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ABSTRACT: Urban concentrations of black carbon (BC) and other primary pollutants vary
on small spatial scales (<100m). Mobile air pollution measurements can provide information
on fine-scale spatial variation, thereby informing exposure assessment and mitigation efforts.
However, the temporal sparsity of these measurements presents a challenge for estimating
representative long-term concentrations. We evaluate the capabilities of mobile monitoring in
the represention of time-stable spatial patterns by comparing against a large set of continuous
fixed-site measurements from a sampling campaign in West Oakland, California. Custom-built,
low-cost aerosol black carbon detectors (ABCDs) provided 100 days of continuous
measurements at 97 near-road and 3 background fixed sites during summer 2017; two
concurrently operated mobile laboratories collected over 300 h of in-motion measurements
using a photoacoustic extinctiometer. The spatial coverage from mobile monitoring reveals
patterns missed by the fixed-site network. Time-integrated measurements from mobile lab
visits to fixed-site monitors reveal modest correlation (spatial R2 = 0.51) with medians of full
daytime fixed-site measurements. Aggregation of mobile monitoring data in space and time
can mitigate high levels of uncertainty associated with measurements at precise locations or points in time. However, concentrations
estimated by mobile monitoring show a loss of spatial fidelity at spatial aggregations greater than 100 m.

1. INTRODUCTION

Many urban areas exhibit highly localized variation in
concentrations of primary air pollutants, including carbon
monoxide (CO), nitric oxide (NO), and black carbon (BC)
particles.1−7 BC is a byproduct of incomplete combustion and
a significant component of fine particulate matter. Important
emission sources include diesel engines, industrial processes,
and other carbonaceous fuel combustion.8 Freshly emitted BC
is primarily in the ultrafine size category (diameter <100 nm),
while aged particles range in size up to ∼1.0 μm due to surface
accumulation of secondary reaction products.9,10 BC is a
potent climate pollutant and is associated with numerous
adverse health effects such as cardiovascular disease and lung
cancer.8,11,12 Within urban areas, steep spatial gradients of BC
and other primary pollutants can result from spatial variation in
traffic composition and density, localized emissions activity
such as cooking or industrial operations, and topographical
features such as mountains and street canyons.2,4,5,7,13−18

Neighborhood- to street-scale variation can result in
substantial differences between individual and population-
level exposures, with important implications for epidemiology,
air quality management, and environmental equity.2,17,19,20

Direct measurement of fine-scale patterns can aid exposure
evaluation by revealing spatial variation not captured by

central-site monitoring and by detecting idiosyncratic features
not included in predictive models.
Mobile monitoring directly measures spatial gradients and

peaks in urban air pollution by using rapid-pass sampling to
provide broad spatial coverage with a single set of instru-
ments.1,2,4−6,17,21−33 To provide representative estimates of
long-term concentration patterns at high spatial resolution, a
mobile monitoring study design must include (1) instruments
capable of high-frequency measurements and (2) a driving
schedule and pattern that captures representative conditions.
The spatial resolution of mobile measurements depends
directly on instrument response time and vehicle speed; for
instance, 1 Hz measurements made at a driving speed of 10 m
s−1 correspond to a 10 m spatial resolution. Most recent
mobile monitoring campaigns that produced high spatial
resolution BC maps (10−30 m) relied on instruments using a
1 Hz time resolution (see Table S1), most commonly the
microAeth AE-51 (AethLabs, Incorporated) or the photo-
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acoustic extinctiometer (Droplet Measurement Technolo-
gies).4,17,21,23,25,34,35 Instrument noise can be significant at
high time resolution and is often increased by in-motion
operation of equipment (e.g., owing to mechanical vibra-
tion).5,36 Commonly applied noise reduction algorithms that
rely on increasing the averaging periods may reduce the
effective spatial resolution of mobile measurements.37 Thus,
efforts to improve measurement precision may come at the
cost of detecting highly localized patterns.
Because a mobile lab can only measure at a single location at

a timeproviding temporally sparse coverage of any given
sitea key challenge for mobile monitoring is to collect a
temporally representative sample of concentrations for all
microenvironments within a study area.4−6,21,26,27,29,32,34,38

Although temporally unbalanced driving may be mitigated with
background correction techniques, the uncertainty that arises
from sampling error limits confidence in both the overall
concentration estimates and the relative rankings of different
microenvironments.25,34,39 Monte Carlo data subsampling
experiments have shown that meeting ±25% confidence
bounds for BC requires anywhere from 10 to over 100
visits.34,39 Microenvironments with higher temporal variability
generally require more sampling.17,21,34

