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Abstract

An important component of air quality management and health risk assessment is improved understanding of spatial

and temporal variability in pollutant concentrations. We compare, for Vancouver, Canada, three approaches for

estimating within-urban spatiotemporal variability in ambient concentrations: spatial interpolation of monitoring data; an

empirical/statistical model based on geographic analyses (‘‘land-use regression’’; LUR); and an Eulerian grid model

(community multiscale air quality model, CMAQ). Four pollutants are considered—nitrogen oxide (NO), nitrogen dioxide

(NO2), carbon monoxide, and ozone—represent varying levels of spatiotemporal heterogeneity. Among the methods,

differences in central tendencies (mean, median) and variability (standard deviation) are modest. LUR and CMAQ

perform well in predicting concentrations at monitoring sites (average absolute bias: o50% for NO; o20% for NO2).

Monitors (LUR) offer the greatest (least) temporal resolution; LUR (monitors) offers the greatest (least) spatial resolution.

Of note, the length scale of spatial variability is shorter for LUR (units: km; 0.3 for NO, 1 for NO2) than for the other

approaches (3–6 for NO, 4–6 for NO2), indicating that the approaches offer different information about spatial attributes

of air pollution. Results presented here suggest that for investigations incorporating spatiotemporal variability in ambient

concentrations, the findings may depend on which estimation method is employed.

r 2007 Elsevier Ltd. All rights reserved.

Keywords: Exposure analysis; Geographic information system (GIS); Traffic emissions; Land-use regression (LUR); Models-3/community

multiscale air quality (CMAQ) model
1. Introduction

Improved understanding of spatiotemporal varia-
bility in ambient air pollutant concentrations is
useful in many contexts, including quantifying
air pollution health effects and their distribution
among the population; attributing air quality and
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health impacts to specific emission sources and
pollutants; and developing cost-effective impact
reduction strategies. Spatial information about
ambient concentrations informs discussions in en-
vironmental justice (e.g., quantifying and addressing
disparities in air pollution exposures); transporta-
tion and land-use planning (e.g., whether to allow
new childcare facilities to locate near major road-
ways); and various regulatory needs, including
deciding how to meet air quality standards, identi-
fying pollutant hot spots, locating new monitoring
.
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stations, and providing public information in
response to citizen and other stakeholder concern.
Temporal information is important in regulatory
contexts (e.g., determining compliance with air
quality standards), time-series epidemiological stu-
dies (e.g., daily mortality and hospital admissions;
perinatal and other outcomes where monthly or
seasonal variability may be important), and assess-
ment of trends in concentrations. Furthermore, it
can shed light on source attribution (e.g., weekday/
weekend effects, Marr and Harley, 2002).

In epidemiological studies, improving exposure
classification likely reduces bias in exposure-effect
analyses. Recent epidemiological research demon-
strates the importance of accounting for within-city
variability in air pollution concentrations (Jerrett
et al., 2005; Miller et al., 2007). Epidemiological
studies currently employ various approaches when
estimating ambient concentrations. Regulatory
monitoring network data offer good temporal
resolution, but spatial resolution is limited by the
number of monitors and their separation distance
(Basu et al., 2004). Thus far, land-use regression
(LUR) provides detailed spatial resolution but little
information on temporal variability (Brauer et al.,
2003; Briggs et al., 1997; Cyrys et al., 2005;
Henderson et al., 2007; Moore et al., 2007).
Compared to monitoring data and LUR, photo-
chemical dispersion models offer high temporal
resolution but intermediate spatial resolution
(Knowlton et al., 2004). In general, spatiotemporal
heterogeneity in concentrations varies among pol-
lutants and sources (e.g., primary versus secondary
pollutants; point source versus distributed emis-
sions).

This paper presents and evaluates three general
approaches for estimating spatiotemporal variabil-
ity in ambient air pollution concentrations: (1)
interpolation of monitoring data (four methods are
considered below); (2) a relatively new geostatisti-
cal/empirical approach called land-use regression
(LUR); and (3) an Eulerian grid model. We consider
four pollutants: nitrogen oxide (NO), nitrogen
dioxide (NO2), carbon monoxide (CO), and ozone
(O3). These pollutants differ in important attributes,
including primary (i.e., directly emitted) versus
secondary (i.e., formed-in-the-atmosphere) pollu-
tants, and exhibit varying degrees of spatiotemporal
heterogeneity.

