (88%) 21 (84%)
Mud/clay 7 (14%) 3 (12%) 4 (16%)

Bedroom floor material - N (%)
Cement 11 (22%) 6 (24%) 5 (20%)
Mud/stone 22 (44%) 9 (36%) 13 (52%)
Tiles 17 (34%) 10 (40%) 7 (28%)

Bedroom roof material - N (%)
Tiles/grass 11 (22%) 5 (20%) 6 (24%)
Asbestos sheets 15 (30%) 7 (28%) 8 (32%)
Concrete 24 (48%) 13 (52%) 11 (44%)

Bedroom size (m2) - AM (SD) 12.8 (4.4) 12.6 (3.8) 13 (4.9)
Bedroom ceiling height (m) - AM (SD) 3 (0.3) 3.1 (0.3) 2.9 (0.3)
Bedroom number of windows - AM (SD) 0.9 (0.9) 1.1 (1) 0.8 (0.8)
Residential altitude above the sea level
(m) - AM (SD)

570.2
(47.1)

575.9
(48.6)

564.5
(45.8)
construction, and other unskilled sectors. Only three participants re-
ported having AC at home. Themajority of participants lived in separate
houses at a mean altitude of 570 m above the sea level. The most prev-
alent material for bedroom walls was brick whereas roof and floor ma-
terials were diverse. Houses with concrete roofs, unlike houses with
asbestos roofing sheets andothermaterials,were all equippedwith ceil-
ing fans and had white-painted ceilings. Moreover, most houses with
concrete roofs also had ventilators near the rooftop to help escape
warm air.

3.1.2. Time-varying characteristics of the study population
Time spent in cooking-related activities was higher for women than

men (e.g., mean self-reported time cooking with an indoor stove were
0.9 (SD 0.7) h for women vs. 0.1 (SD 0.3) h for men) (Fig. 2). There
were gender differences in predictors related to occupation (Fig. 2):
on average, while men spent more time in industry (1.7 (SD 3.4)
h) than women (0 (SD 0) h), the opposite was observed for agricultural
labour (1.5 (SD2.7) h forwomenvs. 0.6 (SD1.9) h formen) according to
wearable camera annotations. Women spent more time at home than
men (average time 13.1 (SD 3.7) h for women vs. 9 (SD 4.3) h for
men) according to GPS, whereas time spent travelling was longer in
men (1.4 (SD 1.7) h for men vs. 0.1 (SD 0.4) h for women) according
to the self-reported diary (Fig. 2).

Spearman correlations between predictors concerning similar activ-
ities and locations measured by different data sources were all positive
(Fig. S7). For instance, correlation between being outdoors in the field
(diary) and working in the field (wearable camera) was 0.56. Likewise,
the daytime correlation between GVI and GPS-intersected NDVI was
positive, yet modest (ρspearman = 0.26, Fig. S8).

3.1.3. Characteristics of personal exposures and fixed-site air temperature
Mean personal air temperatures were similar to ambient fixed-site

temperatures for daytime hours (31.2 (SD 2.6) °C personal vs. 30.3
(SD 3.5) °C ambient) and higher for nighttime hours (28.8 (SD 2.8) °C
personal vs. 23.3 (SD 3.7) °C ambient) (Table 2). No differences in per-
sonal exposure to temperature across genders were observed
(e.g., daytime mean 31.2 (SD 2.7) °C in men vs. 31.3 (SD 2.4) °C in
women) (Table 2). Most of the variability in personal air temperature
occurred within participant: the ICC for daytime personal air tempera-
turewas 15% formen and 9% forwomen; the ICC for nighttime personal
air temperature was 9%.

Seasonal and daytime/nighttime contrasts were stronger in ambient
fixed-site temperature than in personal (Fig. 3). The highest nighttime/
daytime and personal/fixed-site temperatures were in the summer sea-
son (e.g., mean personal daytime air temperature was 33.9 °C (SD 1.9)
in summer) (Table S2). Mean personal temperatures were always
higher than ambient fixed-site except during daytime in the summer
season, when ambient fixed-site temperatures were warmer than per-
sonal (Table S2).