A key limitation of data experiments is that they are, by
definition, based on a temporally sparse set of mobile
monitoring samples that may not represent the full temporal
variability at a point location. Continuous measurements at a
fixed location provide a more rigorous basis for evaluating
mobile monitoring within close proximity of the fixed site, but
such comparisons are rare in the BC literature (see Table S1).
One notable example from a campaign in Belgium found poor
agreement among mobile measurements and simultaneous
measurements made at nearby fixed sites (N = 3) but
moderate to high agreement (R2 between 0.53 and 0.96)
among daily road segment and fixed-site averages.21

Correlation between mobile monitoring and nearby fixed-site
measurements depends on the degree of spatial heterogeneity
in concentrations around the fixed point as well as instrument
differences (e.g., instrument model or detection method). The
temporal mismatch in measurements made during the same
time period but at different time resolutions causes additional
disagreement. An understanding of the relative importance of
each factor can improve mobile monitoring study design and
data interpretation but requires a larger data set.
The present analysis leverages data from an unusually dense

network of low-cost BC sensors to compare mobile monitoring
against continuous measurements at 97 near-road sites over
100 days. We use this rich data set to (1) to assess sources of
error and bias that contribute to divergence between mobile
and fixed-site air pollution measurements and (2) consider
how uncertainty in the measurements from these two
complementary techniques affects the interpretation of high-
resolution air pollution maps. We also investigate the trade-off
between greater sampling time versus increased spatial
misalignment from the spatial aggregation of mobile measure-
ments.

2. MATERIALS AND METHODS
2.1. Study Area and Sampling Design. We conducted

mobile and fixed-site monitoring in West Oakland, California.
West Oakland contains a mix of residential, commercial, and
industrial land uses; two major highways; and several heavily
trafficked routes servicing the Port of Oakland and other

commercial and industrial sites.40 West Oakland exhibited
stable meteorology throughout the campaign, with 70% of
wind measurements from the west or west-southwest and an
average daytime windspeed between 3.5−5.2 m s−1.40 BC
concentrations at the centrally located monitoring site
operated by the Bay Area Air Quality Management District
(BAAQMD) averaged 0.4 μg m−3 during the campaign, which
is typical for summer conditions in this area. BC concen-
trations in this region exhibit strong seasonal variability, with
higher ambient concentrations in winter (∼1.4 μg m−3) than
summer.18 Annual-average on-roadway daytime BC concen-
trations can exceed 2 μg m−3 BC along the most polluted road
segments in the sampling domain.17

The fixed-site network (“100 × 100 BC Network”)
comprised 100 sites representative of residential, industrial,
and high-traffic microenvironments at an average density of 6.7
sites per km2.40,41 One or more low-cost ABCD instruments
were installed at each site, mounted at a height of 1.5 m on
fences, porches, etc., at a median distance of 15 m from the
nearest road. Of the 100 sites, 97 were located within 30 m of
the road network covered by mobile monitoring, and 3 were at
upwind background sites along the San Francisco Bay.
Network operation during the 100-day period (May 19
through August 27, 2017) is detailed in Caubel et al.40 Two
mobile laboratories drove within West Oakland on 57 days
during the same 100-day period, including 46 weekdays and 12
weekend days, for a total of 304 sampling hours. Mobile
monitoring was limited to daytime hours, with most coverage
during of 8 am−6 pm (Figure S1). Mobile laboratories
repeatedly sampled air quality in a “blackout” pattern covering
all roads within subsections of West Oakland. Mobile
monitoring data from Summer 2017 are presented for the
first time here, expanding on a previous data set collected from
May 28, 2015 to May 19, 2017, as described in Apte et al.17

and Messier et al.42 Subsections of the domain were driven on
a rotating schedule to minimize temporal sampling bias.
The sampling design provided two ways in which the mobile

lab could be located near to the fixed-site measurements. First,
during normal on-road driving for the mobile lab, the mobile
lab passed in close proximity to the fixed-site instruments.
Over the course of the campaign, this type of brief drive-by
colocation occurred dozens of times for each monitor (Tables
1 and 2). In total, 88 h of data were collected for which the

Table 1. Mobile Monitoring Sample Size for Different
Buffer Lengths

30 m buffer 95 m buffer

Visits Per Site
total sites included 90 97
10th percentile 14 27
median 23 73
90th percentile 69 142

Duration of Individual Visits
10th percentile 2 s 6 s
median 4 s 17 s
90th percentile 10 s 36 s