Despite these three methods being used in health
risk assessment and epidemiological analyses (Basu
et al., 2004; Bell, 2006; Brauer et al., 2007; Foley
et al., 2003; Morgenstern et al., 2007; Ryan et al.,
2007; Sanhueza et al., 2003), limited evaluation has
been conducted and there have been no formal
comparisons among the three methods. We com-
pare these methods for one study area (Vancouver,
Canada) and evaluate their characteristics,
strengths, and weaknesses in assessing ambient air
pollution concentrations, especially for epidemiolo-
gical research and risk assessment.

2. Methods

Our study location is the Greater Vancouver
Regional District (GVRD; land area: 2844 km2),
a coastal area in southwestern British Columbia.
The GVRD has a comparatively large population
(2.2 million in year-2005, comprising 51% of British
Columbia) and average population density
(760 km�2—only 20% less than California’s South
Coast Air Basin, CARB, 2005). Vancouver is a
good study location for this investigation because of
the costal location, leading to a significant portion
of air pollution being emitted within Vancouver,
and the comparatively high monitoring station
density (see below). In Vancouver, most (�90%)
nitrogen oxides (NOx) and CO emissions are from
on-road and non-road transportation sources
(GVRD, 2006).

Three general approaches were used to estimate
ambient concentrations in the GVRD. The ap-
proaches, listed in Table 1 and described in the
following subsections, include empirical measure-
ments (spatial interpolation of monitoring data), air
dispersion modeling (an Eulerian grid model), and a
hybrid empirical/modeling approach (LUR). These
approaches were implemented as part of the Border
Air Quality Study (BAQS; www.cher.ubc.ca/
baqs.htm), a large epidemiological study of air
pollution health effects. A specific requirement of
BAQS was high spatial resolution of estimated
ambient concentrations, in order to reduce exposure
misclassification (Ryan et al., 2007).

We estimated concentrations at the centroid
location for each of the 56,099 postal codes (PCs)
in the GVRD. In Canada, the spatial extent of
urban PCs is relatively small, for example, one side
of a city block or, in a densely populated area, a
single apartment building (GVRD average: 39
people per PC). For LUR, concentration estimates
are available for NO and NO2 only; for the other
two methods (interpolation of monitoring data;
CMAQ), estimates are available for all four species.

http://www.cher.ubc.ca/baqs.htm
http://www.cher.ubc.ca/baqs.htm


ARTICLE IN PRESS

Table 1

Approaches employed in this work

Abbreviated

name

Level of

efforta
Pollutantsb Spatial coveragec Unique valuesd

CO NO NO2 O3

1. Spatial interpolation of

ambient monitoring station

data

1a. Nearest monitor within

10 km

Nearest * X X X X 49,244–52,121

(88–93%)

57–70 (0.1%)

1b. Average of all monitors

within 10 kme

– * X X X X 49,244–52,121

(88–93%)

69–100

(0.1–0.2%)

1c. Inverse-distance

weighted (IDW)

average of all GVRD

monitorse

– * X X X X 56,099 (100%) 51,560 (92%)

1d. IDW average of three

closest monitors within

50 km

IDW * X X X X 56,099 (100%) 51,560 (92%)

2. Land-use regression

(empirical/statistical

model)

LUR *** X X 54,171 (97%) 49,751 (89%)

3. Eulerian grid-cell model

(mechanistic mass-balance

model)

CMAQ ***** X X X X 56,099 (100%) 138 (0.2%)

aApproximate scale, representing a typical situation: * ¼ �1–4 person-months; *** ¼ �1–4 person-years; ***** ¼ 4–10+ person-

years, involving significant domain expertise.
bCO ¼ carbon monoxide; NO ¼ nitrogen oxide; NO2 ¼ nitrogen dioxide; O3 ¼ ozone.
cNumber (percent) of GVRD postal codes that were assigned an annual average concentration; range among pollutants.
dNumber (percent) of unique annual average concentrations among GVRD postal codes; range among pollutants. Owing to co-location

of PCs, the maximum value for this column is 51,560 (92%).
eAs described in Section 3.2, approaches 1b and 1c were found to be suboptimal.
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In the GVRD, all methods offer 88% or greater
coverage of PCs. The nearest-monitor methods
(1a and 1b in Table 1) and CMAQ offer compara-
tively few unique values; inverse-distance weighted
(IDW) methods (1c, 1d) and LUR offer many
unique values. Level of effort to generate the
concentration estimates ranges from a few person-
months to several person-years.