3.2. Agreement and association between average ambient fixed-site and
personal temperature exposure

Addressing our first objective, there was a substantial discrepancy
between average ambient fixed-site and personal temperatures at
night (Fig. 4), when ambient fixed-site temperatures underestimated
personal air temperatures (mean bias error, MBE=−5.6 °C). Mean ab-
solute difference during daytime was smaller (MBE =−1.0 °C for men
and − 0.9 °C for women), although the estimated limits of agreement
were wide and larger than ±5 °C in all cases. Bland-Altman plots sug-
gested presence of proportional bias, e.g., underestimation of personal
nighttime air temperatures was smaller for warm summer than for
moderately cold winter temperatures.

The strength of the association between average ambient fixed-site
and personal temperature was moderate (Fig. 5). While more than
half of the personal temperature exposure variability was explained



Fig. 2.Daytime time-varying activities and locations by data source and gender. The lower and upper hinges of the box correspond to the 25th and75th percentiles, the bold bar represents
the median. Whiskers defined as the highest/lowest value within 1.5 ∗ interquartile range from the hinge, values beyond that are plotted as points representing outliers.
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by ambient fixed-site temperatures in women (R2
mar = 0.51), the pro-

portion formenwas lower (R2mar=0.30). Estimated slopeswere similar
for daytime and nighttime temperatures. No effect modification by sea-
son was found (interaction between ambient fixed-site temperature
and season on personal air temperatures resulted in p-values N 0.2).
3.3. Predictors of personal exposure to air temperature

Addressing our second objective, predictors of nighttime average
personal air temperature (Table 3) included ambient fixed-site temper-
ature and the geocoded altitude of the household (−1.17 (95% confi-
dence interval, CI −1.87, −0.46) °C for a 100 m increase). Other
relevant household variables were the ceiling height of the bedroom
(−1.61 (95% CI −3.08, −0.15) °C for 1-meter increase), and a
Table 2
Summary statistics of average daytime (6 am–10 pm) and nighttime (10 pm–6 am) ambient a

Exposures Min Q25

Average personal daytime temperature (°C) 24.2 29.4
Average ambient daytime temperature (°C) 24.8 27.6
Average personal nighttime temperature (°C) 19.9 26.9
Average ambient nighttime temperature (°C) 14.9 21.0
household income N 15,000 Indian rupees (0.73 (0, 1.47) °C). The
mean R2

mar of the model in the imputed datasets was 0.48 (range 0.45
to 0.49).

Daytime personal air temperature predictors (Table 3) included
ambient fixed-site temperature and asbestos roofing sheets for
both genders. For women, 1 hour working in the field as measured
with the wearable cameras was estimated to increase average day-
time personal temperature by 0.1 (95% CI: −0.02, 0.22) °C. For
men, the average altitude measured with the GPS tracks had a nega-
tive effect on average personal air temperature (−1.47 (95% CI:
−2.38,−0.56) °C for a 100 meter increase). Moreover, we estimated
a 0.21 (95% CI: 0.02, 0.39) °C personal temperature increase in men
for each hour spent in trips according to the GPS. Mean R2

mar for
women's models was 0.56 (range 0.53 to 0.58) and for men's it was
0.45 (range 0.41 to 0.48).
nd personal temperature exposures.

Mean Median Q75 Max SD

31.2 31.4 32.9 38.5 2.6
30.3 29.7 32.3 42.6 3.5
28.8 29.0 30.5 35.7 2.8
23.3 23.6 25.4 32.5 3.7



Fig. 3. Temporal patterns of personal and ambient temperature exposure by season. Orange and blue shaded areas represent daytime (6 am–10 pm) and nighttime (10 pm–6 am) as
defined in this study. Estimates and 95% CI (shaded bands) were derived with generalized additive models with a smooth term for the time of day.
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Similarly, gender-stratified models for hourly average daytime per-
sonal temperature identified ambient fixed-site temperature, bedroom
roof material, and altitude as predictors in both men and women's
models (Table S3). Time spent working according to the self-reported
Fig. 4. Bland-Altmanplots of average ambient and personal temperature exposure. The dashed l
Dotted lines representing limits of agreement calculated following Bland and Altmanmethods f
intercept per participant) of the mean personal and ambient temperature on the difference be
diary (e.g., 0.53 °C (95% CI 0.18, 0.88) per hour worked in women)
and time spent outdoors according to the wearable camera (e.g., 0.82
°C (0.47, 1.17) per hour spent outdoors in women)were also predictive
for both genders. Working in the field according to the wearable
ine represents themean difference between ambient and personal temperature exposures.
or repeated measures. The bold line represents the linear fit (mixedmodel with a random
tween ambient and personal temperature (shaded area represents its 95% CI).



