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Abstract
Purpose Air pollution and smoking are associated with various types of mortality, including cancer. The current study uti-
lizes a publicly accessible, nationally representative cohort to explore relationships between fine particulate matter  (PM2.5) 
exposure, smoking, and cancer mortality.
Methods National Health Interview Survey and mortality follow-up data were combined to create a study population of 
635,539 individuals surveyed from 1987 to 2014. A sub-cohort of 341,665 never-smokers from the full cohort was also cre-
ated. Individuals were assigned modeled  PM2.5 exposure based on average exposure from 1999 to 2015 at residential census 
tract. Cox Proportional Hazard models were utilized to estimate hazard ratios for cancer-specific mortality controlling for 
age, sex, race, smoking status, body mass, income, education, marital status, rural versus urban, region, and survey year.
Results The risk of all cancer mortality was adversely associated with  PM2.5 (per 10 µg/m3 increase) in the full cohort (haz-
ard ratio [HR] 1.15, 95% confidence interval [CI] 1.08–1.22) and the never-smokers’ cohort (HR 1.19, 95% CI 1.06–1.33). 
 PM2.5-morality associations were observed specifically for lung, stomach, colorectal, liver, breast, cervix, and bladder, as 
well as Hodgkin lymphoma, non-Hodgkin lymphoma, and leukemia. The  PM2.5-morality association with lung cancer in 
never-smokers was statistically significant adjusting for multiple comparisons. Cigarette smoking was statistically associated 
with mortality for many cancer types.
Conclusions Exposure to  PM2.5 air pollution contributes to lung cancer mortality and may be a risk factor for other cancer 
types. Cigarette smoking has a larger impact on cancer mortality than  PM2.5 , but is associated with similar cancer types.
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Introduction

It is well established that inhalation of cigarette smoke 
substantially contributes to cardiopulmonary disease and 
the development of lung cancer [1]. In addition to lung 
cancer, evidence suggests that cigarette smoke likely con-
tributes to the development of oral and oropharyngeal, 
esophageal, stomach, colorectal, liver, pancreatic, laryn-
geal, cervical, bladder, kidney cancer, as well as leukemia 
[1]. Although the effect estimates are much smaller, evi-
dence suggests that cancer may also be associated with 
exposures to combustion-related fine particulate matter 
air pollution  (PM2.5, particles ≤ 2.5 µm in aerodynamic 
diameter).

There is evidence that  PM2.5 air pollution contributes 
to chronic systemic inflammation [2], oxidative stress [3], 
and DNA damage [4]. Multiple studies have demonstrated 
that  PM2.5 exposures are associated with cardiopulmonary 
disease mortality [5] as well as lung cancer incidence [6, 
7] and mortality [6, 8, 9]. There is limited evidence that 
 PM2.5 exposures are associated with incidence of various 
non-lung cancers including oral and oropharyngeal [10, 
11], esophageal [11], stomach [11], liver [12], laryngeal 
[11], breast [13], bladder [14], kidney cancer [15], and 
leukemia [16].  PM2.5 exposures are also associated with 
mortality from stomach [17, 18], colorectal [17–19], liver 
[20], pancreatic [21], breast [18, 22], female organ [18], 
bladder [19, 23], kidney cancer [19], and leukemia [16]. 
Unfortunately, these studies are limited in scope and num-
ber and not fully consistent in their findings.

The primary objective of the current study is to evalu-
ate  PM2.5-mortality associations with specific cancer types 
among a large, nationally representative cohort of adults 
residing in the USA. Secondary objectives of this study are 
to use the same cohort and statistical models to evaluate 
associations between cigarette smoking and mortality for 
specific cancer types and to compare these associations 
with those observed with  PM2.5 air pollution.

Methods

Study subjects

Public National Health Interview Survey (NHIS) and 
National Death Index data were used to construct a cohort 
of individuals aged 18–84 at the time of survey, living 
in the continental US, and completed the NHIS survey 
between 1987 and 2014 as documented elsewhere [5]. 
Participants represented the civilian non-institutionalized 
US adult population. Participant responses were linked to 

