
LETTER • OPEN ACCESS

Socio-economic disparities in exposure to urban
restaurant emissions are larger than for traffic
To cite this article: R U Shah et al 2020 Environ. Res. Lett. 15 114039

 

View the article online for updates and enhancements.

You may also like
An environmental impact assessment of
restaurant operation: A case study of RM
Restaurant in Garut, Indonesia
I Munfarida and V Arida

-

GIS-based NNA and Kernel Density
Analysis for Identifying Distribution of
Restaurant’s Popularity Index in Bandung
S S A’idah, D Susiloningtyas and I P A
Shidiq

-

Implementing Cloud Computing
Technology on Restaurant’s Expenses
Monitoring System
F N Hasanah, F Renaldi and F R Umbara

-

This content was downloaded from IP address 205.175.106.205 on 05/09/2023 at 20:32

https://doi.org/10.1088/1748-9326/abbc92
/article/10.1088/1755-1315/1201/1/012031
/article/10.1088/1755-1315/1201/1/012031
/article/10.1088/1755-1315/1201/1/012031
/article/10.1088/1755-1315/940/1/012012
/article/10.1088/1755-1315/940/1/012012
/article/10.1088/1755-1315/940/1/012012
/article/10.1088/1757-899X/1115/1/012039
/article/10.1088/1757-899X/1115/1/012039
/article/10.1088/1757-899X/1115/1/012039


Environ. Res. Lett. 15 (2020) 114039 https://doi.org/10.1088/1748-9326/abbc92

Environmental Research Letters

OPEN ACCESS

RECEIVED

25 June 2020

REVISED

25 August 2020

ACCEPTED FOR PUBLICATION

29 September 2020

PUBLISHED

24 November 2020

Original Content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOI.

LETTER

Socio-economic disparities in exposure to urban restaurant
emissions are larger than for traffic
R U Shah1,2,3, E S Robinson1,2,4, P Gu1,2,5, J S Apte6,7,8, J D Marshall9, A L Robinson1,2

and A A Presto1,2
1 Center for Atmospheric Particle Studies, Carnegie Mellon University, Pittsburgh, PA 15213, United States of America
2 Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States of America
3 Now at: Environmental Defense Fund, San Francisco, CA 94105, United States of America
4 Now at: Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD 21218, United States of
America

5 Now at: California Air Resources Board, Sacramento, CA 95814, United States of America
6 Department of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, CA 94720, United States of America
7 School of Public Health, University of California, Berkeley, Berkeley, CA 94720, United States of America
8 Formerly at: Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, Austin, TX 78712,
United States of America

9 Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195, United States of America

E-mail: apresto@andrew.cmu.edu

Keywords: particulate matter, urban air pollution, restaurant emissions, environmental justice, health and exposure

Supplementary material for this article is available online

Abstract
Restaurants and vehicles are important urban sources of particulate matter (PM). Due to the
ubiquitous presence of these sources within cities, large variabilities in PM concentrations occur in
source-rich environments (e.g. downtown), especially during times of peak activity such as meal
times and rush hour. Due to intracity variations in factors such as racial-ethnic composition and
economic status, we hypothesized that certain socio-economic groups living closer to sources are
exposed to higher PM concentrations. To test this hypothesis, we coupled mobile PM
measurements with census data in two midsize US cities: Oakland, CA, and Pittsburgh, PA. A novel
aspect of our study is that our measurements are performed at a high (block-level) spatial
resolution, which enables us to assess the direct relationship between PM concentrations and
socio-economic metrics across different neighborhoods of these two cities. We find that restaurants
cause long-term average PM enhancements of 0.1 to 0.3 µg m−3 over length scales between 50 and
450 m. We also find that this PM pollution from restaurants is unevenly distributed amongst
different socio-economic groups. On average, areas near restaurant emissions have about 1.5×
people of color (African American, Hispanic, Asian, etc), 2.5× poverty, and 0.8× household
income, compared to areas far from restaurant emissions. Our findings imply that there are
socio-economic disparities in long-term exposure to PM emissions from restaurants. Further, these
socio-economic groups also frequently experience acutely high levels of cooking PM (tens to
hundreds of µg m−3 in mass concentrations) and co-emitted pollutants. While there are large
variations in socio-economic metrics with respect to restaurant proximity, we find that these
metrics are spatially invariant with respect to highway proximity. Thus, any socio-economic
disparities in exposure to highway emissions are, at most, mild, and certainly small compared to
disparities in exposure to restaurant emissions.