Total Sampling Time Per Site
10th percentile 71 s (1.2 min) 576 s (9.6 min)
median 200 s (3.3 min) 1761 s (29.3 min)
90th percentile 667 s (11.1 min) 3472 s (57.9 min)
cumulative duration across all
sites

8.6 h 55.6 h
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mobile lab was within 150 m of a fixed-site instrument. Second,
the mobile lab was parked periodically near two fixed-sites with
ABCD instruments and commercial BC instruments (Aethal-
ometer model AE33, Magee Scientific). These colocations
provide an in situ comparison among the three detection
methods. In total, 3.7 h of data were collected during this type
of intentional stationary colocation.
2.2. Measurement Methods. 2.2.1. Fixed-Site Instru-

ments. The fixed-site network was composed of 128 custom-
built low-cost Aerosol Black Carbon Detectors (ABCD),
described in detail by Caubel et al.41 In brief, the ABCD uses a
filter-based light absorption technique to relate light
attenuation on a filter to changes in BC mass loading, similar
to an aethalometer.43 Attenuation measurements are corrected
for temperature, relative humidity, and loading artifacts before
making a final determination of mass concentration. Post-
correction data at a 1-h averaging time show a fleet average
precision of 9.2% and accuracy of 24.6% evaluated relative to a
commercial BC instrument (Aethalometer model AE33,
Magee Scientific). As configured here, the ABCD measured
at a maximum time resolution of 0.5 Hz, with averaging times
of 2 s to 1 min used in our analysis.
2.2.2. Mobile Monitoring. Two Google Street View (GSV)

vehicles were equipped with the mobile instrumentation
platform described by Apte et al.17 Black carbon was measured
at 1 Hz time resolution using a photoacoustic extinctiometer
(PAX; Droplet Measurement Technologies, Boulder, CO).
The PAX performs a 70 s automatic zero calibration procedure
every 10 min during operation to maintain instrument
performance. To compensate for additional instrumental
drift, measurements from both PAX instruments were
harmonized using a third, recently calibrated PAX operated
at the mobile lab parking facility. We evaluate: agreement
among instruments using R2 from least-squares regression;
relative precision based on mean absolute error (MAE), root-
mean-square error (RMSE), and normalized root-mean-square
error (NRMSE); and bias based on mean bias error (MBE)
and fitted linear equations. Metrics are defined in Section S1.1
of the Supporting Information. Postadjustment PAX-to-PAX
comparison shows high correlation and small relative bias (R2

= 0.97, MAE = 0.08 μg m−3, NRMSE = 15%, MBE = −0.02 μg
m−3; see Table S2).
During in-vehicle operation, PAX measurements show

instrument noise at 1 Hz that can exceed observed BC
concentrations, making the mitigation of noise central to this
analysis. We quantify noise as the standard deviation around
zero (σ0) of measurements made with filtered air. On the basis
of readings during self-calibration events and operation of the
mobile lab with a filtered inlet, PAX instrument noise at 1 Hz
ranges from 0.20 μg m−3 at vehicle speeds <5 m s−1 to 0.59 μg
m−3 for average in-motion operation. Because noise is known
to decrease in proportion to time integration period n, we
derive an empirical formula for σ0(n) using in-operation noise
measurements at 1 and 0.1 Hz and estimates of σ0 at averaging
windows from 1 to 60 min from garage colocation data using
the Grubbs 3-instrument technique (Table 2).44 We derived
the following power-law relationship for instrumental noise
based on a linear fit of log-transformed σ0 and n distributions,
shown in Figure S2

n0.550
0.27σ = × −

(1)

where n = time integration period (seconds) and σ0 = standard
deviation around 0 (μg m−3).

This result is in line with observations that in-operation
noise reduces quickly with increasing integration time scales.
We reference two metrics derived from σ0(n): the effective
limit of detection (LOD; eq 2) and instrument precision
expressed as the bounding value for 95% confidence in the
PAX measurement (eq 3).

n nLOD( ) 3 ( )0σ= × (2)

n nPrecision( ) 2 ( )0σ= ± × (3)

This corresponds to a precision of 0.16 μg m−3 and an effective
LOD of 0.24 μg m−3 for 20 min of cumulative sampling time, a
typical time-integration period from the set of repeated mobile
visits to a fixed site during this campaign.
PAX data were processed to remove measurements taken

during periodic instrument self-calibration operations (10% of
data) and any measurement period with a 2 min moving
average less than zero, reflecting atypical instrument drift
between self-calibration operations (0.6% of the data).
Sampling the vehicle’s own exhaust plume, evidenced by a
rapid increase in concentrations of multiple pollutants, was
only observed to occur during certain wind conditions while
the vehicle was idling. All idling data (vehicle speed = 0) were
excluded from this analysis.