the National Death Index for mortality follow-up through 
2015. In addition, restricted-use geographic data allowed 
for the assignment of ambient pollution estimates at 
the census tract level. Analyses were performed on two 
cohorts. The first cohort consisted of the 635,539 individu-
als (age range 18–84 years, mean age 45.3) and the second 
was a subset of this group of 341,665 participants who 
self-reported as never-smokers (age range 18–84, mean 
age 43.4). Both cohorts contained information on age, 
sex, race-ethnicity (Non-Hispanic white, Hispanic, Non-
Hispanic black, or other), income buckets ($0–35,000, 
$35,000–50,000, $50,000–75,000, or over $75,000), mari-
tal status (married, divorced, separated, never married, or 
widowed), educational attainment (less than high school 
grad, high school grad, some college, college grad, more 
than college grad), BMI, smoking status (self-identified 
as current, former, or never-smoker), census tract, ambi-
ent pollution exposure, interview date, date of death, and 
underlying cause of death (if deceased). Further informa-
tion about the composition of the cohorts, including details 
regarding the merging and harmonization of key variables, 
is provided elsewhere [5]. Procedures for informed con-
sent, data collection, and linkage of the NHIS files were 
approved by the NCHS Ethics Review Board. Findings and 
conclusions of this research are those of the authors and do 
not necessarily represent the views of the RDC, the NCHS, 
the Environmental Protection Agency, or the Centers for 
Disease Control and Prevention.

Pollution concentration

In the baseline analysis, each study subject was assigned 
pollution exposure based on estimated modeled population-
weighted average concentrations of  PM2.5 at their resident 
census tract, averaged across the 17-year period from 1999 
through 2015. Individuals surveyed from 1987 to 2010 
were linked to census tract-level estimates of  PM2.5 using 
census tracts of the year 2000, while individuals surveyed 
from 2011 to 2014 were linked using census tracts of the 
year 2010. Because many individuals were surveyed before 
1999, and in order to explore an alternative longer window 
of pollution exposure, average  PM2.5 for a 28-year exposure 
period from 1988 to 2015 was estimated using back casted 
 PM2.5 estimates from 1988 to 1998. Back casted estimates 
for  PM2.5 from 1988 to 1998 relied on the fact that  PM2.5 
is a primary component of  PM10 and  PM2.5 and  PM10 con-
centrations were highly correlated during the period when 
they were co-monitored and before there was a more focused 
effort to reduce  PM2.5 (approximately 1999–2003). Specifi-
cally, the back cased estimates were computed by calculat-
ing mean  PM2.5/PM10 ratios for 1999–2003 for each census 
tract and then multiplying the  PM10 estimate for each census 
tract from 1988–1998 as documented in detail elsewhere 
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[5]. Estimated average  PM2.5 concentrations for the pri-
mary 17-year period (1999–2015) were highly correlated 
(r > 0.95) with the estimated  PM2.5 concentrations for the 
28-year (1988–2015) period that included the additional 
back casted data. Documentation of air pollution estimates 
utilized in this study is located elsewhere [24]. The mod-
eled air pollution data are publicly accessible at the Center 
for Air, Climate, & Energy Solutions website (https ://www.
caces .us/).

Statistical methods

Hazards ratios and 95% confidence intervals for cancer 
mortality risk associated with a 10 µg/m3 increase in  PM2.5 
concentrations were estimated using Cox Proportional Haz-
ards (CPH) models that accounted for the complex, strati-
fied, multistage NHIS sample design [25]. Estimates were 
computed using the SURVEYPHREG procedure in SAS 
version 9.3 (SAS Institute, Cary, North Carolina). Models 
were estimated for specific causes of death. Survival times 
were calculated using the date of interview as the beginning 
of follow-up. For those who died of the specific cause of 
death under analysis, the end of follow-up was date of death 
for that specific cause of death. For those who died of any 
other cause of death, censored end of follow-up was date of 
death. For survivors, the censored end of follow-up was the 
end of mortality follow-up (31 December 2015). All models 
were adjusted for age-sex-race interactions (using indica-
tors for 5-year age buckets) and categorical variables for 
BMI, income, education, marital status, rural versus urban, 
region, and survey year. In the full cohort, models were also 
adjusted for smoking status. Hazards ratios and 95% confi-
dence intervals for cancer-type-specific mortality risk asso-
ciated with smoking status were also estimated. To account 
for multiple testing, adaptive Holms adjusted p values [26] 
were calculated.

The specific cancer types analyzed in this analysis are 
based on ICD-10 Underlying Cause of Death (including 
recodes for 1979–2015) as documented elsewhere [27]. 
Specific causes of cancer mortality included ICD-10 codes 
for lung (C33–C34), oral and oropharyngeal (C00–C14), 
esophageal (C15), stomach (C16), colorectal (C18–C21), 
liver (C22), pancreatic (C25), laryngeal (C32), melanoma 
(C43), breast (C50), cervical (C53), ovarian (C54–C55), 
uterine (C56), prostate (C61), kidney (C64–C65), bladder 
(C67), and brain cancer (C70–C72) as well as Hodgkin lym-
phoma (C81), non-Hodgkin lymphoma (NHL) (C82–C85), 
leukemia (C91–C95), multiple myeloma (C88, C90), and 
other unspecified cancers (C17, C23–24, C26–C49, C51–52, 
C57–60, C62–63, C66, C68–C69, C73–C80, C97).