1. Introduction

Exposure to urban fine particulate matter (PM2.5) is
a serious global health risk [1–3]. Intra-urban vari-
ability in PM2.5 concentrations is strongly influenced
by spatial and temporal patterns of anthropogenic

sources; two important urban sources are commercial
cooking and vehicular traffic. Cooking PM is higher
in locations and during times of commercial cook-
ing activities (i.e. near restaurants and during meal
preparation times), and vehicular PM is higher on
or near highways, especially during periods of peak
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activity of heavy-duty diesel trucks. Real-time meas-
urements of spatial variabilities in PM composition in
the past decade have shown large intra-urban spatial
gradients in the impacts of these sources [4–13].

The long-term averages of PM2.5 are higher
(0.5–2 µg m−3) in affected neighborhoods (e.g. city
centers a.k.a. ‘downtowns’, neighborhoods with high
restaurant density, etc), compared to concentrations
reported by stationary reference monitors at urban
background sites [14, 15], implying higher long-term
exposures for residents of such source-rich neighbor-
hoods. These residents are also frequently exposed to
short-lived, high concentrations of these pollutants,
which also has health concerns [16]. For example,
Robinson et al [10]. showed that individual restaurant
plumes result in intermittent, significantly enhanced
cooking PM concentrations (tens to hundreds of
µg m−3) at the neighborhood scale (∼400 m). Fur-
ther, near points of emission, these plumes are rich in
‘ultrafine’ particles (diameter <100 nm)[8, 17–19],
which is a serious concern because health risk from
inhalation of particulate matter may increase with
decreasing particle size [20–22]. It is thus evident that
over the course of a typical day, people living in cer-
tain urban neighborhoods can have higher long-term
and acute exposures to PM2.5.

Socio-economic factors such as household
income, poverty, and racial-ethnic distribution can
vary across neighborhoods within a city [23, 24], and
also on an inter-city basis [25]. Large variabilities in
pollutant levels and exposures across such neighbor-
hoods can then also result in disparities in pollution
exposure for certain socio-economic groups [26].
A recent study by Tessum et al [27]. estimated that
emissions along the supply-chain of goods and ser-
vices exert unequal PM exposures among the US’s
diverse racial-ethnic groups, with African American
and Hispanic groups bearing a 60% excess pollution
burden. While this finding offers a crucial insight
into the socio-economic disparity in exposure to PM
at a national scale, it does not provide an explicit
link between specific urban PM sources and socio-
economic disparities in near-source exposure. Several
other environmental justice studies have explored this
direct link using either dispersion modeling of pol-
lutants across an area, and/or a network of stationary
monitors with geospatial interpolation (e.g. Kriging)
and regression (e.g. land use regression) [28–37]. In
contrast, high-spatial-resolution measurements of
pollutant concentrations have been rarely coupled
with socio-economic information [19].

Our novel approach in this study is to couple
socio-economic information with mobile measure-
ments of source-resolved PM components (e.g. from
cooking) conducted at block-level spatial resol-
ution. The objective of this study is three-fold.
First, we assess the spatial extents of cooking PM
enhancements in the immediate (∼500 m) vicin-
ity of restaurants. To achieve this objective, we use

previously published datasets generated from mobile
aerosol mass spectrometry measurements in two
midsize US cities: Oakland, CA and Pittsburgh, PA
[7, 9]. These measurements were performed over
multiple weeks, thereby providing robust spatial and
temporal patterns of these pollutants at block-level
spatial resolution.

Our second objective is to investigate socio-
economic disparities in exposure to these cooking PM
enhancements. Data provided by the US Census at
the block group level provides information such as
racial-ethnic composition and household income at
block-level spatial resolution. We couple our assess-
ments from the first objective to this census inform-
ation about Oakland and Pittsburgh, to calculate the
average socio-economic composition of the popula-
tion groups that are exposed to high long-term and
acute levels of cooking PM.

Lastly, recent studies have shown that contribu-
tions of urban carbonaceous PM from vehicles and
restaurants are comparable [7, 9, 38]. However, since
these two sources are not always spatially correlated
(e.g. see figure 1, and Robinson et al [11].), our third
objective is to contrast these two sources in terms
of socio-economic disparities in exposure to their
emissions. Analogous to the first two objectives, we
characterize concentrations of fuel-combustion PM,
and socio-economic factors, with respect to highway
proximity.

2. Methods

2.1. Mobile sampling
As part of the Center for Air, Climate, and Energy
Solutions (CACES, www.caces.us) project, we car-
ried out mobile sampling studies in two cities: Pitt-
sburgh, PA and Oakland, CA. Pittsburgh measure-
ments occurred between August 2016 and February
2017. Oaklandmeasurements occurred largely in July
2017. Due to repeated daily sampling during these
periods, we sampled nearly all street blocks in down-
town and some urban residential neighborhoods on
at least 12 different days. Measurements in Oakland
were typically between 8 AM and 5 PM local time,
while those in Pittsburgh were typically between 8
AM and 8 PM local time.