2.2.3. Evaluation of Instrumental Differences. Three
ABCD instruments were colocated with both PAX instruments
for 183 h in a semienclosed garage along the Embarcadero in
San Francisco where routine mobile lab maintenance was
performed. Major nearby BC sources include diesel vehicles
and marine vessels. Concentrations at a 1 min averaging time
ranged from <0.1−8 μg m−3. The set of instrument
comparison metrics described above are provided in Tables
S3 and S4 for two sets of averaging periods: 1 min averages for
both instruments, corresponding to the time integration period
for a low level of mobile sampling (e.g., six 10-s visits), and 20
min averages, corresponding to a high sampling rate (e.g., 120
10-s visits).
Pairwise regressions between ABCD and PAX operating in

the garage show correlations that are high for 20 min averaging
(R2 = 0.85 to 0.91) and slightly (∼8%) lower and more
variable among instruments for 1 min averaging (R2 = 0.64 to
0.86). PAX-to-ABCD precision at 20 min, MAE = 0.16 μg m−3

and RMSE = 0.26 μg m−3, is approximately 20% of typical hot
spot or highway concentrations but of comparable magnitude
to summertime concentrations of 0.3 μg m−3 in relatively
cleaner neighborhoods in West Oakland. MAE and RMSE are
25% and 30% higher, respectively, with 1 min averages than
with 20 min averages. We observe low relative bias among
instruments with fitted linear equations; MBE showing a
tendency of PAX instruments to read 10 to 15% lower than the
compared ABCD devices (MBE = 0.03 μg m−3). Because the

Table 2. Instrument Noise σ0 at Different Averaging Times
(μg m−3)

averaging time (min) ABCD PAX

0.017 (1 s) 0.59
0.17 (10 s) 0.31
1 0.14 0.16
5 0.05 0.12
20 0.03 0.08
60 0.02 0.05
1440 (24 h) 0.001 0.02
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bias observed in these three ABCD instruments may not be
representative of the total ABCD fleet, we did not apply
adjustment factors to PAX instruments based on these
comparisons; in situ MBE across the entire ABCD fleet was
moderate (∼0.1 μg m−3; see Figure 4), but a sensitivity
analysis indicated that bias adjustment had a marginal effect on
the MAE of in situ comparisons and no effect on correlation
coefficients. In comparing measurements from two different
detection methods, we inherently assume that both methods
will respond equivalently to BC particles of varying source or
age under all relevant environmental conditions. We believe
this assumption is justified, as (1) the ABCD measurements
include adjustments for humidity effects and a filter loading
artifact, (2) the garage colocation measurements show a strong
linear correlation between the two analyzers, and (3) previous
evaluations validate the relative instrumental response of
photoacoustic and filter-based BC measurements under
laboratory and field conditions.45,46

2.3. Spatial Patterns of Black Carbon in West
Oakland. To provide context for the core quantitative mobile
vs fixed-site comparison, we provide here a qualitative
comparison of West Oakland BC spatial patterns revealed by
both methodologies. For map-based visualization of mobile
monitoring, we join mobile lab global positioning system
(GPS) coordinates to the nearest 30 m road segment, record
the mean of each drive pass, and calculate for each road
segment the median value of all drive-pass means, as described
in detail by Messier et al.42 We create two additional maps with
data processed with a 10 and 20 s moving average,
corresponding to an approximate spatial smoothing of 90
and 190 m (average nonhighway vehicle speed of 9.3 m s−1).
We calculate the effective LOD for each road segment and
averaging period as described in Section S1.2. Effective LOD
varies by road segment and decreases at longer averaging
periods (see distributions in Figure S3). For the 1 Hz mobile
data, concentrations at approximately half of the road segments
are indistinguishable from 0 based on effective LOD (Figure
S4a). Shifting from 1 to 20 s moving average (Figure S4c), the
median LOD decreases by 30%, producing a more spatially
complete map with some loss of resolution of highly localized
spatial heterogeneity.
The mobile monitoring map from 20 s moving average data