To explore model sensitivity, the results from the original 
complex CPH model, as described above, were compared 
with results from alternative models using the traditional 

Cox Proportional Hazards model (the PHREG procedure). 
Alternative models included: Model 1 that included mean 
 PM2.5 concentrations for the 17-year period (1999–2015) 
and controlled for covariates as in the original model (edu-
cation, income, marital status, BMI, smoking status, urban/
rural, census region, and survey year), but controlled for 
combinations of 1-year age groups, sex and race-ethnicity by 
allowing them to have their own baseline hazard (using the 
STRATA statement in the SAS PHREG procedure). Model 2 
is the same as Model 1 but includes only individual controls 
and excludes survey year, census region, and urban/rural 
variables. Model 3 is the same as Model 1 but only con-
trolled for age, sex, and race-ethnicity (using the STRATA 
statement). Model 4 is the same as Model 1, except it used 
the longer exposure window for  PM2.5 (average exposure 
from 1988 to 2015 instead of 1999 to 2015, using back 
casted estimates for 1988–1998). Model 5 is the same as 
Model 1, but only included individuals surveyed during or 
after 1999. Model 6 is the same as Model 1 except it used 
an expanded cohort of all 1,599,329 NHIS participants from 
1986 to 2014 (including individuals without smoking status 
or BMI data) and did not control for smoking status or BMI.

Results

Table 1 presents summary statistics for both the full and 
never-smokers’ cohort groups. Individual mean estimated 
ambient  PM2.5 exposure was 10.7 µg/m3 (standard devia-
tion 2.4) in both the full cohort and never-smokers’ cohort. 
The table also contains the average estimated  PM2.5 expo-
sure for the levels of the selected variables. Individual mean 
exposure is relatively consistent across varying factor levels 
aside from race/ethnicity (greater in non-Hispanic Blacks), 
urban versus rural (greater in urban areas), and census region 
(greater in the Midwest).

Table 2 provides cancer-type-specific mortality hazard 
ratios (HRs) and 95% confidence intervals (CIs) associated 
with 10 µg/m3 increased  PM2.5 exposure in both the full and 
never-smokers’ cohorts. Statistically significant associations 
were observed in the full cohort for lung, stomach, colorec-
tal, breast, cervical, and bladder cancer, as well as Hodgkin’s 
lymphoma, NHL, and leukemia. However, after adjusting for 
multiple comparisons, these associations were not statisti-
cally significant. In the never-smokers’ cohort, statistically 
significant associations between  PM2.5 and mortality were 
found for lung, stomach, liver, breast, and cervical cancers 
as well as Hodgkin lymphoma. Only lung cancer was statis-
tically significant after adjusting for multiple comparisons. 
Table 3 shows sensitivity analysis performed on the full 
cohort for lung, stomach, colorectal, liver, cervical, breast, 
and bladder cancers as well as Hodgkin’s lymphoma, NHL, 
and leukemia. The  PM2.5-mortality associations across the 

https://www.caces.us/
https://www.caces.us/


770 Cancer Causes & Control (2020) 31:767–776

1 3

different cancer types were reasonably insensitive to various 
modeling choices, different exposure windows, and using the 
expanded NHIS cohort. 

Table 4 provides HRs and 95% CIs associated with iden-
tifying a patient as a current smoker or former smoker and 
cancer-type-specific mortality in the full cohort. Statistically 
significant smoking-cancer mortality HRs for current smok-
ers were found for lung, oral and oropharyngeal, esophageal, 
stomach, colorectal, liver, pancreatic, cervical, prostate, kid-
ney, bladder, laryngeal, brain, and unspecified cancers as 
well as leukemia. For former smokers, statistically signifi-
cant associations were found for lung, oral and oropharyn-
geal, esophageal, colorectal, liver, breast, bladder, laryngeal, 
and unspecified cancers as well as NHL and leukemia. After 
adjustment for multiple comparison, statistically significant 
associations were found for lung, oral and oropharyngeal, 
esophageal, stomach, colorectal, liver, pancreatic, cervical, 
bladder, laryngeal, and unspecified cancers in current smok-
ers and lung, oral and oropharyngeal, esophageal, colorectal, 
liver, bladder, laryngeal, and unspecified cancers in former 
smokers.