We deployed the same mobile laboratory and
instrumentation suite in both these locations. The
key instruments were: a) a high-resolution time-
of-flight aerosol mass spectrometer (HR-ToF-AMS,
hereafter ‘AMS’; Aerodyne Research Inc [39].) to
measure mass concentrations of non-refractory sub-
micron particles (PM1), and b) a seven-wavelength,
dual-spot aethalometer (AE33, Magee Scientific) to
measure mass concentrations of refractory black car-
bon (BC; typically emitted from heavy-duty diesel-
combustion trucks). Detailed descriptions of the
sampling platform design and quality assurance
methods can be found in Shah et al [9]. and

2



Environ. Res. Lett. 15 (2020) 114039 R U Shah et al

Gu et al [7]. A map of all AMS data in Pitts-
burgh and Oakland are shown in figures 1 and
S1 (https://stacks.iop.org/ERL/15/114039/mmedia),
respectively.

2.2. Data analysis
2.2.1. Source-apportionment of PM
We processed AMS data using SQUIRREL 1.57I and
PIKA 1.16I routines [40] in Igor Pro 6.37 (Wavemet-
rics, Lake Oswego, OR;). The average total measured
PM1 was 11.3 and 10.2 µg m−3 in Oakland and Pitts-
burgh, respectively, with the carbonaceous contribu-
tion exhibiting the largest spatial and temporal vari-
ability (2–3 µg m−3) in both cities. Using chemical
source-apportionment analysis of the organic PM in
both cities’ datasets, we identified a cooking-related
factor (average 14% and 9% contribution to aver-
age total PM1 in Oakland and Pittsburgh, respect-
ively) and a traffic-related factor (average 9% and 7%
contribution to average total PM1 in Oakland and
Pittsburgh, respectively). Cooking PM emissions are
almost entirely composed of organic matter [41], so
this cooking factor represents the entire contribution
of cooking sources to PM. Vehicular PM emissions
are a mixture of organic matter and black carbon,
and thus the sum of these two components represents
the total contribution of vehicles to PM. We based
the source-apportionment on the following: (a) the
chemical mass spectra of the PM components are
consistent with previously published mass spectra of
cooking and vehicle exhaust measurements; (b) the
diurnal profiles of these PM components resemble
the expected pattern of the corresponding activity
e.g. cooking PM peaks during typical times of peak
restaurant activity. Details of source-apportionment
methods and quality assurance are described in pre-
vious companion papers [7, 9]. Further description
of the robustness of our source apportionment ana-
lyses is provided in the SI. Note that when referring to
these source-resolved PM components, we only refer
to the primary emissions i.e. those directly emitted in
the formof PM, and not any additional secondary PM
that may form as these plumes undergo atmospheric
physical/chemical processes [42].

2.2.2. Near-source spatial extent estimations
We performed all geospatial analyses in Q-GIS
open-source software. We downloaded locations of
restaurants and food trucks (hereafter collectively
referred to as restaurants) from multiple sources:
local health department websites [43–45], and scrap-
ing the Yelp.com [46] website application pro-
gramming interface [11]. We obtained geographic
shapefiles of highways from the public data reposit-
ories of Alameda [47] and Allegheny [48] counties
(for Oakland and Pittsburgh, respectively). For all
mobile sampling locations, we calculated Euclidean

distances to nearest restaurant and nearest highway
point. We then used these distances for binning the
measurements as functions of proximity to restaur-
ants, and separately, to highways.

While our measurements have a nominal 100 m
spatial resolution on latitudinal and longitudinal
dimensions, projecting them on to a ‘distance-from-
source’ dimension increases their resolution even
more, because of multiple, non-uniformly distrib-
uted sources (e.g. restaurants) in the city. We thus
arbitrarily used a 30 m lengthscale to resolve our
measurements on this dimension.

We classified our pollutant measurements into
30 m ‘distance-from-source’ bins (where ‘pollutant’
is a source-resolved PM component, and ‘source’ is
restaurants or highways). Within each 30 m bin, we
calculated themedian pollutant concentration. There
were typically 102 − 103 samples in bins within 400m
of source, as shown in figure S4. In the interest of
comparing near-source enhancements, we normal-
ized thesemedian concentrations to themedian in the
farthest distance bin with at least 50 samples. Follow-
ing Apte et al [6], we fit these medians using an expo-
nential model to characterize the pollutant’s fall-off
behavior with increasing distance from their sources
(restaurants for cooking PM, highways for traffic-
related PM):

f(d) = α+β · exp(−d/k), (1)

where α is the median concentration in the farthest
distance bin (nominally this should be unity, since
we are normalizing near-source medians to this
concentration; however, we did not pin α), β is
the fractional enhancement immediately next to the
source i.e. at d= 0 (e.g. β = 0.5, i.e. α+β= 1.5,
implies that immediately next to restaurants, median
cooking PM is 1.5× background), and k is the
characteristic e-folding lengthscale describing how
fast, with increasing distance (d) from source, the
pollutant concentration decays to background level.
Co-efficients α, β, and k are determined by the iter-
ative Levenberg-Marquardt non-linear least-squares
algorithm in Igor Pro.