2.1. Ambient monitoring station data

GVRD has a large number of monitors (14
stations for NO2 and NO; 13 for CO; 15 for O3),
and also a high monitor density (roughly one
monitor per 160,000 people, or 5 monitors per
1000 km2). In comparison, for CO (NO2), the 158
(239) Urbanized Areas (UAs) in the US with
monitors have 3 (3) stations per UA on average;
only 3% (6%) of these UAs have more than 10
monitors (US EPA, 2006). The South Coast,
California, perhaps the most-researched air basin
in the world, has less than half the monitoring
density (roughly one monitor per 440,000 people;
2 monitors per 1000 km2, CARB, 2006a, b).

We employed year-2000 daily concentrations for
GVRD regulatory ambient monitors, collected by
the British Columbia Ministry of Environment
(www.env.gov.bc.ca/air). The median number of
days per year with missing data is NO: 7, NO2: 7,
CO: 6, O3: 9. Measurement methods are consistent
among monitors: for NO, NO2, and NOx, chemi-
luminescence of gas-phase reaction with ozone; for
CO, infrared absorption; and for O3, ultraviolet
absorption (GVRD, 2006). Monitor locations are
shown below (Fig. 4).

To estimate concentrations in each PC, we
employed four separate spatial interpolation
schemes, whereby the PC centroid was assigned
the daily average concentration of the (1) nearest
monitor within 10 km, (2) average of all monitors
within 10 km, (3) IDW average of all GVRD
monitors, and (4) IDW average of the three closest
monitors within 50 km. These four methods (labeled
as approaches 1a–1d in Table 1) cover a range of

http://www.env.gov.bc.ca/air
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spatial interpolation approaches, and each could
reasonably be employed in single- or multi-city
epidemiological studies. As discussed below, the
second and third of these four monitor-based
methods (approaches 1b and 1c, Table 1) offered
suboptimal results, and thus they were excluded
from most analyses.

2.2. Air dispersion model

Three-dimensional Eulerian reactive grid models
are common in air quality engineering but are rarely
employed in epidemiological studies (Bell, 2006;
Jerrett et al., 2005). The US EPA’s community
multiscale air quality (CMAQ) model incorporates
anthropogenic and natural emissions, transport and
dilution owing to meteorology, and atmospheric
transformations owing to chemical reactions (see
www.cmaq-model.org).

CMAQ combines meteorological conditions dur-
ing 31 March 2004–30 March 2005 with the most
recent available emission inventory (year-2000). The
simulation domain is 400 km� 480 km and employs
4 km� 4 km grid cells, 1-h time steps, the MC2
meteorological model, and CB4 chemical mechan-
ism (Delle Monache et al., 2006a, b). CMAQ-
estimated concentrations are modeled as uniform
within each grid cell during each time step. PC
centroids were spatially matched to their corre-
sponding CMAQ grid cell, and assigned the annual-
average concentration of that cell.

2.3. Land-use regression

LUR uses geographic information systems (GIS),
combining measurements and detailed land-use data
to predict concentrations throughout an area. LUR
is relatively new: the first application to air quality
was by Briggs et al. (1997). Jerrett et al. (2005) and
Henderson et al. (2007) review the history of LUR.
The specific steps are (1) measure long-term
concentrations at many locations throughout the
study area, (2) obtain land-use measures (e.g., total
road length within a 1-km radius) in the vicinity of
each monitored location, (3) develop statistical
regression equations relating empirical concentra-
tions to nearby land uses, and (4) apply these
equations to a dense grid of points throughout an
urban area.

To develop the LUR model, NO and NO2

measurements using passive samplers were con-
ducted at 116 locations throughout the GVRD
during 24 February–14 March, 2003, and 8–26
September 2003 (Henderson and Brauer, 2005;
Henderson et al., 2007). Locations were selected to
capture the full range of concentrations in outdoor
air (including high concentrations near roadways)
while also placing monitors throughout the study
region. (In contrast, regulatory monitoring stations
are typically sited to capture broader concentration
trends, avoiding roadways and other possible ‘‘hot
spots’’.) Sampling dates were selected to estimate
annual-average concentrations. Prior analysis of 5
years of monitoring data (1998–2002) revealed that
in 70 out of 75 cases, average concentrations during
the sampling days-of-year were within 15% of the
annual average. In the sampling year (2003),
monitoring data indicate that concentrations during
the sampling period exhibit a strong 1:1 relationship
with annual means; slopes are 1.03 (R2

¼ 0.96) and
0.89 (R2

¼ 0.98) for NO and NO2, respectively
(Henderson et al., 2007).