Discussion

Consistent with a growing body of literature, this study pro-
vides evidence that cancer mortality is associated with  PM2.5 
exposure in both smokers and never-smokers. Analysis of 
the full cohort resulted in a hazard ratio of 1.15 (95% confi-
dence interval of 1.08–1.22), which was comparable to that 
of the never-smokers’ cohort (HR 1.19, 95% CI 1.06–1.33). 
The result was comparable to a cohort that used 18.9 mil-
lion Medicare beneficiaries. The estimated HR per 10 µg/m3 
increase of  PM2.5 was 1.11 (95% CI 1.09–1.12) [28]. Analy-
sis of the full cohort for non-lung cancers resulted in a haz-
ard ratio of 1.15 (95% CI 1.07–1.24) which was also com-
parable to the cohort of never-smokers’ (HR 1.15, 95% CI 
1.02–1.30). The results for the association between a 10 µg/
m3 increase of  PM2.5 and non-lung cancer are much larger 
than other cohort studies like the Harvard Six Cities Study 
(HR 1.05, 95% CI 0.87–1.27) [29] or the ACS study (HR 
1.05, 95% CI 1.00–1.12) [29], but not statistically different.

Table 1  Summary of baseline characteristics in the full and never-
smoker’s cohort for individuals aged 18–84 who completed the US 
National Health Interview Survey between 1987 and 2014

Variable Full cohort 
(No. = 635,539)

Never-smokers’ cohort 
(No. = 341,665)

% Mean (SD) 
 PM2.5

% Mean (SD)  PM2.5

Sex
 Male 44.5 10.7 (2.4) 38.6 10.7 (2.4)
 Female 55.5 10.6 (2.4) 61.4 10.8 (2.4)

Race/ethnicity
 Non-Hispanic 

White
67.5 10.3 (2.2) 61.4 10.3 (2.2)

 Hispanic 14.1 11.2 (3.0) 17.6 11.3 (3.0)
 Non-Hispanic 

Black
14.0 11.7 (1.9) 15.4 11.7 (1.9)

 All other/
unknown

4.4 11.0 (2.6) 5.6 11.1 (2.6)

Income (inflation 
adjusted to 
2015)

 $0–35,000 38.0 10.8 (2.4) 36.6 10.9 (2.4)
 $35–50,000 15.5 10.6 (2.4) 14.9 10.7 (2.4)
 $50–75,000 18.8 10.6 (2.4) 18.7 10.7 (2.4)
 $75,000 + 27.7 10.5 (2.3) 29.9 10.6 (2.3)

Marital status
 Married 49.6 10.5 (2.4) 49.9 10.6 (2.4)
 Divorced 14.1 10.6 (2.4) 10.9 10.7 (2.4)
 Separated 3.6 11.1 (2.4) 3.1 11.2 (2.4)
 Never married 24.3 11.0 (2.3) 27.8 11.0 (2.4)
 Widowed 8.5 10.7 (2.3) 8.3 10.8 (2.3)

Education
 < High school 

grad
18.6 11.1 (2.5) 16.8 11.2 (2.5)

 High school 
grad

30.4 10.6 (2.3) 27.1 10.7 (2.4)

 Some college 27.1 10.5 (2.4) 27.2 10.6 (2.3)
 College grad 15.0 10.6 (2.3) 18.1 10.6 (2.3)
 > College grad 8.9 10.6 (2.3) 10.9 10.6 (2.3)

Urban/rural
 Urban 77.6 11.0 (2.4) 79.4 11.0 (2.4)
 Rural 22.4 9.6 (2.1) 20.6 9.6 (2.1)

Census region
 Northeast 18.1 10.6 (1.9) 17.5 10.8 (1.9)
 Midwest 23.7 11.1 (1.7) 22.5 11.1 (1.9)
 South 35.7 10.8 (1.7) 36.3 10.8 (1.7)
 West 22.5 10.0 (3.6) 23.8 10.3 (3.7)

BMI
 < 20 7.3 10.7 (2.3) 7.3 10.7 (2.3)
 20–25 36.4 10.6 (2.4) 36.7 10.7 (2.4)
 25–30 33.8 10.7 (2.4) 33.1 10.7 (2.4)
 30–35 14.4 10.7 (2.4) 14.5 10.8 (2.4)
 > 35 8.1 10.8 (2.3) 8.4 10.8 (2.3)

Smoking

Table 1  (continued)

Variable Full cohort 
(No. = 635,539)

Never-smokers’ cohort 
(No. = 341,665)

