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Length scales for spatial variability of air pollution concentrations depend on the pollutant and the location. In 
this paper, we develop a readily scalable algorithm based on “spatial-increment”, to decompose the air pollution 
concentration into four spatial components: long-range, mid-range, neighborhood, and near-source. We apply 
the algorithm to annual-average concentrations of outdoor nitrogen dioxide (NO2) and fine particulate matter 
(PM2.5) for all census blocks in the contiguous US. For NO2, “neighborhood” and “mid-range” components 
dominate both within-city and between-city concentration differences (both components are ~5-fold larger in 
large urbanized areas than rural areas). For PM2.5, the “long-range” component dominates; this component varies 
by region (e.g., is three times greater in the Midwest [7 μg/m3] than in the West [2.3 μg/m3]), whereas variation 
by urban area size is relatively minor. Our study provides the first nation-level fine-scale decomposed pollution 
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surfaces to date; this dataset is publicly available. Results can be used to estimate, at least to a zeroth order, the 
contribution of sources at different distances from the receptor to the annual average pollution in a location of 
interest.   

1. Introduction 

Outdoor concentrations of air pollutants vary on length scales from 
meters, to 100s or 1000s of km. Concentrations in the environment 
reflect spatial patterns in emissions, physical and chemical processes 
governing production and removal of pollutants, and turbulent advec-
tion and dispersion that drives transport and dilution. The degree of 
spatial heterogeneity varies by time, location, and pollutant. 

Here, we use spatial decomposition to investigate how annual- 
average concentrations across the United States vary at length scales 
ranging from under 1 km to over 100 km. A motivation is that spatial 
patterns at a location may reveal information on source contributions: 
spatially homogenous concentrations suggest dominance of regional 
sources and/or secondary pollutants (e.g., sulfate PM2.5 formed from 
SO2 emissions from coal power plants), whereas heterogeneities on short 
length-scales suggest influence by local emission sources (e.g., NOx 
emissions from traffic in an urban area). 

The literature has quantified spatial components of air pollution 
concentrations (e.g., local, urban, long-range components) based on 
source-receptor modeling and concentration increments. The modeling 
approach (Guo et al., 2016; Sciare et al., 2010; Wu et al., 2013) often 
involves comparing results from a chemical transport model (CTM) 
under different scenarios (e.g., in the model, switching on/off local 
traffic, total urban emissions, or upwind power plants) 
(Diamantopoulou et al., 2016; Viana et al., 2008). This method is typi-
cally used for a single location (a specific city or region); application to 
many locations is computationally expensive (Thunis, 2018). Recently 
developed source-apportionment algorithms, such as Particulate Source 
Apportionment Technology (PSAT) and Integrated Source Apportion-
ment Model (ISAM), running in parallel with CTMs have reduced this 
cost by a factor of 10–20, but they still can be applied to only a few tens 
of receptors (Chang et al., 2019; Chen et al., 2017; Wagstrom et al., 
2008; Wagstrom and Pandis, 2011). Some integrated assessment tools 
(e.g., Air Benefit and Cost and Attainment Assessment System (ABaCAS), 
Greenhouse Gas–Air Pollution Interactions and Synergies (GAINS), the 
Intervention Model for Air Pollution (InMAP) Source-Receptor Matrix 
(ISRM), Screening for High Emission Reduction Potentials for Air 
Quality (SHERPA), FAst Scenario Screening Tool (TM5-FASST)) retrieve 
source-appointment relationships through calculated 
emission-concentration sensitivities of full CTMs, and can be efficiently 
applied to hundreds of receptors in a larger domain (Crippa et al., 2019; 
Goodkind et al., 2019; Kiesewetter et al., 2014; Tessum et al., 2017; 
Thunis et al., 2018). Those and other modeling approaches could 
potentially be applied to questions considered here. Limitations of the 
modeling approaches include (1) problems of nonlinearity (or 
non-additivity) for secondary pollutants (Clappier et al., 2017; Thunis 
et al., 2019; Zhao et al., 2017), (2) limitations of input data (e.g., un-
certainty in the emission inventory), and (3) limited spatial resolution 
for national-scale simulations (Kiesewetter et al., 2014; Paolella et al., 
2018; Thunis et al., 2016). 