LUR equations employed here use the following
geographic variables as concentration predictors;
for both NO and NO2: road density (within 100 and
200m), elevation, population density (2500m), and
latitude; for NO only: road density (750m); for NO2

only: commercial land area (750m) (Henderson and
Brauer, 2005). Model R2 is 0.62 for NO, 0.53 for
NO2. Because the independent variables are readily
available for other urban areas, it would be
straightforward to apply the equations to other
cities. Thus, LUR offers the possibility for greatly
improved efficiency in quantifying within-city con-
centration variability (Briggs et al., 2000).

LUR output, representing annual average con-
centrations, was converted to monthly averages
using time trends in regulatory ambient monitoring
data, as described by Henderson et al. (2007).

3. Results and discussion

Using the approaches in Table 1, we assigned
daily-average concentrations at centroid locations
for 88–100% of the 56,099 PCs in the GVRD.
Results are illustrated in Fig. 1. Below, we compare
concentration estimates first at monitoring sites
only, then at all PCs. While the first comparison
offers a ‘‘gold standard’’ (the monitoring data)
against which to compare and validate concentra-
tion estimates, monitor locations provide imperfect
(incomplete) validation since they incorporate a
small number of locations, do not reflect the spatial
distribution of the population, and generally avoid

http://www.cmaq-model.org
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Fig. 1. Annual-average ambient concentration estimates for nitrogen oxide (top panel) and nitrogen dioxide (bottom panel), based on an

inverse distance weighting of the three nearest monitoring stations (left), land-use regression (LUR; middle), and the CMAQ air dispersion

model (right). The approaches are summarized in Table 1. LUR captures within-neighborhood variability; monitors and CMAQ do not.

The concentration color scale employed is identical among the six cases. (Owing to the large number of PCs in the study area, providing

visual representation of our results required converting point estimates—the concentrations at each PC centroid—into two-dimensional

raster surfaces.)
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near-roadway and other high-concentration loca-
tions. The second comparison considers all PCs
(a roughly population-weighted analysis since areas
with higher population density have higher PC
density), and therefore offers comparisons relevant
to epidemiological investigations. In the second
comparison, there is no ‘‘gold standard’’—concen-
trations in each PC are unknown—yet compa-
rison among the three approaches yields important
insights regarding the utility of the different
approaches.

3.1. Comparisons at monitoring station locations

We compared measured and modeled annual-
average concentrations (NO, NO2) at regulatory
monitoring station locations. The analyses, sum-
marized in Table 2, suggest reasonable agreement
between estimates and data: for CMAQ and LUR,
average absolute bias is �45% for NO, �17% for
NO2. Estimates are more accurate for NO2 than for
NO, likely because NO2 is more spatially homo-
geneous than NO (Spatial coefficients-of-variability
are presented in the discussion section). Table 2
suggests better performance for LUR than CMAQ,
for NO; for NO2, the reverse holds. As expected, the
monitor-based methods (methods 1a and 1d) do
better than LUR and CMAQ, though this compar-
ison, derived at monitor locations, offers little
insight regarding other locations.

3.2. Comparisons at postal code centroids

The second comparison employs the following
tools: box plots; pair-wise scatter plots; for each
scatter plot, the slope of the best-fit line through the
origin; Pearson correlation coefficients; weighted
and unweighted quartile-based kappa statistics;
and, visual displays of results (concentration maps).
These results are summarized below.