% Mean (SD) 
 PM2.5

% Mean (SD)  PM2.5

 Never 53.8 10.7 (2.4) 100.0 10.7 (2.4)
 Current 23.9 10.7 (2.3) 0.0 –
 Former 22.4 10.5 (2.4) 0.0 –
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This study provides further evidence that lung cancer 
is associated with  PM2.5, especially in never-smokers. The 
study found a hazard ratio of 1.13 (95% CI 1.00–1.26) in 
the full cohort and a HR of 1.73 (95% CI 1.20–2.49) in the 
never-smokers’ cohort, which was significant even after mul-
tiple comparison adjustment. The  PM2.5-lung cancer mortal-
ity HR was higher in the never-smokers’ cohort than in the 
full cohort. It is unknown whether or not the larger HR for 
never-smokers is due to different susceptibility, underlying 
biology, or simply due to differences in baseline risk. Given 
the large effect of smoking on lung cancer, the underlying 
or baseline mortality risk for lung cancer in never-smokers 
is much smaller than for smokers. As such the proportional 

hazard (an estimate of relative risk) associated with  PM2.5 
exposure would likely be larger in never-smokers than in 
smokers. The results from this study are comparable to a 
recent meta-analysis of cohorts examining  PM2.5-lung can-
cer mortality (HR 1.13, 95% CI 1.07–1.20) [30].

The association between  PM2.5 and mortality due to non-
lung cancers is less clear. Although several cancer types 
(stomach, colorectal, liver, breast, cervical, and bladder can-
cers and Hodgkin’s lymphoma, NHL, and leukemia) were 
statistically significantly associated with  PM2.5 exposure, 
none were statistically significant after adjusting for multi-
ple comparisons. However, despite the conservative p value 
adjustment, stomach, liver, and breast cancer had a Holm’s 

Table 2  Estimated hazard ratios (95% CIs) associated with 10 µg/m3 increase of  PM2.5 adjusted for age, sex, race/ethnicity, income, education, 
marital status, BMI, smoking (for the full cohort), urban/rural, census regions, and survey year

P values adjusted using the Holm’s method are also included for individual cancer types. Note that a p-value of 1 indicates a value greater than 
0.9999 as reported by SAS PROC MULTTEST
* Significant at 95% confidence level using the unadjusted p-values
†  Significant at 95% confidence level using Holm’s adjusted p-values

Cancer types Full cohort Never-smokers’ cohort

No. of deaths Hazard ratio (95% CI) Holm’s p value No. of deaths Hazard ratio (95% CI) Holm’s p value

All cancer 26,453 1.15 (1.08–1.22)* – 17,743 1.19 (1.06–1.33)* –
Lung 7,420 1.13 (1.00–1.26)* 0.58 6,710 1.73 (1.20–2.49)*† 0.04
Non-lung 19,033 1.15 (1.07–1.24)* – 11,033 1.15 (1.02–1.30)* –
Digestive and accessory
Oral and oropharyngeal 374 1.19 (0.74–1.91) 1 291 1.90 (0.65–5.54) 1
Esophageal 599 0.59 (0.38–0.90) 0.19 460 0.79 (0.32–1.96) 1
Stomach 525 1.87 (1.20–2.92)* 0.07 301 2.01 (1.01–3.98)* 0.51
Colorectal 2,572 1.29 (1.05–1.58)* 0.18 1,441 1.26 (0.93–1.70) 1
Liver 761 1.32 (0.94–1.85) 1 489 2.18 (1.25–3.81)* 0.06
Pancreas 1,607 1.09 (0.83–1.44) 1 956 0.94 (0.63–1.38) 1
Sex specific organs
Breast 2,099 1.33 (1.08–1.64)* 0.09 949 1.32 (1.00–1.75)* 0.60
Cervical 237 1.77 (1.00–3.16)* 0.62 115 2.41 (1.19–4.89)* 0.17
Ovarian 392 1.03 (0.69–1.53) 1 121 1.06 (0.60–1.86) 1
Uterine 750 1.20 (0.73–1.96) 1 317 1.64 (0.94–2.88) 0.91
Prostate 1,215 0.91 (0.68–1.22) 1 802 0.60 (0.39–0.93) 0.26
Urinary
Kidney 603 0.98 (0.66–1.46) 1 359 0.94 (0.48–1.84) 1
Bladder 589 1.48 (1.00–2.20)* 0.63 451 2.00 (0.83–4.84) 1
Lymphoid
Hodgkin lymphoma 59 4.18 (1.20–14.60)* 0.30 31 6.21 (1.15–33.46)* 0.37
NHL 1,016 1.48 (1.10–1.98)* 0.11 558 1.27 (0.81–2.01) 1
Leukemia 970 1.43 (1.05–1.97)* 0.31 564 1.34 (0.76–2.33) 1
Multiple myeloma 541 0.99 (0.64–1.53) 1 270 0.83 (0.45–1.54) 1
Other cancers
Laryngeal 157 0.82 (0.34–1.96) 1 142 0.74 (0.02–25.03) 1
Melanoma 392 0.72 (0.39–1.33) 1 213 0.54 (0.19–1.58) 1
Brain 622 1.48 (0.96–2.29) 0.89 344 1.51 (0.84–2.70) 1
Unspecified cancers 2,952 0.89 (0.74–1.07) 1 1,858 0.80 (0.60–1.07) 1
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p-value of less than 0.1, suggestive of an association with 
 PM2.5. Furthermore, the statistically significant association 
between non-lung cancers in aggregate and  PM2.5 in both the 
full and never-smokers cohort provides further suggestive 
evidence that some non-lung cancers are associated with 
 PM2.5.