shows the same general spatial patterns as fixed-site daytime
medians (Figure 1). Measurements at the road segment level
also reveal localized patterns not detected by the fixed-site
network, with examples marked a−d (street-level images of
these areas are provided in Figure S5). Mobile monitoring
provides measurements on highways where placement of fixed-
site monitors may be infeasible. Mobile coverage near a shows
the increase in concentration on elevated sections of Interstates
880 and 580 compared to the adjacent road network, as well as
concentration reduction with distance from highways.
Industrial activity near b, including a cement plant and metals
recycling facility,17 is reflected in elevated concentrations at
nearby fixed sites, while mobile monitoring also captures
several additional highly localized “hot spots.” Road-segment
medians also show hot spots corresponding to specific routes
such as the intersection segment at c, which acts as a funnel for
truck traffic to the Port of Oakland. Concentration peaks along
roads like the designated truck route around the Port of
Oakland south of d may reflect persistent small-scale
differences in patterns of traffic congestion. Thus, mobile

monitoring adds local context to the more precise, time-
resolved measurements at fixed sites.
As one illustration of the potential value of mobile

monitoring, 78% of mobile monitoring data was collected at
a distance greater than 100 m from any fixed site (see Figure
2). Consistent with Figure 1, the upper tail (top 5%) of the
distribution (Figure 2a) shows highway road segment medians,
many of which exceed 1.25 μg m−3. Fixed-site hot spots (>0.80
μg m−3) appear as isolated peaks of 1−2 monitors in Figure 2b,
matched in Figure 2a by a small share of near-site mobile
monitoring data and a large share of additional mobile
monitoring data collected in interstitial areas. The overall
median among fixed sites (0.48 μg m−3) closely matches that
of nonhighway road segments (0.44 μg m−3). These similar
medians suggest that nonhighway data collected on-road are
broadly representative of near-road concentrations despite
closer proximity to tailpipe emissions.

2.4. Mobile and Fixed-site Comparisons. Our core
quantitative analysis considers how successfully the temporally
sparse set of mobile measurements can determine time-
integrated concentrations at specific locations, given the
uncertainty from sampling error and instrument noise. We
also investigate the trade-off between spatial resolution and the
temporal density of mobile data. To process mobile data for
this comparison, mobile lab GPS coordinates are used to
calculate the instantaneous distance of the mobile lab from
each fixed site, without any “snapping” of observations to the
road network geometry. The series of 1 Hz mobile measure-
ments made within a given buffer length from a fixed site
compose a single unique sample (“visit”) for which we
calculate the mean of mobile measurements and mean of
contemporaneous fixed-site measurements. To reduce tempo-
ral sampling bias, we only include visits made during daytime
hours (9 am −5 pm), which were most evenly sampled. At a

Figure 1. Median black carbon (BC) concentration measured during
daytime hours (9 am−5 pm) throughout the 100-day campaign.
Circles represent median ABCD measurements at fixed sites and on-
road coloration shows smoothed mobile monitoring data (20 s
moving average), represented as the median of drive-pass means
calculated for 30 m road segments. The square icon in center of map
represents the single regulatory fixed monitoring site in the domain.
Labels a−d correspond to specific locations described in detail in text.
Map data: © 2020 Google.
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buffer of 95 m, daytime mobile monitoring resulted in a 10th−
90th percentile range of 27 to 142 visits and 10 to 58 min of
total in-motion sampling time at each site (Table 2). The
median of visit means at each site is used as a representative
metric of the time-integrated concentration over the whole
campaign. Visit-based concentration estimates are compared
with the 100-day median of ABCD measurements made during
daytime hours at each site.
We use the set of metrics described in Section S1.1 to

evaluate the core comparison (i) of mobile monitoring and
100-day fixed-site daytime medians. Sources of disagreement in
this comparison fall into the four categories listed in Table 3:
detection method differences, instrument noise, sampling
error, and spatial misalignment. We include two supplementary
comparisons to the effects of some of these sources of
disagreement. The contemporaneous subsample comparison
(ii) considers error and bias between mobile monitoring and
the medians of ABCD measurements made concurrently with
mobile lab visits at each site (fixed-site temporal subsample).
Because sampling periods align very closely, sampling error has
a marginal effect on the comparison, highlighting the effects of
spatial misalignment and detection method differences.
However, the reduced cumulative sampling time for the
ABCDs increases the effect of ABCD instrument noise. Here,
we use the 1 min resolution ABCD measurements most closely
matched in time to each drive pass, which introduces a minor
degree of temporal mismatch sampling error relative to using
ABCD data at their native 0.5 Hz resolution but with the
benefit of a substantial reduction in instrument noise (see
Figures S6−S8).