Concentration-based approaches use spatial concentration in-
crements, typically from field measurements, to infer spatial or source 
contributions (Apte et al., 2017; Both et al., 2011; Beekmann et al., 
2015; Cyrys et al., 2008; Diamantopoulou et al., 2016; Gómez-Losada 
et al., 2016; Lenschow et al., 2001; Querol et al., 2004; Squizzato et al., 
2012; Watson and Chow, 2001). Lenschow et al. (2001) utilized such a 
method to estimate the local, urban, and regional background concen-
trations of PM10 for Berlin by subtracting the roadside, urban back-
ground, and regional background measurement. Approaches based on 
the analysis of temporally -resolved pollutant concentrations have also 

been used (Apte et al., 2017; Both et al., 2011; Diamantopoulou et al., 
2016; Gómez-Losada et al., 2016; Watson and Chow, 2001). These 
methods are limited by the availability of the necessary measurements 
and have previously been applied to a single or a few locations at a time. 
Only a few studies have considered spatial decomposition for a broader 
region relying mainly on empirical modeling prediction surfaces and 
concentration increment approaches. Antonelli et al. (2017) used an 
image decomposition method, called wavelet decomposition, to 
decompose a 1 km × 1 km spatial surface of year 2003–2008 daily PM2.5 
predictions in the New England region of the US into three spatial 
components, determined through visual inspection of the decomposed 
surfaces. Beelen et al. (2009) estimated regional background, rural and 
urban concentration surfaces separately using universal kriging from 
rural and urban background sites, and covariates representing their 
respective spatial scales and sources, to produce 1 km × 1 km composite 
EU-wide maps of year 2001 annual-averaged NO2, PM10 and O3 
concentrations. 

Here, we explore a readily scalable algorithm to spatially decompose 
ambient air pollution concentrations using spatial increments, and apply 
this method to a national fine-scale dataset of outdoor NO2 and PM2.5 
predictions. To our knowledge, this paper provides the first national 
high-resolution, spatially decomposed air pollution surfaces for the US. 
The results, which we are making publicly available, provide useful 
information for the contiguous US regarding the contribution of air 
pollution sources at spatial scales from local to regional. 

2. Material and methods 

PM2.5 and NO2 concentrations employed here are outdoor annual- 
average predicted concentrations at all (n ≈ 6 million) census block 
centroids with non-zero population in the contiguous US. The concen-
tration predictions are derived from the Center for Air, Climate, and 
Energy Solutions (CACES) empirical models (Kim et al., 2020). The 
predictions incorporate satellite-derived estimates of ambient concen-
trations and land-cover, land-use and other geographic datasets, and 
ground-level monitoring data in a universal Kriging framework. 
Publicly-available predictions are for six air pollutants and 
multiple-years (1979–2015) (https://www.caces.us). We report 
decomposition analyses for year-2010 in the main paper; results for 
other years are in the supplementary material (see below). 

We decompose annual-average concentrations into four spatial 
components: “long-range”, “mid-range”, “neighborhood”, and “near- 
source”: 

Clong− range
i =min{Cj|di,j ≤ 100 km},

Cmid− range
i = min{Cj|di,j ≤ 10 km} − min{Cj|di,j ≤ 100 km},

Cneighborhood
i = min{Cj|di,j ≤ 1 km} − min{Cj|di,j ≤ 10 km}, and  

Cnear− source
i =Ci − min{Cj|di,j ≤ 1 km}.

Here, Ci is the model-predicted concentration at location i; the four su-
perscripts on Ci (“long-range”, “mid-range”, “neighborhood”, “near- 
source”) are the four spatial components considered here; di,j is the 
distance between two locations i and j; and min{Cj|di,j ≤ ˝x˝ km} rep-
resents the minimum concentrations from all block centroids within an 
“x” km circular buffer of location i (where “x” takes the values above: 1, 
10, and 100 km). 