Fig. 5.Associations between average ambient and personal temperature exposure. Linearmixedmodelswith a random intercept per participant. R2
mar (ormarginal R2) corresponds to the

proportion of personal temperature variance explained by fixed factors, i.e. ambient temperature.
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cameras had an effect on average hourly daytime personal temperature
only for women; time spent travelling was predictive only for men.

4. Discussion

We investigated the agreement and the association between ambi-
ent fixed-site and personal air temperature in a representative sample
of the adult population in peri-urban India and identified self-reported
and objectively-measured predictors of personal air temperature expo-
sure. Agreement between average personal andfixed-site temperatures
was limited, especially at nighttime when personal temperatures were
underestimated by ambient fixed-site temperatures. The proportion of
average personal nighttime temperature variability explained by
Table 3
Predictors of average nighttime (10 pm–6 am) and gender-stratified predictors of average
daytime (6 am–10 pm) of personal exposure to air temperature.

Temperature predictors Data source Change in °C
(95% CI)

Nighttime (n = 207)
Ambient temperature (1 °C increase) Ambient fixed

site
0.5 (0.42, 0.58)

Residential altitude (100 m increase) GPS −1.17 (−1.87,
−0.46)

Bedroom ceiling height (1 m increase) Baseline
questionnaire

−1.61 (−3.08,
−0.15)

Household income N15,000 Indian
rupees (vs. below)

Baseline
questionnaire

0.73 (0, 1.47)

Daytime women (n = 117)
Ambient temperature (1 °C increase) Ambient fixed

site
0.47 (0.39, 0.55)

Asbestos sheet bedroom roof (vs.
tiles/grass)

Baseline
questionnaire

1.34 (0.21, 2.47)

Concrete bedroom roof (vs. tiles/grass) Baseline
questionnaire

0.14 (−0.88,
1.16)

Working in field (1 h increase) Wearable camera 0.1 (−0.02, 0.22)
Men (n = 110)

Ambient temperature (1 °C increase) Ambient fixed
site

0.45 (0.32, 0.58)

Asbestos sheet bedroom roof (vs.
tiles/grass)

Baseline
questionnaire

0.91 (−0.21,
2.04)

Concrete bedroom roof (vs. tiles/grass) Baseline
questionnaire

−0.67 (−1.73,
0.39)

Shared house/Apartment (vs. separate
house)

Baseline
questionnaire

1.22 (−0.01,
2.45)

Individual altitude (100 m increase) GPS −1.47 (−2.38,
−0.56)

Travelling (1 h increase) GPS 0.21 (0.02, 0.39)

Linear mixed models (random intercept per participant) fit to multiply imputed datasets
and pooled using Rubin's rules.
ambient fixed-site temperatures was moderate; daytime associations
were stronger for women than for men. In addition to ambient fixed-
site temperature, we identified several household characteristics pre-
dictive of average nighttime personal temperature (e.g., residential alti-
tude), and housing characteristics (e.g., roof material), individual
activities (e.g., time spent travelling), and locations (e.g., time spent
working in fields) predictive of average daytime personal temperatures.
We did not identify UHI, biomass cooking, or greenspace effects.

4.1. Agreement and association with ambient fixed-site temperature
exposure

We found that agreement between daytime average personal and
ambient fixed-site temperatures was limited and depended on the sea-
son. Aligned with our results, previous studies in the US in the general
population show that average ambient fixed-site temperature tended
to overestimate personal air temperatures in the summer season
(Bernhard et al., 2015; Kuras et al., 2015). However, evidence in outdoor
workers in the US in the summer season shows slightly warmer mean
personal than ambient fixed-site temperatures (Uejio et al., 2018),
which were associated with longer time working outdoors. We found
that average personal nighttime temperatureswerewarmer than ambi-
ent fixed-site, which agrees with results of a study evaluating indoor
and outdoor nighttime summer temperatures in New York (Quinn
et al., 2017), even when considering that most of the included house-
holds had indoor AC systems. The wide estimated limits of agreements
both at daytime and nighttime indicated limited agreement between
ambientfixed-site andpersonal exposures and possibly reflected the in-
fluence of other factors affecting personal air temperature.