The temporal representativeness comparison (iii) uses only
fixed-site data to evaluate whether the conditions during
mobile sampling, represented by the temporal subsample of
fixed-site data used for comparison ii, vary significantly from
overall daytime conditions, represented by the 100-day fixed-
site daytime medians. Thus, we compare the overall median of
summer daytime concentrations to a median from 0.007% of
all measurements. This comparison is only affected by
sampling error and ABCD instrument noise, removing the
effects of detection-method differences and spatial misalign-
ment.
We investigate the sensitivity of our comparison metrics to

varying levels of spatial aggregation by varying the buffer length
used to define a visit between 30 and 150 m. Because 11 fixed
sites were located more than 25 m from the nearest road, we
did not consider buffer lengths less than 30 m in this sensitivity
analysis. The number of visits, visit length, and total sampling
time per site at 30 and 95 m are shown in Table 1: at 95 m,
median visit count is more than doubled and total sampling
time increases by a factor of 7. While sampling error and
instrument precision benefit from these increases, the increase
in spatial misalignment between mobile and fixed-site
measurements may reduce the ability of mobile monitoring
to distinguish localized concentration patterns.
Finally, we consider two spatiotemporal comparisons of the

mobile and fixed-site data. First, we compare spatial patterns
and correlation results for weekday mobile and fixed-site
medians and weekend medians. Second, we analyze agreement
between individual contemporaneous mobile and fixed-site
measurements during brief in-motion visits and short sta-
tionary colocation events.

3. RESULTS AND DISCUSSION
3.1. Comparison of Site Medians. At a moderately

localized spatial scale (buffer distance of up to 95 m), mobile
monitoring reproduces fixed-site daytime median concen-
trations with a mean average error within the bounds of
instrument precision limits (MAE = 0.11 μg m−3, 95%
precision ±0.15 μg m−3). The majority of points are clustered
within the range of 0.4 to 0.7 μg m−3 (Figure 3a), typical of
residential and commercial area concentrations. Approximately
20% of points occur at concentrations greater than 0.7 μg m−3,

Figure 2. Histograms of median mobile monitoring concentrations by
road segment within the study domain (a) and median daytime fixed-
site concentrations (b). Road segment medians are calculated from 1
Hz data; values correspond to Figure S4a. Mobile monitoring is
divided into data collected within 100 m of a fixed site, which
constitutes 22% of spatial coverage over the effective LOD, and data
collected beyond 100 m from a fixed site, constituting 78% of spatial
coverage.

Table 3. Sources of Disagreement for Each Comparison
Category

detection
method

instrument
noise1

sampling
error

spatial
misalignment

i. Core Result

Mobile monitoring during
visits vs all daytime
ABCD measurements

X X X X

ii. Contemporaneous Subsample

Mobile monitoring during
visits vs ABCD meas-
urements during visits

X X X

iii. Temporal Representativeness

ABCD measurements
during visits vs all day-
time ABCD measure-
ments

X X

1The effect of instrument error is different for each comparison, as
short-duration averaged ABCD, long-duration averaged ABCD, and
short-duration averaged PAX measurements each exhibit different
instrument errors (see Table 1).
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indicative of high traffic or industrial activity (cf. Figure 1).
Fixed-site and mobile in-motion medians are correlated (R2 =
0.51), despite method differences and temporal sparsity. The
contemporaneous subsample comparison ii, intended to
highlight method differences, instead shows that the higher
level of ABCD instrument noise at short averaging periods
results in slightly lower correlation, despite a more temporally
matched sampling of the fixed-site measurements. The fixed-
site temporal sparsity test iii shows high correlation and
moderate error levels between the fixed-site temporal subset
and overall daytime medians (R2 = 0.74, MAE = 0.09 μg m−3),
suggesting a moderate degree of sampling error coupled with
the effect of ABCD noise. It is worth noting that this
temporally sparse subsample of ABCD measurements,
representing approximately 70 random point-in-time measure-
ments per site, successfully approximates the central tendency
of continuous fixed-site measurements within moderate error
bounds. Thus, a key inference is that even an extremely
temporally sparse set of temporally random fixed-site measure-
ments can reproduce the long-term average of continuous
measurements.
For a highly localized comparison (buffer distance of up to

30 m), mobile monitoring shows poorer performance at
reproducing fixed-site medians (MAE = 0.19 μg m−3, R2 =
0.36; see Figure S9), owing principally to increased
instrumental noise at shorter integrating time scales. This
change in buffer length (95m down to 30m) decreases the area
of inclusion around each fixed site by an order of magnitude,