Other studies have reported  PM2.5-mortaltiy associa-
tions with stomach [18, 19, 31], colorectal [18, 19, 31], 
liver [18–20, 31], breast [18, 19, 21, 32, 33], cervical [18, 
19], and bladder cancer [18, 19]. Additional studies have 
also reported  PM2.5-incidence associations for stomach [11], 
liver [12, 34, 35], breast [13, 36–40], and bladder [14, 41]. 
Comparisons of the estimated hazard ratios, risk ratios, inci-
dent rate ratios, and odds ratios (with their associated con-
fidence intervals) for these cancers are succinctly illustrated 
in Fig. 1. Although there is substantial heterogeneity across 
study estimates, the results of this study provide additional 
evidence to the growing body of literature that  PM2.5 expo-
sure is associated with cancer mortality or incidence for lung 
and some non-lung cancers.

The results are also consistent with existing literature 
on the relationship between smoking and cancer [1], with 
statistically significant associations after multiple testing 
adjustment for lung, oral and oropharyngeal, esophageal, 
stomach, colorectal, liver, pancreatic, laryngeal, cervical, 
kidney, bladder, and unspecified cancers. Except for Hodg-
kin’s and non-Hodgkin’s lymphoma, cancer types that were 

statistically associated with  PM2.5 in either cohort were also 
associated with smoking status. This study also provides 
moderate evidence for the formal establishment of prostate, 
breast, and unspecified cancers as caused by smoking [42]. 
Cigarette smoking and  PM2.5 exposure may both be risk fac-
tors for various non-lung cancers, with cigarette smoking 
having a larger impact. Further research is needed to deter-
mine the relationship between  PM2.5, smoking, and cancer 
type mortality.

A limitation of this study is the inability to directly meas-
ure exposure to ambient air pollution over a lifetime. With 
extensive follow-up and advanced ground-based monitor-
ing and related modeling, this study used direct exposure 
estimates from 1999 to 2015. However, it does not directly 
account for exposure before this period. Although the results 
using back casted estimates of  PM2.5 exposure and only 
including individuals surveyed after 1999 are similar to the 
original model, the estimates of the HR may still be biased. 
Furthermore, census tract-level estimates of  PM2.5 do not 
account for the full range of spatial variability at residential 
address. Due to subject mobility, however, it remains unclear 
what is the optimal level of spatial averaging. Another limi-
tation is the inability to control for migration. The migration 
problem is further exacerbated by the long latency period of 
some cancer types. In future studies, cancer incidence data 
could be used to reduce the latency concern. Additionally, 
this study did not control for other pollutants such as  NO2, 

Table 3  Model sensitivity was performed by comparing the results from the original complex CPH model to several alternative models using the 
traditional Cox Proportional Hazards model (the PHREG procedure)

Model 1 included mean  PM2.5 concentrations for the 17-year period (1999–2015) and controlled for covariates as in the original model (educa-
tion, income, marital status, BMI, smoking status, urban/rural, census region, and survey year), but controlled for combinations of 1-year age 
groups, sex, and race-ethnicity by allowing them to have their own baseline hazard (using the STRATA statement in the SAS PHREG proce-
dure). Model 2 is the same as Model 1, but includes only individual controls and excludes survey year, census region, and urban/rural variables. 
Model 3 is the same as Model 1, but only controlled for age, sex, and race (using the STRATA statement). Model 4 is the same as Model 1, 
except it is used a longer exposure window for  PM2.5 (average exposure from 1988–2015 instead of 1999–2015, using back casted estimates 
for 1988–1998). Model 5 is the same as Model 1, but only included individuals surveyed during or after 1999. Model 6 is the same as Model 1, 
except it used an expanded cohort of all 1,599,329 NHIS participants from 1986–2014 (including individuals without smoking status or BMI 
data) and did not control for smoking status or BMI

Cancer type Original model Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
(all controls) (all controls) (individual 

controls)
(age, sex, race) (back casted 

 PM2.5)
(≥ 1999 survey 
years)