Due to wind recirculation and turbulence
between buildings, resolving measurements based on
wind direction can be challenging. Hence, we did not
classify our measurements into ‘upwind’ and ‘down-
wind’ of source. The fall-off behavior characterized
by equation (1) should thus be considered an average
representation of a uniform buffer of radius d around
the source.

2.2.3. Socio-economic analyses
We downloaded socio-economic data from the US
Census Bureau’s 2017 community surveys, resolved
at the block level [49]: racial-ethnic composition
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Figure 1. (a) Map of Pittsburgh, PA, showing AMS samples collected during mobile sampling (orange dots), and our artificial
100 m grid (each grid cell colored by distance to nearest restaurant or food truck), overlayed on the census blocks (black
boundaries) within the city. Highways are shown as pink lines. Histograms of distance to (b) restaurants or food trucks and
(c) highways are shown to compare the spatial density of these two source types. While the entirety of Pittsburgh falls within
1000 m of restaurants, only about 45% falls within 1000 m of highways. A similar map for Oakland is shown in figure S1. Map
data © OpenStreetMap.

(table B0300210), median household income (table
B19013), and poverty (table B17017; poverty is
defined as the number of households with income
below a certain threshold). Figure 1(a) shows these
census blocks. Clearly, with our mobile sampling,
we oversampled some census blocks, while under-
sampling (or not sampling at all) other census blocks.
Coupling socio-economic metrics directly to our
sampling locations would have propagated these
biases and skewed our results towards oversampled
blocks. To avoid this, we overlayed an artificial 100 m
grid over the entire city, and used these uniformly-
spaced grid cells to represent the census blocks within
which they fall.

For each 100 m grid cell, we calculated the Euc-
lidean distance of the grid cell center to the nearest
restaurant and highway point in Q-GIS. We then
classified the grid cells into 30 m bins of proximity
to sources (same as how we classified our measure-
ments into 30 m bins of source-proximity earlier),
and calculated the city-wide distributions of these
proximities (as shown in figures 1(b) and (c)).We also
calculated averages of each socio-economic metric
(e.g. median household income) within each of these
proximity bins. This effectively results in a weighted
average of each socio-economic metric, where each

10 People of all races who are Hispanic or Latino shall be referred
to as Hispanic in this study. Our analyses for White, African Amer-
ican, Asian, and Other groups use data on people that are not
of Hispanic origin (listed as ‘not Hispanic: White’, ‘not Hispanic:
African American’, etc in census table B03002).

census block’s weight is simply the fraction of total
grid cells falling inside it. With increasing distance
from restaurants or highways, the number of people
of difference races and ethnicities can be confounded
with other factors such as density of housing, zon-
ing laws in certain census blocks, etc For example,
figure S6 shows that population has a decreasing trend
with increasing distance from restaurants. Hence, to
control for these confounding factors, we used the
fractional contribution of these population groups
instead of absolute population.

Lastly, we used our e-folding lengthscale calcu-
lated from equation (1) to broadly classify the binned
averages of socio-economic metrics as either ‘near’ or
‘far from’ restaurants. In other words, if k= 200 m,
then the averages of socio-economic metrics in bins
less than 200 m are further averaged to represent
a ‘near restaurants’ average, while the other bins
(>200 m) are further averaged to represent a ‘far from
restaurant’ average.

3. Results and discussion

3.1. Spatial influence of particulate matter (PM)
emissions from restaurants
Figure 2 shows the fall-off behavior of cooking PM
with increasing distance from restaurants in Oak-
land and Pittsburgh. Data are presented as binned
median enhancements of cooking PM relative to
background, fitted by the three-parameter exponen-
tial model (equation (1)) to characterize the e-folding
lengthscale, k.We limit the abscissae to 400m because
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Figure 2. Fall-off behavior of cooking particulate matter with increasing distance from restaurants in Oakland (panels a–f) and
Pittsburgh (panels g–l). Since data are presented as enhancements relative to background levels, the fits describe the decay of
median relative cooking PM enhancements from immediately next to sources (β) to background level (α), and the spatial extent
(k) around restaurants where these enhanced levels are observed. The shaded gray regions are uncertainties in background
cooking PM; specifically, 1 σ of median concentrations measured>500 m from restaurants (±15% in Oakland,±20% in
Pittsburgh). Standard deviations of k are calculated during fitting. χ2 is the squared residual of fit. ‘Urb. resid.’= urban
residential. While the afternoon panel in Oakland (panel (f)) only includes data till 5 PM local time, that for Pittsburgh (panel (l))
includes dinner time data i.e. till 8 PM local time.

we have little to no sampling coverage beyond this
point in both Oakland and Pittsburgh (as shown in
figure S4).