and the average vehicle-to-site distance decreases from 66 to
21 m (Figure S10), decreasing spatial misalignment at the cost
of dramatically decreasing sample size: a 6× decrease in
median time per site and a 3× reduction in visits per site
(Table 2). The reduced time integration period increases
median effective LOD by 3×, to 0.39 μg m−3, and medians at
60% of sites fell below the effective LOD. Variance among
mobile monitoring medians is greatly increased for a smaller
buffer size (Figure S9), in line with a substantial reduction in
effective PAX instrument precision. The contemporaneous
subsample comparison ii shows similarly weakened correlation,
but the temporal sparsity comparison iii shows only a small
reduction in correlation and increase in error (R2 = 0.68, MAE
= 0.11 μg m−3). A limited examination of correlation between
fixed-site and mobile in-motion medians by land use category
(e.g., port, truck route, residential) suggests that (1) in areas
with consistently high concentrations such as along truck
routes, correlation in the core comparison tends to be higher
and normalized error tends to be lower compared to low-
concentration residential areas, and (2) temporal representa-
tiveness is higher for truck routes than residential areas (see
S2.1). We tentatively interpret these results as an emergent
property of signal-to-noise ratio: all else being equal, higher
signal-to-noise (e.g., along truck routes) improves measure-
ment fidelity.
The dependence of R2, MAE, and MBE on spatial

aggregation scale (and on the corresponding increase in visit
count and instrument precision) is shown further in Figure 4.

Figure 3. Using a fixed-site radius of 95 m, pairwise correlation between median BC concentrations measured by three distinct data sets: mobile
monitoring visits (MM), ABCD measurements made during all daytime hours throughout the campaign (ABCD All Daytime), and the temporal
subset of ABCD measurements made during mobile monitoring visits (ABCD subset). Figure 3a shows results for the core analysis with the median
effective limit of detection (LOD) for PAX mobile measurements indicated by the vertical dotted line. Given nearly continuous monitoring, the
LOD for ABCD daytime medians is ≪0.01 μg m−3. Figure 3b shows the first supplemental comparison: mobile monitoring medians compared
with the medians of ABCD measurements made concurrently with mobile lab visits to each site (contemporaneous subsample). The mobile
monitoring LOD is the same as in 3a, and the LOD for ABCD subset medians is approximately 0.05 μg m−3. Figure 3c shows the second
supplemental comparison: the subsample of ABCD medians calculated during mobile lab visits compared with the medians from the complete set
of daytime measurements.
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The trend in the core comparison correlation (Figure 4c, black
line) suggests that the trade-off in correlation strength between
sample size and spatial misalignment shifts at a buffer length of
approximately 95 m. Mean absolute error (Figure 4d, black
line) reaches a minimum at a length of 65 min line with
increased mobile monitoring precision (Figure 4b)and
shows no further trend with buffer length. The MAE for
comparison ii (Figure 4d, green line) shows a consistent
margin of 0.05 μg m−3 above the core comparison, reflecting
the increase of ABCD instrument noise when incorporating a
small number of visits rather than the campaign average. That
instrument noise is also reflected in the comparison ii

correlation trend (Figure 4c, green line), which does not
exceed correlation for the core comparison but does increase
with buffer distance up to 95 m. The close pairing of the
comparison i and ii correlation trends suggests that mitigating
instrument noise drives the improvement in correlation with
increasing spatial aggregation, further evidenced by the
relatively constant correlation and error trends of the fixed-
site temporal representativeness comparison (iii) (Figure 4c,d,
orange line).
Mean bias error for both comparison i and ii stabilizes at 65

m, and it remains approximately constant for comparison iii.
The stable MBE values indicate that sampling occurred during
moderately more polluted conditions (comparison iii MBE =
−0.08 μg m−3), but mobile measurements are biased low in
comparison with fixed sites (comparison ii MBE = 0.15 μg
m−3), resulting in a lower MBE for the core comparison.
Temporal sampling bias resolved by site is consistent with
these patterns (Figure S11). Restricting mobile sampling to
daytime hours increases bias compared to 24 h medians, which
are typically 15% lower (see S2.4). Periods of elevated
background concentration due to long-range transport events
could potentially affect the strength of correlation and
temporal bias, but we found our results were not sensitive to
the exclusion of days with elevated background concentration
(see S2.3).