The 1, 10 and 100 km length scales are commonly used for 
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neighborhood, city, and regional scales (Kumar et al., 2014; Lin et al., 
2014). This approach is straightforward, intuitive, and computationally 
demanding, but feasible to implement for a national dataset, across 
multiple pollutants and years. While these four components are inher-
ently defined by the spatial increments of predicted concentrations, they 
may provide insight into source contribution. “Long-range” (>100 km) 
likely represents regional background and long-range transport. “Mid--
range” (10–100 km) likely represents, e.g., urbanized areas, and agri-
cultural regions. “Neighborhood” (1–10 km) likely represents localized 
sources such as commercial districts, industrial areas, and intersections 
of major highways. “Near-source” (<1 km) likely represents hyper-local 
enhancements (e.g., roadways). 

We apply the spatial decompositions to each of the approximately 6 
million census block centroids in the contiguous US and analyze results 
nationally, by state, region, and urbanicity. Urbanicity levels are defined 
in the 2010 Census (Manson et al., 2019) based on population: urban-
ized areas have 50,000 or more people (we subdivided them into 
small/medium/large urbanized areas, by population tertiles); urban 
clusters have 2500–50,000 people; rural areas are all remaining census 
blocks. Rural areas contain 59 million people; urban clusters (n = 3087) 
contain 29 million people; small urban areas (n = 440) contain 75 
million people; medium urban areas (n = 47) contain 75 million people; 
large urban areas (n = 10) contain 73 million people. 

To further explore urban-scale patterns, we selected six cities to 
investigate more closely: New York, NY (year-2010 urban area popu-
lation: 18.4 million); Los Angeles, CA (12.1 million); Seattle, WA (3.1 
million); Minneapolis, MN (3.1 million); Spokane, WA (0.5 million); 
Tuscaloosa, AL (0.1 million). These cities were selected to represent a 
range of sizes, pollution sources, and geographies (e.g., region of the US, 
climate, distance-to-coast, and regional economy) across the US. For 
each city, we conduct the following analyses to understand urban-scale 
variability. Following Novotny et al. (2011), we consider concentrations 
along transect lines across the urban center. Here, we apply the de-
compositions on the points at each 10-m interval along the transect 
lines, using empirical-model predictions from the nearest block centroid 
as an approximation of the total concentrations at each 10-m interval. As 
a sensitivity analysis to explore the robustness of the approach, we 
compare results for multiple years and for several transects per city (12 
transects passing through the city center, at 15◦ intervals). Also, we 
compare results with different buffer radii to provide insight on our 
choice of buffer lengths. 

To understand the relationship between the model structure of the 
prediction surface and the spatial decomposition components, we 
calculate how much each empirical regression component (i.e., Kriging 
and each independent variable) contributes to the year-2010 spatial 
decomposition results for both pollutants. For each block centroid pre-
diction and for both pollutants, we separate the without-Kriging con-
centration predictions (i.e., the ultimate prediction results minus the 
Kriging adjustment values), and then apply the same spatial decompo-
sition algorithm to the without-Kriging predictions. The contributions of 
the Kriging to the four spatial components are calculated by the 
population-weighted averages of the concentration differences between 
initial and without-Kriging decompositions. For other regression com-
ponents, we run the no-intercept multiple regressions of without-Kriging 
decomposed concentrations on the model-selected independent vari-
ables for total concentration estimation. The contributions of each in-
dependent variable are calculated as the population-weighted-average 
product of the variable values and coefficients; the contributions are 
then aggregated to nine categories according to the variable type. 
Following Kim et al. (2020), the categories are traffic, urban land use, 
rural land use, population, elevation, emission, imperviousness, vege-
tation, and satellite. 