(expanded)

Lung 1.13 (1.00–1.26) 1.12 (1.00–1.25) 1.14 (1.03–1.26) 1.22 (1.10–1.35) 1.10 (1.00–1.20) 1.16 (0.95–1.41) 1.09 (1.02–1.17)
Stomach 1.87 (1.20–2.92) 1.82 (1.24–2.69) 1.78 (1.22–2.58) 1.81 (1.24–2.63) 1.63 (1.20–2.22) 2.18 (1.10–4.33) 1.80 (1.45–2.24)
Colorectal 1.29 (1.05–1.58) 1.23 (1.02–1.47) 1.32 (1.11–1.57) 1.36 (1.14–1.61) 1.18 (1.02–1.36) 1.28 (0.92–1.77) 1.26 (1.12–1.41)
Liver 1.32 (0.94–1.85) 1.35 (0.99–1.84) 1.37 (1.01–1.85) 1.38 (1.02–1.87) 1.22 (0.95–1.56) 1.39 (0.89–2.17) 1.33 (1.10–1.60)
Cervix 1.78 (1.00–3.16) 2.22 (1.27–3.88) 2.18 (1.26–3.78) 2.45 (1.42–4.22) 1.69 (1.09–2.63) 2.04 (0.80–5.24) 1.71 (1.20–2.44)
Breast 1.33 (1.08–1.64) 1.26 (1.03–1.54) 1.28 (1.06–1.55) 1.28 (1.06–1.55) 1.22 (1.04–1.43) 1.38 (0.97–1.96) 1.28 (1.13–1.45)
Bladder 1.48 (1.00–2.20) 1.26 (0.86–1.84) 1.26 (0.88–1.80) 1.29 (0.90–1.84) 1.22 (0.91–1.65) 1.49 (0.80–2.78) 1.00 (0.79–1.27)
Hodgkin’s 4.18 (1.19–

14.60)
3.22 (1.05–9.86) 3.45 (1.18–

10.08)
3.59 (1.22–

10.56)
2.33 (0.96–5.67) 11.27 (1.45–

87.79)
1.57 (0.78–3.14)

NHL 1.48 (1.10–1.98) 1.49 (1.12–1.98) 1.61 (1.22–2.11) 1.59 (1.21–2.08) 1.34 (1.07–1.68) 1.94 (1.18–3.18) 1.35 (1.14–1.61)
Leukemia 1.43 (1.05–1.97) 1.27 (0.94–1.71) 1.34 (1.01–1.77) 1.30 (0.98–1.72) 1.25 (0.99–1.58) 1.92 (1.17–3.15) 1.22 (1.02–1.46)
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 SO2, or CO. Other studies have found associations between 
pollutants other than  PM2.5 and incidence and mortality from 
various cancers [43, 44]. Future studies should control for 
these pollutants.

Another limitation of the study is the potential of residual 
confounding. The study was unable to control for several 
important variables such as secondhand smoke, HPV status, 
occupational exposure, reproductive factors (such as hormo-
nal therapy, oral contraceptive use, or menopausal status), 
alcohol consumption, dietary patterns, and genetic variables 
that are associated with some cancer types. However, most 
cancer types were not sensitive to individual risk factors 
such as age, sex, race-ethnicity, education, income, BMI, 

geographic variables, and survey years, which suggests neg-
ligible risk of residual confounding. Furthermore, average 
air pollution was generally consistent across the factor levels 
for the individual risk factors, which suggests air pollution is 
unlikely to be correlated with any omitted variables.

A final limitation is the lack of follow-up and quantita-
tive measurements in the smoking data. The lack of follow-
up would likely bias the estimates for smoking downwards 
because the number of smokers is decreasing in America. 
Future studies should also include quantitative measure-
ments for smoking such as packs per day or number of years 
smoking. Although these weaknesses may call the results 
of the smoking analysis into question, many of the cancer 

Table 4  Estimated hazard ratios (95% CIs) associated with current or former smoker in comparison to never-smoker

All models were adjusted for age, sex, race, income, education, marital status, BMI, urban/rural, census regions, survey year, and a 10 µg/m3 
increase of  PM2.5. P-values adjusted using the Holm’s method are also included for individual cancer types. Note that a p-value of 1 indicates a 
value greater than 0.9999 as reported by SAS PROC MULTTEST
* Significant at 95% confidence level using the unadjusted p-values
† Significant at 95% confidence level using Holm’s adjusted p-values

Cancer types Current smoker Former smoker

No. of deaths Hazard ratio (95% CI) Holm’s p value No. of deaths Hazard ratio (95% CI) Holm’s p value