3.2. Spatiotemporal Comparison. Weekday and week-
end conditions in West Oakland vary significantly in both the
range of concentrations and the degree of spatial heterogeneity
(see maps in Figure S12). Several spatial patterns in both fixed-
site and mobile monitoring maps reflect weekday emissions
activity, including port-related traffic and industrial activity in
the northwest quadrant of the domain (Figure S11). Relative
to weekends, weekdays exhibit higher correlation for the core
comparison (R2: 0.45 vs 0.03), but lower MAE values (0.13 vs
0.18; units: μg m−3; Table S5), partially reflecting differences
in sample size. The spatial coverage of mobile monitoring data
shows the distribution and intensity of weekday emissions
activities within the domain, complementing detailed informa-
tion about diurnal concentration cycles measured at fixed
sites.36

While the weekday-weekend comparison shows that mobile
monitoring can reveal changes in spatial patterns for coarse
temporal divisions (e.g., weekday vs weekend), the high degree
of instrument noise relative to ambient concentrations in this
study inhibits the ability of mobile monitoring to provide
reliable measurements at full spatiotemporal resolution (i.e.,
point-in-time estimates for a specific location from a single
drive pass). Aggregated across all sites, contemporaneous
mobile and fixed-site measurements during in-motion visits
show no correlation, regardless of buffer length (Table S6).
Correlation at individual sites is also poor, both when
comparing mobile monitoring to ABCD instruments and
AE33 reference instruments (see S2.4; Tables S7−S12, Figures
S15−S20). However, a supplementary set of experiments
where cars repeatedly parked for several minutes next to fixed
monitoring sites suggests that correlation in contemporaneous
measurements improves dramatically when site visits are
lengthened from ∼20 s in-motion (R2 = 0.05) to ∼7 min
parked within 80 m of the site (R2 = 0.65). The difference in
performance between in-motion and short-term stationary
colocations suggests that in cases where spatially distributed,
real-time estimates of concentrations are desired, instrument

Figure 4. Change in sample size, Pearson’s R2, mean absolute error
(MAE), and mean bias error (MBE) with increasing fixed-site buffer
length.
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noise may be overcome by extending sampling time at
locations of interest.
3.3. Recommendations for Future Research. Through

this comparison of measurement paradigms, we find that full-
coverage mobile monitoring can effectively fill in the gaps in
spatial patterns shown by a fixed-site network, and that spatial
aggregation can mitigate instrument noise through an increase
in per-spatial-unit sampling time. The need to reduce effective
BC instrument noise is of increased importance in the
comparatively clean conditions of this summer campaign,
where instrument noise and background concentrations were
of similar magnitude. Under such conditions, this analysis
showed that mobile monitoring provides reasonable spatial
fidelity at a buffer size of 95 m (or spatial resolution of ∼0.03
km2). Resolving spatial heterogeneity on a substantially finer
scale, (e.g., 10−20 m), which is often the goal of mobile
monitoring campaigns,4,21,23,25,35 may be more readily
achieved in environments where instrument noise is low
relative to ambient conditions and the magnitude of spatial
gradients. The resolution of more subtle heterogeneity may
require an increase in both the number of visits made and the
duration of each visit (i.e., by slowing or temporarily stopping
the vehicle). Results of this study can inform the design of
future campaigns.
Following the findings that spatial resolution is affected by

instrument noise and averaging time, future mobile monitoring
analyses should explicitly consider the appropriate level of
spatial aggregation. Future work could routinize this element of
study design through a parametrized model that considers the
magnitude of different sources of error. Because spatial
aggregation may differ among microenvironments, such
modeling may include further analysis of results divided by
land-use type using carefully balanced subsamples. Study goals
may also influence the desired level of spatial aggregation. For
example, higher spatial resolution may be used to address
research questions that can accommodate wider uncertainty
bounds, such as identifying hot spots that exceed regional
background concentrations by an order of magnitude.
The techniques used here for comparing mobile and fixed-

site comparisons could usefully be extended through further
data experiments. Since these findings suggest that instrument
noise and not sample size is the prevailing source of error, this
data set could support the use of randomized or controlled
subsamples of fixed-site and mobile data to test the
effectiveness of different mobile monitoring deployment
strategies. This may include the direction of more sampling
during certain time periods or in certain areas. A limit to such a
study is the limited window of sampling; sampling error may
account for a greater share of uncertainty in studies that
distribute sampling over longer periods that are affected by
greater seasonal variability in measured concentrations.
This analysis also highlights the strength of a fixed-site

network in providing distributed real-time measurements,
acting as a valuable complement to mobile monitoring efforts.
Under the conditions of this campaign, mobile monitoring
showed poor performance in providing temporally resolved
measurements at fixed sites. For such purposes, mobile
laboratories may be more effectively employed in conducting
short-term stationary measurements.
The combination of mobile and fixed measurements into a

single sampling campaign provides highly detailed information
on both spatial and temporal trends in air quality within
individual neighborhoods. Following this effort in the

evaluation of methods to successfully compare and cross-
validate these approaches, future work could usefully examine
methods for fusing mobile and fixed-site measurements to
estimate the spatiotemporal variability of air pollution across a
measurement domain.
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