3. Results 

3.1. Within-urban decomposition results 

Figs. 1 and 2 illustrate, for a case-study city (Seattle), the results of 
the spatial decomposition approach developed here. Across a ~100-km 
urban transect (Fig. 1), the “long-range” values are almost constant. 
That result is expected; those values likely represent the regional 
background. For Seattle, “long-range” values account for 21% (for NO2) 
and 38% (PM2.5) of the average predictions. The “mid-range” in-
crements are low at the urban edge and increase gradually approaching 
the urban center at approximately 50 km along the line, presumably 
reflecting the effects of aggregated urban emissions in the urban center. 
The “neighborhood” and “near-source” values vary at much shorter 
spatial scales, with multiple peaks along the transect, presumably 
reflecting localized emission sources. Spatial variability is greater for 
NO2 than PM2.5, and the “near-source” component is larger for NO2 
(15%) than PM2.5 (7%). 

Fig. 2 shows the block centroid decomposed concentrations for 

Fig. 1. Decomposition results for (a) NO2 and (b) PM2.5 along a transect line 
from Northwest to Southeast across the center of Seattle. The inset map in the 
upper left of (a) shows the Seattle census block centroids (shown in grey) and 
transect line. 
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Seattle (see Fig. S1 for 1, 10, and 100 km buffer minimum concentra-
tions). “Near-source” concentrations of NO2 reflect the major road 
network (see Fig. S2). For PM2.5, “near-source” concentrations are 
relatively low (<1 μg/m3), with no clear spatial patterns. The “neigh-
borhood” component has several hot spots for both pollutants (e.g., 
downtowns, intersections of major highways). 

The transect-line decompositions for different transect directions 
(Fig. S3-S9), different years (Fig. S10-S11), and block-level decomposi-
tion maps for the additional five cities (Fig. S12-S16) are in the SI. For 
each case-study city, the decomposition results are generally stable over 
different years and transects, and spatial patterns for each of the com-
ponents are in general consistent with expectations. For example, 
Fig. S11 captures the elevated concentrations and contributions of 
“long-range” PM2.5 component in Spokane (and to a lesser degree 
Seattle) in 2015 owing to the large wildfire season in northeastern 
Washington State (Engel et al., 2019). The decompositions for different 
cities reveal broadly similar spatial patterns of variability, though the 
partitions of spatial components differ. For example, for both pollutants, 
the “mid-range” component (likely representing elevated regional urban 
concentrations) is typically less pronounced for the smaller cities (Spo-
kane, Tuscaloosa), whereas for bigger cities (New York City, Los 
Angeles) this component often has a larger contribution and remains 
elevated throughout the urban portion of the transect, only decreasing 
when the transects extend into unpopulated areas such as mountainous 
areas and open water. Relative to the other cities, the “long-range” 
contributions are comparatively smaller for PM2.5 in Seattle and for NO2 
in Los Angeles. 

3.2. Decomposition results by state, region and urbanicity 

After applying the spatial decomposition to all block centroids in the 
US (Fig. S17), we calculate the corresponding population weighted av-
erages by state (Fig. 3). For NO2, high levels of the “neighborhood” and 

“mid-range” components are found in states with large cities (e.g., Los 
Angeles, New York, Chicago). For PM2.5, the overall concentration and 
the “long-range” component are higher in the East than in the West. 

Fig. 4 summarizes the total and decomposed concentrations by urban 
area size and geographic region. For NO2, concentrations are ~3-fold 
higher in large urban areas (average: 13 ppb) than rural areas (4 ppb). 
“Neighborhood” and “mid-range” components (both about 4 ppb) 
dominate that concentration difference; “long-range” components are 
nearly the same in absolute terms (<1 ppb difference) across urban/ 
rural groups. In relative terms, the “long-range” component is 21% 
overall (16% [large urban areas], 41% [rural]; Fig. S18). The “near- 
source” component is 13% overall (12% [large urban areas], 7% 
[rural]). The differences in decomposed NO2 concentrations among re-
gions are mostly driven by regional differences amongst the ten largest 
urbanized areas (see Fig. S19). The decomposition patterns suggest that 
NO2 is of urban origin and varies locally, and that climate or geographic 
differences have less effects on the NO2 concentrations. The mid-range 
and neighborhood components are greater for the large urbanized 
areas than for other locations (see Fig. 4), consistent with larger cities 
having comparatively denser traffic and more urban emissions. 