Figure 2 shows data and fits for the entire datasets
in both cities (panels a and g), as well as for data strati-
fied by land-use areas (downtown and urban residen-
tial portions of both cities are analyzed separately in
panels (b), (c), (h), and (i)), and by different periods
of restaurant activity (morning, mid-day, and after-
noon, in panels (d)–(f), and (j)–(l)). A map of down-
town and urban residential neighborhoods of Oak-
land and Pittsburgh is shown in figure S2. For each

panel of figure 2, bins with fewer than 20 measure-
ments are considered insufficiently sampled, and are
thus neither graphed nor included in fitting. We set
this tolerance following the findings of Apte et al [6].
and Messier et al [50]. Lack of data in the down-
town panels ((b) and (h)) is due to high restaur-
ant density in these relatively small neighborhoods,
resulting in most measurements falling within a few
hundred meters of the nearest restaurant, and virtu-
ally no measurements beyond that point.

In both cities’ datasets, the exponential model
generates a wide range of k-values for different
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spatial and temporal strata. This variability seems
to be affected by both restaurant cooking activity
(e.g. higher emissions during mid-day), as well as
restaurant density. As mentioned earlier, some of
this variability is likely also due to meteorological
factors (e.g. local wind speed and direction), which
we did not account for. Hence, for the subsequent
socio-economic disparity analyses inOakland,wewill
use a central k of 270 m, and will use the 87 m and
442 m as lower and upper bounds for testing sensit-
ivity. Similarly, in Pittsburgh, we will use a central k
of 214 m, with 40 m and 333 m as lower and upper
bounds.

In the full Oakland dataset, relative enhance-
ments in cooking PM immediately next to restaur-
ants (i.e. at d= 0) are 1.5× background levels (panel
(a)). With increasing distance, PM decays to back-
ground levels with an e-folding lengthscale, k, of
87m.DowntownOaklandhas a similar k-value, albeit
with a higher local enhancement, β, of 2× back-
ground, while cooking PM in urban residential Oak-
land is almost spatially invariant. This is likely because
of the very low restaurant density in this part of
Oakland (12 km−2). As a result, it may be challen-
ging to distinguish emissions from restaurants versus
that from household kitchens. In other words, all
kitchens (restaurants and households) may collect-
ively act as an area source, raising the overall back-
ground cooking PM level of the neighborhood, but
without any discernible point sources. This is con-
sistent with the findings in Shah et al [9]: cook-
ing PM in urban residential Oakland was shown
to have very little spatial and temporal variability.
Because of this invariance with respect to restaur-
ant proximity, the k-value generated by the exponen-
tial model (∼4 km) is not physically meaningful. In
contrast, downtown Oakland, with a higher restaur-
ant density of 56 km−2, exhibits a clear exponential
fall-off of cooking PM with increasing distance from
restaurants.

Stratifying the data by diurnal periods also offers
meaningful insights. In Oakland, the morning (8 am
to 11 am) and afternoon (2 pm to 5 pm) periods
have low β of 1.2× and 1.3× background, indicating
low commercial cooking activity during these peri-
ods. Conversely, the mid-day period (11 am to 2 pm)
has a higher β value of 1.8× background, showing the
effect of increased cooking emissions. Further, a k of
442 m during this period indicates a farther extent of
restaurant influence on nearby air quality. Both mid-
day and afternoon periods in Pittsburgh have high β
of 4× (off-scale in figure 2(k)) and 2.7× background,
indicating high commercial cooking activity in these
periods. As mentioned earlier, unlike in Oakland, we
performed measurements in Pittsburgh after 5 PM
local time. Hence, while the afternoon panel in Oak-
land (panel (f)) shows little influence of restaurants,
the same for Pittsburgh (panel (l)) shows a clear din-
nertime effect.

Figure 3. The log-linear dependence of relative
enhancements in cooking PM on restaurant density.
βmeas =median relative enhancement of cooking PM
measured within 30 m of restaurants i.e. the first marker in
panels (b), (c), (h), and (i) of figure 2.