Two of the four interpolation approaches offered
suboptimal results, and therefore were not consid-
ered further: (1) Employing the average of all
monitors within 10 km (method 1b, Table 1), the
location of the highest assigned concentration was
not at the highest monitor site. Specifically, this
approach is sensitive to monitor placement and in
the GVRD inappropriately yields high concentra-
tions southwest of the downtown high-concentra-
tion monitor. Analogous problems may arise for
other asymmetrical urban areas (e.g., other costal
cities). (2) Employing the IDW average of all
monitors (method 1c), locations not immediately
next to a monitor are assigned a concentration close
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Table 2

Corroboration of estimateda and measured annual-average concentrations, at regulatory monitoring sites

Nitrogen oxide Nitrogen dioxide

Nearest IDW LUR CMAQ Nearest IDW LUR CMAQ

Average difference (mgm�3) 0.25 �1.0 5.4 �11 0.08 �0.88 �4.8 �0.70

Average absolute difference (mgm�3) 0.27 1.1 10.2 14 0.10 0.90 6.0 5.6

Average bias (%) 1 �4 29 �36 0.3 �3 �12 0.4

Average absolute bias (%) 1 5 42 47 0.3 3 17 17

Correlation (%) 99.95 99.7 75 46 99.99 99.6 76 71

t-Testb 0.07 0.009 0.31 0.007 0.02 0.002 0.01 0.70

aThe approaches are summarized in Table 1. Monitor-based methods (nearest; IDW) have non-zero error when compared against

monitoring data because (1) they incorporate measurements from neighboring monitors when a site is down, and (2) here, concentration

estimates at monitor locations are interpolated from PC centroids, which are near to, but not co-located with, monitors.
bResults from Student’s t-test, indicating whether paired concentrations (method estimates; monitoring data) represent samples likely to

have come from underlying populations with the same mean. At a ¼ 0.1, differences are statistically significant (i.e., the test accepts the

hypothesis that the mean model-measurement difference is non-zero) for two columns: LUR for NO, and CMAQ for NO2. For the

remaining six columns, this test suggests good model–measurement agreement.

Fig. 2. Box plots of estimated annual-average concentrations. Pollutant and method abbreviations are given in Table 1. LUR estimates

are unavailable for CO and O3. Values shown are the mean (symbol: diamond) and the following percentiles: 10th, 25th, 50th (symbol:

bar), 75th, and 90th.
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in value to the regional average. The resulting values
are likely too spatially homogenous.

Box plots of annual-average (Fig. 2) and
monthly-average (supplemental online material
(SOM), Fig. A1) concentrations indicate that for
each pollutant, the inter-quartile range (IQR;
difference between 75th and 25th percentile) is
comparable among the methods employed (excep-
tion: IQR for monthly-average CO, NO2, and O3

concentrations are �2 times larger for CMAQ as for
the other methods). This observation suggests that,
for the cases considered here, the range of exposures
used in epidemiology studies will not vary signifi-
cantly depending on which method is chosen
(especially for chronic exposures). Reflecting seaso-
nal variations, IQR for a given pollutant and
method is �2–3 times larger for monthly-average
than for annual-average concentrations. Comparing
the two interpolation methods in Fig. 2, mean and
median values are similar, but the 10th-to-90th
percentile range is greater for the nearest monitor
approach than for the IDW approach. This finding
is expected. IDW averages out extreme concentra-
tion values but preserves central tendencies.

The extreme upper ends of the concentration
distributions (greater than 90th percentile) extend
further for LUR than for other methods, because
LUR incorporates high concentrations near road-
ways. For example, the ratio of 99th to 90th
percentiles for NO (NO2) is 1.99 (1.33) for LUR,
1.39 (1.15) for CMAQ, and 1.07 (1.04) averaged for
IDW and nearest-monitor methods. Fig. 2 sum-
marizes concentrations at PC centroids only.
Because centroids—like residences—are typically
not located at road center, many road-center LUR
hot-spots in Fig. 1 are not included in Fig. 2.