In contrast, geographic regions dominate the differences of decom-
posed PM2.5 concentrations, mainly in the “long-range” component. 
That results likely reflects that PM2.5 is a regional pollutant with a strong 
secondary component. The “long-range” concentration in the Midwest 
(7 μg/m3) is almost three times than in the West (2.3 μg/m3); it con-
tributes 30% of the total PM2.5 in the West, versus >50% in the 
remaining three regions. We hypothesize that these regional differences 
mainly reflect differences in emissions and emissions density (e.g., 
traffic, coal-fired power plants, agriculture), but other aspects (e.g., 
topography, climate, meteorology) may also play a role. The PM2.5 
concentration differences by urban area size are relatively minor 
compared with regional differences. PM2.5 concentrations are higher for 
large urban areas than for small urban areas, and urban concentrations 

Fig. 2. The block level decomposed concentration maps of (a) NO2 and (b) PM2.5 for Seattle.  
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are larger than rural concentrations, but the differences are relatively 
modest (<2 μg/m3); those differences are mainly driven by the increase 
of “mid-range” concentrations. “Long-range” components dominate 
(≥50%) PM2.5 concentrations in both rural and urban areas. 

3.3. Contributions of empirical regression terms 

Fig. 5 summarizes contributions of each empirical regression term 
(traffic, land use, satellite data, Kriging, etc.) for the overall pollution 
concentration to the four decomposed concentrations. A version of 
Fig. 5, but without the satellite contributions, is in the supplementary 
material (Fig. S20). The goal of this analysis is to find out how the un-
derlying model structure contributes to the spatial decomposition pat-
terns, not to make causal inference about mechanisms. The results are 
aggregated to all US blocks, urban blocks, and rural blocks, separately. 
For both pollutants, satellite concentration estimates dominate the 
“long-range” component. For NO2 in urban blocks, two variables that 
strongly contribute, in addition to satellite estimates, are vegetation (a 
“negative” contribution: more vegetation corresponds to lower con-
centrations of NO2) for the “mid-range” component and imperviousness 

for the “neighborhood” and “near-source” components. For PM2.5, sat-
ellite estimates dominate; in addition, impervious surfaces also 
contribute mainly for the “neighborhood” and “mid-range” components. 
Land use types (both rural and urban land uses) play a most important 
role for “near-source” PM2.5. In comparison, for rural blocks, the con-
tributions of imperviousness are negligible for both pollutants. 

4. Discussion and conclusion 

Our results reveal within-city and national patterns of the decom-
posed concentrations. NO2 is an air pollutant of predominantly urban 
origin: differences in mean concentrations are mainly dominated by 
“neighborhood” and “mid-range” components, and concentrations vary 
by urbanicity level. PM2.5 is dominated by “long-range” transport; 
concentrations vary at a state and regional level. Those findings are 
consistent with previous research and understandings (Eeftens et al., 
2015; Hewitt, 1991; Wang et al., 2015). Our results provide new and 
useful quantification of the spatial patterns of these two pollutants, on a 
consistent basis with high spatial precision and throughout the US. 

One limitation of our results is the use of model-estimated concen-
trations; those models, while exhibiting good predictive performance 
(R2: 0.84 [NO2], 0.85 [PM2.5]; root-mean-square error: 2.2 ppb [NO2], 
1.2 μg/m3 [PM2.5]), are inherently less variable than the actual con-
centrations. The models are trained on regulatory monitoring data 
typically designed to capture ambient concentrations. In addition, the 
empirical models represent national patterns and average relationships 
between land use and pollution concentrations; they are unable to pre-
dict hot-spots caused by atypical conditions. In some locations, near 
source contributions will be underestimated. Besides, concentrations 
from empirical models do not provide quantification of source contri-
bution or transport trajectories, thus we cannot make firm causal 
statements about mechanisms. 