Overall, the quality of fits (χ2) is lower in Pitts-
burgh than inOakland. This is because absolute cook-
ing PM concentrations are lower in Pittsburgh (as
shown in figures 4 and S4). As a result, normaliz-
ing to background levels amplified the noise in the
Pittsburgh panels of figure 2 (especially in the morn-
ing, when restaurant emissions are lowest). Despite
this, the dependence of cooking PM on restaurant
proximity is still reasonably well constrained by the
exponential model (as indicated by the χ2 of fits).
In the full Pittsburgh dataset (panel (g)), enhance-
ments immediately next to restaurants are 1.8× back-
ground levels. With increasing distance, cooking PM
decays with an e-folding lengthscale, k, of 214 m.
Downtown and urban residential neighborhoods of
Pittsburgh also have higher β (3× and 1.8× back-
ground) compared to respective neighborhoods of
Oakland. Pittsburgh has a higher restaurant density
than Oakland, which explains why it has a higher β
than Oakland (panel (a)). This is another example
of the effect of restaurant density: downtown and
urban residential Pittsburgh have restaurant densities
of 321 km−2 and 67 km−2, respectively (much higher
than the 56 km−2 and 12 km−2 in respective parts of
Oakland). Due to this, urban residential Pittsburgh
still exhibits a discernible, albeit noisy dependence on
restaurant proximity (unlike urban residential Oak-
land). The e-folding lengthscale, k, in urban residen-
tial Pittsburgh (247 m) is similar to that for the entire
dataset (214 m).

As discussed above, relative enhancements of
cooking PM near restaurants are not only affected
by proximity and activity, but also by density of
restaurants. Figure 3 shows this dependence more
clearly. In different land-use areas of Oakland and
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Figure 4. Average cooking PM concentrations and socio-economic metrics near and far from restaurants in Oakland (upper row),
and Pittsburgh (lower row). The beige-tinted panels show racial-ethnic composition, and the teal-tinted panels show economic
status. Error bars indicate extreme-case averages calculated based on sensitivity analyses, as described in previous section. People
of all races who are Hispanic or Latino are referred to as Hispanic. Our analyses for White, African American, Asian, and Other
groups use data on people that are not of Hispanic origin.

Pittsburgh, the measured enhancement within 30 m
of restaurants, βmeas (i.e. the first marker in panels
(b), (c), (h), and (i) of figure 2), exhibits a log-linear
dependence on restaurant density. It is worth noting
that in addition to restaurant count, restaurant dens-
itywas also a cooking PMpredictor variable identified
by the land-use regression model of Robinson et al
[11] in Oakland.

3.2. Socio-economic disparities in exposure to
restaurant emissions
In this section, we couple spatial influence of par-
ticulate matter emissions from restaurants with
socio-economic metrics around restaurants. As
described earlier, we first binned socio-economic
metrics (e.g. household income) in the same 30 m
bins of restaurant proximity as used in figures 1 and 2.
This preliminary binning is shown for Pittsburgh and
Oakland in figure S6. Clearly, in both cities, certain
socio-economic patterns exist with respect to restaur-
ant proximity. For instance, in both cities, poverty
decreases with increasing distance from restaur-
ants. The fraction of African American population
also decreases, while fraction of White population
increases with increasing distance from restaurants.

To characterize these socio-economic metrics
with respect to restaurant PM emissions, we use the
e-folding lengthscale (k) calculated in the previous
section as the spatial extents of influence of par-
ticulate matter emissions from restaurants. We use
this lengthscale to broadly classify the cities into two
regions: near restaurants (i.e. distance to nearest res-
taurant < k), and far from restaurants (distance to
nearest restaurant > k). Because this delineation is

sensitive to k, we also use the lower and upper bounds
of k observed in the previous section as our extreme
cases to test sensitivity. These values, with sensitivity
estimates, are shown in figure 4.

As shown in figure 4, average cooking PM con-
centrations near restaurants are 0.1 to 0.3 µg m−3

higher than those far from restaurants. While these
differences may seem small, two points should be
noted: first, while these represent long-term and city-
wide averages, certain areas (e.g. downtown, areas
with high restaurant density) have long-term aver-
age cooking PM enhancements as large as 1 µg m−3

(especially during peak restaurant activity periods),
as shown in figures 2 and 3. Second, as discussed
in the next section, these differences also represent
large variations in acute cooking PM levels, which
are dampened by the multiple stages of aggregation
performed on >15000 individual measurements in
each city.

Comparing Oakland and Pittsburgh in figure 4
reveals intercity disparities in cooking PM concen-
trations and racial-ethnic composition. Oakland has
4× higher average cooking PM concentration than
Pittsburgh. Oakland also has 1.5× more people per
census block than Pittsburgh, with 4× higher His-
panic fraction, 3× higher Asian fraction, and 0.7×
lower White fraction than Pittsburgh. The over-
all economic status in Oakland is higher than that
in Pittsburgh (i.e. higher household income, lower
poverty). This is likely a result of other factors, such
as dominant industry type, that influence the overall
standard of living.