We identified a higher proportion of average daytime personal tem-
perature variability explained by ambient fixed-site temperatures in
women than in men. Although we hypothesised that these differences
could be due to higher mobility and a wider range of activities in men,
the R2

mar in women's multiple regression models were still higher than
men's. Our estimated associations were broadly similar to previous ev-
idence in the US: Bernhard and colleagues estimated a linear association
between average hourly ambient fixed-site and personal temperature
of 0.37 (95% CI: 0.35, 0.39) in multiple regression models (Bernhard
et al., 2015) (our estimates were 0.32 (95% CI: 0.28, 0.36) for women
and 0.38 (95% CI: 0.34, 0.43) for men inmultiple hourly daytime regres-
sion models).

4.2. Spatial temperature exposure misalignment

Our results provide insights into potential exposure measurement
error in epidemiologic studies based on fixed-site exposure assessment.
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Despite the limited variability in altitude in our study area,we foundde-
creased personal air temperatures for participants dwelling and travel-
ling in more elevated areas. Although the negative association between
altitude and temperature is well established for ambient fixed-site tem-
perature (Parsons, 2014), to our knowledge there is no previous evi-
dence of altitude effects in personal air temperature in the general
population. Empirically, we found that the change in temperature
with elevation above sea level is similar for personal air temperature
as what one would expect for ambient fixed-site temperatures based
on simple physics (i.e., adiabatic lapse rate). Another spatially-related
predictor of personal air temperature is travel. In agreement with our
results, studies in the US also found that indoor environments (com-
pared to outdoors) resulted in decreased personal air temperature
(Bernhard et al., 2015; Sugg et al., 2018). However, comparability be-
tween studies in high and LMICs may be limited due to differences in
transport modes and access to in-vehicle AC.

4.3. Household and individual predictors of personal exposure to
temperature

Household characteristicswere predictive ofmean personal air tem-
perature during nighttime and daytime. Housing materials, and espe-
cially roof materials, have been identified as an important factor
explaining indoor thermal comfort (Latha et al., 2015). Research on
the thermal properties of asbestos roofing sheets has demonstrated
their good insulating properties (Onyeaju et al., 2012); however, our re-
sults indicate that participants dwelling in houses with these roofs ex-
perienced higher daytime average temperatures compared to concrete
or other materials. We believe that this is because unlike houses with
asbestos rooftops, dwellings with concrete roofs were equipped with
fans, ventilators, and had white-painted ceilings; and thus, roof type in-
formation acted as a marker of housing quality and adaptation to heat.
In addition to housing materials, other features of buildings such as
building orientation, ventilation and building space usage have also
been shown to be important for keeping indoor environments cool
(Latha et al., 2015). We found that higher household income was asso-
ciated with higher mean temperature in nighttime models. These re-
sults were unexpected as previous evidence estimated lower personal
air temperature exposure in participants with higher household income
(Bernhard et al., 2015), and lower household income has been found to
increase vulnerability to heat effects (Son et al., 2019).

We found a positive association between time spent working in ag-
riculture and personal air temperature in daytime models for women,
and with time working in any occupation and time spent outdoors in
hourly daytime models for men and women. Previous occupational
studies have identified outdoor workers in sectors such as agriculture
and construction to be at risk of heat effects, especially in LMICs within
tropical regions (Xiang et al., 2014) and specifically in India (Venugopal
et al., 2016). Even though biomass indoor cooking has been recently re-
ported to affect indoor thermal comfort in Indian rural households
(Ravindra et al., 2019), we did not find any effect of cooking on personal
air temperature.We hypothesise that thismay be because solid fuel use
for cooking was mostly conducted outdoors (75% of time) according to
wearable camera annotations.