Another aspect of our decompositions is that they are performed on 
the census block centroid locations. An advantage of the census blocks 
over equal-distanced grids is that blocks are dense in populated areas 
where people live and pollution gradients are typically largest. Each 
block centroid has, on average, 50 additional block centroids within its 
1-km circular buffer. However, 578,971 (9.3%) and 938 (0.015%) 
blocks centroids have no neighbors within 1 and 10 km buffers, 
respectively. Those blocks represent 5.1% [no 1-km neighboring block] 
and 0.007% [no 10-km neighboring block] of the contiguous US popu-
lation. This outcome generally occurs in sparsely populated regions 
(Fig. S21). Those regions would likely have few local sources but the true 
average local contribution would be nonzero. However, in our 
approach, the local component is, by definition, zero for locations with 
the minimum concentration within 1 km (which includes all locations 
with no 1-km neighboring Blocks). Since the true value is nonzero but 
the estimated value is zero, we are underestimating (Fig. S22). Because 
the local contributions are expected to be small, the amount of under-
estimation is likely small in absolute terms; however, other techniques 
would be needed to quantify the “local” component in these locations. 

An additional aspect of our study that is important for interpreting 
the results is the use of fixed radii (1, 10, and 100 km) to calculate the 
four spatial components. Fixed radii reflect an approach that is easy to 
understand and straightforward to apply nationally. However, because 
of differences in size and shape of built-up areas, the impact of the radii 
may vary across the US. For example, the “mid-range” component em-
ploys a 10 km buffer, yet city-size varies. In the 2010 US Census (Manson 
et al., 2019), the mean area of an urban area is 462 km2 (equivalent 
radius for a circular layout: 12 km), with an interquartile range of 112 
km2 (equivalent radius: 6 km) to 413 km2 (11 km) and an overall range 
of 25.7 km2 (3 km) to 8936 km2 (53 km). Thus, the 10 km buffer can be 
smaller or larger than an urban area. The values used here (1, 10, 100 
km) were selected because they represent orders of magnitude and 
because in preliminary investigations they seemed to capture the com-
ponents better than alternative values (Fig. S23-S24). Moreover, the use 

Fig. 3. Population-weighted averages of overall and decomposed concentra-
tions for (a) NO2 and (b) PM2.5 at ~6 million census blocks by state. 
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Fig. 4. Population-weighted averages of overall (grey bars) and decomposed concentrations (colored bars) for NO2 and PM2.5 at ~6 million census blocks by (a) 
urban area size; (b) US region. 

Fig. 5. Contributions of each empirical regression term for the overall pollution concentration to the four decomposed concentrations for NO2 and PM2.5 for the 
overall US, all urban blocks and all rural blocks. 
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of a circular buffer assumes equal contribution from all directions and 
ignores meteorology and topography, which could lead to mischarac-
terization in some locations. For example, the national block-level 
“long-range” NO2 and PM2.5 maps (Fig. S17) exhibit blotchy circular 
features, which are typically driven by several “clean” points that have 
much lower concentrations than surroundings, or by sharp gradients in 
these areas and few points (such as mountainous regions). The blotchy 
features diminish with aggregation (e.g., to state level [Fig. 3]). 

Strengths of our study include national application of a straightfor-
ward approach for spatial decomposition; shedding new light by 
applying our method at fine resolution but across a broad domain; and 
investigating results for the whole US and separately by city, state, re-
gion, and level of urbanicity. The spatial increment and moving window 
approach are easy to understand and computationally feasible for the 
resolution and domain considered here. Weaknesses include that the 
empirical model is imperfect (e.g., nonzero error and bias; outlier con-
centrations may be underestimated), the empirical model is predicted 
only at centroids, and that the approach does not shed light on 
mechanisms. 

To facilitate future research using our decomposition results, data 
are freely available online (http://dx.doi.org/10.17632/wdx2ntjznj.1). 
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