Figure 4 also shows intracity socio-economic
disparities in both cities. Overall, near restaurant
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emissions, the total fraction of people of color 11 is
higher, White fraction is lower, poverty is higher,
and median household income is lower compared to
far from restaurant emissions. In Oakland, African-
American and Hispanic fractions living near restaur-
ant emissions are respectively 1.5× and 1.8× higher,
while White fraction is 0.6× lower, compared to
far from restaurant emissions. Similarly, near Pitts-
burgh’s restaurant emissions, the African-American
fraction is 1.8× higher, while White fraction is 0.8×
lower, compared to far from restaurant emissions.

Oakland’s median household income near res-
taurant emissions is 0.6× lower, while poverty (=
number of households with income below poverty
line) is 3.4× higher than far from restaurants. While
Pittsburgh’s median household income near restaur-
ant emissions is slightly higher (1.1×) than far from
restaurants, poverty is still 1.3× higher near res-
taurants than far from restaurants. That income and
poverty are anti-correlated in Oakland, but not so in
Pittsburgh, may due to other differences between the
two cities, as proposed above. For example, Oakland
is part of the San Francisco-Oakland-San Jose com-
bined statistical area, and thus has diffusion of pop-
ulation across these neighboring city limits. On the
other hand, Pittsburgh is the only major city in the
greater Pittsburghmetropolis, with amajor industrial
area on the outskirts, which likely plays a role in the
lowermedian household income far from restaurants.

While cooking PM concentrations are unevenly
distributed for certain socio-economic groups, they
are also evenly distributed for other groups. For
example, in Oakland, fractions of Asian and Other
groups are similar (within 10%) near and far from
restaurants emissions. Similarly, Pittsburgh’s His-
panic andOther groups are similar (within 10%) near
and far from restaurants.

As noted above, the error bars in figure 4 repres-
ent sensitivity of the results to the choice of k used
for classifying areas as near or far from restaurants.
Using the lower and upper bounds of k identified
in figure 2 changes the specific concentrations and
socio-economic metrics, but it does not change the
overall conclusions. Cooking PM concentrations are
higher near restaurants, where there are more people
of color, and economic status is lower, compared to
far from restaurants.

In summary, the results presented in figure 4
show that there are intercity and intracity differences
in cooking PM concentrations and socio-economic
metrics in Oakland and Pittsburgh. That poverty and
total fraction of people of color is higher near res-
taurants strongly implies that these socio-economic
groups are exposed to higher cooking PM concentra-
tions, and thus bear a higher probability of related

11 We use the term ‘people of color’ to refer to African American,
Asian, Hispanic and Other (Hawaiian, American Indian, Alaskan,
Pacific Islander).

Figure 5. Percentage of samples with cooking PM exceeding
different thresholds near and far from restaurants in
Oakland and Pittsburgh. The purpose of this visualization
is to emphasize the importance of acutely large cooking PM
concentrations near restaurants. Note: dotted lines between
markers are only to guide the eye.

health risks, compared to White and richer popula-
tion groups.

3.3. Acute cooking PM concentrations due to
restaurant emissions
In figure 4, we showed that long-term and city-wide
averages of near-restaurant local PM enhancements
are 0.1–0.3 µg m−3, with certain neighborhoods of
high restaurant density having enhancements as large
as 1 µgm−3. While these differences are only 1–2% of
typical total urban PM (up to ∼10% in high restaur-
ant density areas), these differences represent acutely
high cooking PM concentrations, which are obscured
when aggregated at multiple stages. To explore this
information, we now revisit the raw measurements
i.e. prior to any aggregation. Figure 5 shows the per-
centage of total samples near and far from restaurants
with cooking PM concentration exceeding a series of
thresholds. These threshold crossings can be thought
of as cooking emission plumes of various intensities,
and how often one experiences these acute levels. For
instance, figure 5 shows that in Oakland and Pitts-
burgh, acute exposures to >5 µg m−3 cooking PM
are respectively 3× and 7× more frequent near res-
taurants, compared to those far from restaurants.

While the data in figure 5 show cooking PM con-
centrations exceeding thresholds of 5–50 µg m−3,
concentrations as high as 200 µgm−3 have previously
been observed within 200 m downwind distance of
restaurants [10]. It is thus evident that the socio-
economic groups living near restaurant emissions
experience not only the additional 0.1–0.3 µg m−3

of long-term cooking PM concentrations, but also
frequently experience these acute concentrations.
Further, as mentioned earlier, exposure to these
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plumes does not just increase exposure to mass con-
centrations of particulate matter, but also to the
ultrafine particle number concentrations [8, 51, 52],
which may have more serious health effects [21].
Lastly, other pollutants co-emitted with PM from
cooking activities (e.g. carcinogenic aldehydes emit-
ted from frying [53, 54]) also increase the health
risks associated with these acute exposures near
restaurants.