All cancer 26,453 2.73 (2.64–2.83)* – 26,453 1.48 (1.43–1.53)* –
Lung 7,420 15.11 (13.70–16.66)*†  < 0.01 7,420 4.90 (4.44–5.42)*†  < 0.01
Non-lung 19,033 1.59 (1.53–1.66)* – 19,033 1.18 (1.13–1.22)* –
Digestive and accessory
Oral and oropharyngeal 374 4.84 (3.65–6.42)*†  < 0.01 374 1.66 (1.21–2.27)*† 0.02
Esophageal 599 3.25 (2.58–4.10)*†  < 0.01 599 1.67 (1.32–2.12)*†  < 0.01
Stomach 525 1.74 (1.28–2.38)*†  < 0.01 525 1.15 (0.91–1.45) 1
Colorectal 2,572 1.37 (1.22–1.55)*†  < 0.01 2,572 1.23 (1.12–1.35)*†  < 0.01
Liver 761 2.09 (1.72–2.55)*†  < 0.01 761 1.45 (1.20–1.75)*†  < 0.01
Pancreas 1,607 2.04 (1.78–2.35)*†  < 0.01 1,607 1.14 (0.99–1.32) 0.74
Sex specific organs
Breast 2,099 1.11 (0.99–1.26) 0.40 2,099 1.12 (1.00–1.27)* 0.62
Cervical 237 1.53 (1.13–2.09)*† 0.04 237 1.04 (0.70–1.53) 1
Ovarian 392 0.97 (0.79–1.18) 1 392 1.05 (0.87–1.27) 1
Uterine 750 0.68 (0.50–0.93) 0.02 750 0.65 (0.48–0.87) 0.20
Prostate 1,215 1.27 (1.05–1.54)* 0.09 1,215 0.99 (0.86–1.14) 1
Urinary
Kidney 603 1.34 (1.06–1.69)* 0.09 603 1.10 (0.90–1.35) 1
Bladder 589 4.08 (3.20–5.20)*†  < 0.01 589 2.39 (1.89–3.01)*†  < 0.01
Lymphoid
Hodgkin lymphoma 59 0.94 (0.45–1.96) 1 59 1.04 (0.51–2.09) 1
NHL 1,016 1.13 (0.93–1.37) 0.82 1,016 1.18 (1.01–1.38)* 0.48
Leukemia 970 1.23 (1.01–1.52)* 0.27 970 1.24 (1.04–1.47)* 0.19
Multiple myeloma 541 0.76 (0.58–0.99) 0.27 541 0.95 (0.76–1.18) 1
Other cancers
Laryngeal 157 10.27 (5.44–19.38)*†  < 0.01 157 3.04 (1.46–6.33)*† 0.04
Melanoma 392 1.01 (0.76–1.33) 1 392 0.99 (0.77–1.28) 1
Brain 622 1.37 (1.07–1.74)* 0.07 622 1.03 (0.83–1.27) 1
Unspecified cancers 2,952 2.14 (1.93–2.38)*†  < 0.01 2,952 1.27 (1.16–1.39)*†  < 0.01
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types that were associated with current smokers are also 
associated with former smokers, so the lack of follow-up 
and number of years smoked is less concerning. Further-
more,  PM2.5-cancer associations were similar in the never-
smokers’ cohort, which suggests little risk of bias.

This study has several important strengths. First, the study 
uses a cohort that is a representative sample of US adults 
with high quality survey information. Second, the cohort is 
large and contains many deaths for most cancer types. Third, 
the analysis can control for individual risk factors for cancer 
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Fig. 1  Illustration of the comparison between the results of the cur-
rent study and other similar studies that estimated the association 
between a 10  µg/m3 increase of  PM2.5 and various cancer types 

incidence or mortality. Studies that examined cancer incidence are 
marked with a triangle, whereas those that examined cancer mortality 
are marked with a circle
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such as smoking and BMI. Fourth, air pollution estimates, 
and most other analysis variables are publicly available.

Exposure to  PM2.5 air pollution is a risk factor for lung 
cancer mortality and a possible risk factor in mortality for 
various cancer types. The results from the current study and 
comparable studies suggest that  PM2.5 may be associated 
with stomach, colorectal, liver, breast, cervical, and bladder 
cancer. Interestingly, all these cancers were associated with 
smoking status in the analysis. Although this exploratory 
study does not provide definitive conclusions, the strength 
of the research design and the consistency of results across 
modeling choices suggest further research is needed into the 
additional biological pathways by which cancer in humans 
may be affected by  PM2.5 and smoking.. The universal nature 
of pollution exposure, and its consequences, makes further 
study essential to public health.
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