The three pair-wise comparison metrics consid-
ered—annual-average Pearson correlation coeffi-
cients (r, range: 0.39–0.93), weighted kappas
(K, range: 0.19–0.69), and slopes of scatter plot
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best-fit lines with forced-zero intercept (‘‘slope,’’
range: 0.57–1.53)—all suggest the following. The
methods most similar to each other are the two
interpolation methods (r: 0.77–0.88; K: 0.45–0.69;
slope: 1.00–1.04). The next most similar methods
are CMAQ and the two interpolation methods
(r: 0.45–0.66; K: 0.19–0.49; slope: 0.57–1.45). The
lowest similarity is between LUR and the three
other methods (r: 0.39–0.54; K: 0.19–0.34; slope:
0.81–1.53). For pair-wise comparisons of methods,
with NO and NO2 annual-average concentrations,
the proportion of PCs in the same quartile is �65%
for the two interpolation methods, 43–50% for
CMAQ versus the two interpolation methods, and
32–42% for LUR versus the three other methods.
Scatter plots and correlation coefficients in Fig. 3
illustrate these trends for NO and NO2; analogous
plots for CO and O3 (SOM, Fig. A2) reveal similar
patterns. Correlations and weighted kappas are
generally greater for monthly averages (SOM,
Tables A1 and A2) than for annual averages.
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Each method accounts for different spatial scales
of concentration variability. CMAQ and monitor
interpolation generally account for urban-scale
variations (downtown versus suburbs), whereas
LUR also accounts for within-neighborhood varia-
tions (e.g., varying distance from a major road). To
illustrate these differences, Fig. 4 presents concen-
trations on a 50-km east–west transect. While all
approaches display regional variation in concentra-
tions across the metropolitan area, CMAQ and
monitor interpolation (even with GVRD’s high
monitor density) do not capture the within-neigh-
borhood concentration variability seen with LUR.

Fig. 5 further illustrates differences in spatial
scales among the methods. Here, we randomly
selected 100 urban PCs; then, for each selected PC
we calculated the (1) distance to all other PCs
and (2) concentration difference with all other
PCs. For all methods, concentrations are generally
less similar (i.e., concentration differences are
greater) at increasing distance between two points.
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Fig. 4. Estimated nitrogen oxide concentrations along the 50-km

transect shown. (For LUR, concentration spikes are generally

�150–300m wide, i.e., model-estimated ‘‘hot spots’’ extend

75–150m in each direction from road center.) The map presents

NO monitor locations; other locations are mapped in GVRD

(2006).
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At separation distances less than �12 km for NO
(�7 km for NO2), average concentration difference
(Fig. 5 ordinate) is greater for LUR than for the
other methods. For example, for locations sepa-
rated by between 3 and 5 km, the average difference
in predicted NO concentration between the two
locations is 3 times great for LUR (16 mgm�3) than
for the other three methods (average: 5.9 mgm�3).
For locations separated by 0.5–1.0 km, the differ-
ence in predicted NO concentration is 10 times
greater for LUR as for other methods (11 mgm�3,
LUR; 1.2 mgm�3, average of other methods).

We define the following characteristic length of
spatial variability: the distance where the average
concentration difference (Fig. 5 ordinate) equals
half of the standard deviation of all concentration
estimates for that method. Resulting length scales,
in km, for NO (NO2) are as follows: nearest
monitor, 4 (6); IDW, 6 (6); LUR, 0.3 (1); and,
CMAQ, 3 (4). These findings are consistent with
Fig. 1 and with the inherent differences among
methods: LUR offers greater spatial resolution
than monitor interpolation or CMAQ. These
analyses provide indication of spatial precision,
not of accuracy.

Because the methods’ concentration estimates
account for different phenomena—urban versus
neighborhood-scale concentration variations—epide-
miological results based on these methods may yield
different and potentially non-overlapping estimates
of the dose–response relationship. Dose–response
estimates generated from the different methods might
not be directly comparable because they correspond
to different aspects of concentration variability. We
speculate that the overall dose–response may corre-
spond to a summation of two calculated dose–
responses: one computed using within-neighborhood
concentration variations; the other using between-
neighborhood variations. Further investigation of
this hypothesis is needed.

At present, LUR typically includes predictive
variables (e.g., traffic density) within a certain
radius, typically on the order of a few hundred
meters. LUR predictions therefore reflect nearby
land uses/emissions, but not necessarily urban-scale
trends. Including variables that reflect urban-scale
concentration profiles (city center versus suburbs)—
for example, distance and direction from the city
center, the coast, major industrial areas, or a
mountain range—could be considered for including
in LUR models. Monitoring station data or CMAQ
output could be used as an LUR input. Including a
linear relationship with latitude and longitude, as
was done here for NO, is likely insufficient for
common urban concentration gradients since these
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gradients are usually non-monotonic (instead, they
first increase, then decrease as one moves across an
urban area).