3.4. Socio-economic disparities in exposure to
traffic emissions
As mentioned earlier, we resolved our observed
PM into two vehicular components: an organic
component (chemically referred to in literature as
‘hydrocarbon-like organic aerosol’ or HOA), and a
refractory component (black carbon or BC). Sum-
ming these two components provides an estimate
of total vehicular PM. We analyzed these vehicu-
lar PM concentrations with respect to highway
proximity, analogous to cooking PM and restaur-
ant proximity. Overall, we find no socio-economic
disparities with respect to vehicular PM emissions
near highways in Oakland and Pittsburgh. We
briefly discuss these findings below, with details in
the SI.

Figure S7 shows that with increasing distance
from source, the fall-off lengthscales of vehicular PM
are much smaller (<55 m) compared to cooking
PM. While our findings are consistent with previ-
ous measurements, fall-off lengthscales as high as
420mhave also been reported in other studies [6, 55].
This is not surprising, because as we showed with
our cooking PM analyses in figure 2, the lengths-
cale k can be sensitive to factors such as restaur-
ant density and peak cooking periods. Analogous to
that, these variances in highway-influence lengths-
cales could likely be explained by intuitive factors
such as traffic volume, vehicle fleet (e.g. age and fuel),
and season [56, 57]. Our findings are thus consistent
with literature in that depending on these influencing
factors, highways can influence PM levels within a 40
to 400 m buffer.

Figure S8 showsOakland’s and Pittsburgh’s socio-
economic patterns with respect to highway proxim-
ity. Contrary to patterns with respect to restaurant
proximity (figure S6), figure S8 shows that socio-
economic factors are spatially invariant with respect
to highways. Further, while the majority of the pop-
ulations of Oakland (67%) and Pittsburgh (90%) live
within 500 m of restaurants, a comparatively smal-
ler fraction (36% in Oakland, 25% in Pittsburgh)
live within 500 m of highways (figures S1 and 1).
Thus, while traffic emissions certainly pose serious
health effects to those exposed to them, our ana-
lyses show that these exposures are evenly distrib-
uted across different socio-economic groups. Lastly,

Robinson et al [10]. also showed that acute exposures
to restaurant emissions are more frequent than traffic
emissions.

4. Conclusions

The novelty of this study is that we coupled high-
spatial-resolution measurements of source-resolved
particulate matter (PM) to demographic data to
investigate environmental justice in PM exposure in
two US cities: Oakland, CA, and Pittsburgh, PA. To
our knowledge, there are very few studies that have
investigated source-resolved PM components at high
spatial resolution in other cities [5, 58, 59], all of
which were in Europe. Thus, in the absence of more
information, we cannot guarantee that other US cities
have the same environmental justice patterns as Oak-
land and Pittsburgh. We address other limitations of
our sampling methods and analyses in section S7.

Urban restaurant emissions can influence PM
levels at the neighborhood scale. We characterized
the spatial extents of this influence using mobile PM
measurements. We observe increments in cooking
PM levels within a 250 m buffer of restaurants, with
variations ranging between approximately 50 and
450 m. These variations arise due to spatial and tem-
poral variables such as restaurant density and peak
cooking times. To our knowledge, the work of Robin-
son et al [10]. is the only other study that has explored
spatial extents of restaurant plumes, and the range of
extents reported in that study are consistent with the
findings of this study.

We find that pollution from restaurant emis-
sions is unevenly distributed amongst different socio-
economic groups. On average, areas of Oakland and
Pittsburgh that are near restaurant emissions have
more people of color (i.e. African American, Asian,
Hispanic, Hawaiian, American Indian, Alaskan, and
Pacific Islander), and also have a lower economic
status, compared to areas far from restaurant emis-
sions. This implies that the long-term average cook-
ing PM concentrations breathed by these popula-
tion groups are 0.1–0.3 µg m−3 higher. In addition
to higher long-term exposure, these socio-economic
groups also frequently experience acutely high levels
of cooking PM (tens to hundreds of µg m−3 in mass
concentrations, and thousands of ultrafine particle
number concentrations [8, 18]), and co-emitted
pollutants.

Lastly, we showed that in both Oakland and Pitt-
sburgh, socio-economic factors are invariant with
respect to highway proximity. Thus, any socio-
economic disparities in long-term and acute exposure
to highway emissions are, at most, mild, and certainly
small compared to disparities in exposure to restaur-
ant emissions.
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