4.4. Effect of greenspace and urban heat island on personal temperature
exposure

Even though urban greenspace has been found to have a cooling ef-
fect on ambient air temperature (Bowler et al., 2010) andmay be an ef-
fect modifier in heat epidemiological analyses (Son et al., 2019), we did
not find an association between greenspace, either measured by GPS or
wearable camera, and personal air temperature. Similar results have
been observed in an occupational study in the US (Sugg et al., 2018),
where no correlation between land use (including developed areas,
open areas, and forests) and personal air temperatures was observed.
Cooling effects of greenspace have been found to be fairly localized
(Bowler et al., 2010), and so they were likely undetectable for locations
inwhichparticipants spent short duration of time (e.g., in transit). How-
ever, we also did not observe an associationwith greenspace and night-
time personal air temperature when participants were at home. A
possible explanation for this is that findings based on urban areas
have limited generalizability to peri-urban and rural areas where
greenspace is primarily cropland (Taylor andHochuli, 2017). Further re-
search is needed to identify the impact of different types of greenspace
on personal air temperature outside of urban areas, e.g., differentiating
the impact of tree canopies vs. crops.

Although UHI effects have been identified in many cities in south
Asia (Kotharkar et al., 2018), we did notfind any indication of UHI as ex-
plained by time spent within Hyderabad's ring road. This might be be-
cause very few participants entered the city and mostly stayed in the
peri-urban area. Furthermore, recent evidence suggests that urban day-
time surface temperature in some Indian cities may actually be lower
than its surrounding non-urban areas in dry pre-monsoon seasons,
when vegetation is scarce and evapotranspiration is low (Shastri et al.,
2017). This so-called “urban oasis effect” has also been observed in
other geographical regions and has been attributed to low vegetation
cover and surface moisture in the surrounding environment (Fan
et al., 2017; Georgescu et al., 2011).

4.5. Prevention strategies and potential interventions

According to our findings, targets for interventions for health protec-
tion should include housing quality and building adaptation to heat to
keep indoor environments a cool as possible. In the context of climate
change, population growth and rising energy demand in India and
other LMICs, improved building adaptation to heat can provide a more
sustainable and affordable solution for thermal comfort than the expan-
sion of energy and carbon intensive cooling devices such as ACs
(Akpinar-Ferrand and Singh, 2010). The vulnerability of agricultural
workers in peri-urban areas supports the need for prevention strategies
at the national, regional, and local levels to protect the health of outdoor
workers (Nilsson and Kjellstrom, 2010). Finally, heat early warning sys-
tems encompassing both rural and urban areas, as well as daytime and
nighttime temperatures, should be prioritised and continuously
adapted to the changing climate (Hess and Ebi, 2016).

4.6. Strengths and limitations

To our knowledge, this is the first study evaluating personal air tem-
perature in a sample of the general populationwithin a LMIC. This is also
the first study including a large range of objectively-measured predic-
tors of personal air temperature, including individual and household
characteristics, mobility, activities, and greenspace. The main limitation
of the study was the low accuracy of the personal temperature sensor.
The manufacturer-reported accuracy of the sensor (±3 °C) was poorer
than temperature sensors available for personal monitoring such as
HOBO and iButton (from ±0.2 °C to ±1 °C) (Kuras et al., 2017) and
showed a slow response time under changes in air temperature in our
laboratory experiment. However, all sensors were calibrated before de-
ployment and showed an excellent agreement between each other. Due
to the slow response time, we focused our results on average tempera-
ture and averaging times of an hour or more. Our estimated regression
coefficients were smaller than the manufacturer-reported accuracy: al-
though random error in the measurements (dependent variable in our
regressionmodels) could have inflated standard errors of regression co-
efficients, it is difficult to predict the effect of the sensor lag on results
even after averaging. We had data on AC ownership, but not whether
participants used AC during themonitoring. However, only three partic-
ipants reported having AC, so we expect AC usage to have a limited ef-
fect on our results. Finally, we did not have data on other parameters



relevant to personal heat exposure (personal radiation, humidity, and
air velocity) (Kuras et al., 2017).
5. Conclusions

R2
mar between ambient fixed-site and personal air temperature indi-

cate that ambient fixed-site temperature is only a moderately useful
proxy of personal temperature in epidemiologic studies in the context
of a peri-urban area in India. Our results highlight additional factors
that should be taken into account in epidemiological studies, for exam-
ple altitude – either through spatially-resolved ambient fixed-site tem-
perature that accounts for altitude, or by exploring exposure
measurement error by altitude in studies based on fixed site monitor-
ing. In addition to demographics, our results provide further evidence
that several additional factors representing differential exposure mea-
surement error should be explored in epidemiological studies based
on fixed site monitors including: 1) housing materials and dimensions
2) occupation 3) socio-economic factors 4) mobility and 5) time spent
indoors/outdoors.
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