CMAQ grid cells (here, 4 km� 4 km) are too
coarse to reveal near-roadway ‘‘hot spots’’ (Fig. 4).
Reducing grid cell area by an order of magnitude
(�1 km� 1 km—roughly the smallest grid techni-
cally possible at present) would increase uncertainty
in emissions and meteorology and would dramati-
cally increase computational intensity (Touma
et al., 2006), yet model predictions would still lose
fidelity in predicting near-roadway concentrations,
which vary over spatial scales of �0.1 km. Thus, we
conclude that for the foreseeable future, spatial
resolution will be better for LUR than CMAQ.
Other dispersion models (e.g., plume models;
Lagrangian puff models) can offer excellent spatial
resolution; however, applying these models to an
urban area (i.e., to all emission sources in the
region) has limitations such as (1) high or prohibi-
tive computational intensity (Touma et al., 2006);
(2) inability to highlight concentration hotspots
(Cook et al., 2007); and (3) reliance on imperfect
spatiotemporal emission inventories (Sax and
Isakov, 2003; Isakov and Venkatram, 2006). We
cannot generalize to all situations based on our
investigation of one city and one model, but like
Briggs et al. (2000), we expect that estimating long-
term spatial variability, including near-roadway
hotspots, will typically be more efficient (in terms
of level of effort, expertise, necessary funding, and
in terms of prediction accuracy) using LUR than
using a dispersion model.

Analyses above employ extant estimates. An
implicit assumption of our comparisons is that
annual-average concentrations and their spatial
variations exhibit only minor changes over time
scales of a few years. To explore this assumption, we
considered spatiotemporal variations among an-
nual-average GVRD monitoring station data dur-
ing 2000–2002. Between-year variability is small:
averages (ranges) for all monitors are 9% (4–13%),
NO; 4% (2–9%), NO2; 6% (1–13%), CO; and, 4%
(2–8%), O3. Key meteorological parameters during
those years also exhibit small between-year varia-
bility: �10% or less for mean temperature and
annual precipitation (Environment Canada, 2006).
For NO, NO2, and CO, monitors’ concentration
rankings changed by at most two increments in 82
out of 84 cases (98%). For O3, ranking changed by
at most two increments in 25 out of 31 cases (81%).
Spatial coefficients-of-variability (i.e., standard de-
viation among monitors divided by GVRD mean
concentration) are relatively consistent among years
(NO: 55%; NO2: 28%; CO: 21%; O3: 24%; as
expected, NO is more spatially heterogeneous than
the other pollutants). Thus, available evidence
suggests that urban-scale spatial heterogeneities do
not vary significantly year-to-year, though further
investigation—especially employing LUR or other-
wise considering locations other than monitoring
sites—is warranted.

Another important next step is comparing against
exposure measurements. One such investigation,
employing 1–3 repeated 48-h personal exposure
measurements of NO, NO2, and PM2.5 for 62
pregnant women in Vancouver, found only moder-
ate correlation with LUR, IDW, and nearest-
monitor methods (Nethery, 2007). As expected,
correlations were higher for subjects with low
mobility. Personal exposure measurements typically
cover only a small fraction of a year (here, at most 6
days) and include time in microenvironments;
methods evaluated above describe long-term con-
centrations and represent ambient concentrations
only.

4. Conclusions

We implemented and compared three general
approaches for estimating concentrations at each
PC centroid for use in an epidemiological study:
spatial interpolation of ambient monitoring data;
LUR; and, the CMAQ dispersion model. Model–
measurement comparisons at monitoring station
locations indicate reasonable model performance.
Two of four spatial interpolation methods em-
ployed (methods 1b and 1c, Table 1) were found to
be suboptimal in this setting.

In general, the three approaches reflect different
spatial scales: urban-scale variations for interpo-
lated ambient monitoring data and CMAQ; neigh-
borhood-scale variations for LUR. Differences in
means and standard deviations among the methods
are modest. LUR exhibits higher spatial resolution
(precision) than the other methods, a finding we
quantified using a characteristic length of spatial
variability.

We suggest that LUR can be modified to better
account for urban-scale concentration variations.
Comprehensively characterizing within-neighbor-
hood variations using monitoring data or CMAQ
output would require a substantial effort level and is
therefore unlikely to occur in the near future.
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However, nesting models could offer an efficient
approach, e.g., using CMAQ output or monitoring
data as an independent (input) variable in a LUR
model.

There is currently increasing interest in incorpor-
ating within-urban concentration variability in
epidemiological, environmental justice, and other
investigations. As shown here, available methods
for estimating ambient concentrations differ from
each other, for example, reflecting different spatial
scales of concentration variability. As a result,
findings from those investigations may depend on
which method is employed.
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