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• Impacts of stay-at-home orders on air
pollution were evaluated using EPA
monitoring data from 100s of stations
across the US.

• During stay-at-home orders, ozone,
NO2, CO and PM10 were lower and
PM2.5 were higher than expected levels
by 1%-30% of their IQR.

• Concentration anomalies ended only 5-
6 weeks after stay-at-home orders
were issued.

• Ozone, NO2, and CO concentrations
returned to expected levels and PM2.5

and PM10 levels were higher than ex-
pected.

• Reductions in ozone, NO2, and CO levels
were modest and short-lived. PM10

levels did not change and PM2.5 levels
increased.
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The widespread and rapid social and economic changes from Covid-19 response might be expected to dramati-
cally improve air quality. However, national monitoring data from the US Environmental Protection Agency for
criteria pollutants (PM2.5, ozone, NO2, CO, PM10) provide inconsistent support for that expectation. Specifically,
during stay-at-home orders, average PM2.5 levels were slightly higher (~10% of its multi-year interquartile
range [IQR]) than expected; average ozone, NO2, CO, and PM10 levels were slightly lower (~30%, ~20%, ~27%,
and ~1% of their IQR, respectively) than expected. The timing of peak anomaly, relative to the stay-at-home or-
ders, varied by pollutant (ozone: 2 weeks before; NO2, CO: 3 weeks after; PM10: 2 weeks after); but, by
5–6 weeks after stay-at-home orders, the concentration anomalies appear to have ended. For PM2.5, ozone, CO,
and PM10, no US state had lower-than-expected pollution levels for all weeks during stay-at-home-orders; for
NO2, only Arizona had lower-than-expected levels for all weeks during stay-at-home orders. Our findings
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Criteria air pollution
Stay-at-home orders
COVID-19
show that the enormous changes from the Covid-19 response have not lowered PM2.5 levels across the US be-
yond their normal range of variability; for ozone, NO2, CO, and PM10 concentrationswere lowered but the reduc-
tion was modest and transient.

© 2020 Published by Elsevier B.V.
1. Introduction

With the enormous and extremely rapid social and economic
changes happening because of the novel coronavirus disease of 2019
(“Covid”), including stay-at-home orders enacted in nearly all US states,
there is interest in quantifying the air pollution impacts of those orders.
Changes in air pollution during Covid could reveal, for example, how
changes in the economy affect air quality, and how those changes differ
throughout the US. More broadly, responses to Covid create a unique
opportunity to quantify the effect of human activity on air quality. Anal-
ogous investigations have been done multiple times at a more limited
scale – for example, studying impacts of sudden industrial closure
(e.g., a steel mill in Utah Valley (Pope III et al., 1992); copper smelters
throughout the US (Pope III et al., 2007)), widespread power outage in
the Northeastern US (Hu et al., 2006), new regulation such as a coal
ban in Dublin (Clancy et al., 2002) and a congestion charging scheme
in London (Kelly et al., 2011), and the 1996 Atlanta (Friedman et al.,
2001; Peel et al., 2010) and 2008 Beijing (Rich et al., 2012; Li and
Chen, 2010) Olympics. However, societal changes attributable to the
Covid response are unprecedented in size, scope, and speed.

Air pollution concentrations at a given location vary on time scales
from seconds to years; some variability is random or quasi-random,
other variability is systematic (i.e., non-random). Temporal variability
is caused by changes in emissions andmeteorology and their associated
impacts on rates of transport, production, removal, and dilution. The net
result is that because of random and systematic temporal variability,
concentrations during Covid may be different than before Covid
(e.g., onemonth or one year earlier) for reasons unrelated to the societal
response to Covid.

Our paper adds to the literature on changes in air pollution concen-
tration associated with specific causes, including studies of the emis-
sions, air pollution, or health benefits from environmental regulation
(“accountability studies”). That literature addresses the random and
systematic variability in pollution concentrations mentioned above
via, e.g., detrending and counterfactual emissions scenarios (Pope III
et al., 1992; Pope III et al., 2007; Hu et al., 2006; Clancy et al., 2002;
Kelly et al., 2011; Friedman et al., 2001; Peel et al., 2010; Rich et al.,
2012; Li and Chen, 2010; Henschel et al., 2012; Henneman et al., 2016).

Our paper also adds to the existing literature exploring Covid-
related impacts on air pollution and related activity levels (Tobias
et al., 2020; He et al., 2020; Venter et al., 2020; Kambalagere, 2020;
Anjum, 2020; Mahato and Ghosh, 2020; Shrestha et al., 2020;
Bauwens et al., 2020; Xu et al., 2020; Dutheil et al., 2020; Chauhan
and Singh, 2020; Alfarra et al., 2020; Tanzer-Gruener et al., 2020;
Berman and Ebisu, 2020; Goldberg et al., 2020; Xiang et al., 2020;
Dantas et al., 2020; Bao and Zhang, 2020; Kerimray et al., 2020;
Sharma et al., 2020; Chen et al., 2020; Li et al., 2020; Kugel and Feeser,
2020). Much of the news in the popular press regarding impacts of
Covid on air pollution emphasizes that concentrations have improved
during Covid (CNN, 2020; Lewis, 2020; Hoeller, 2020; Freedman and
Tierney, 2020; Monks, 2020; Mervosh et al., 2020); our investigation
aims to test those claims using a national dataset of in-situ concentra-
tion measurements. We present two approaches for deriving “ex-
pected” concentrations (i.e., in the absence of Covid responses) against
which to compare observed concentrations: (1) our main approach is
temporally corrected. (2) We also employ a secondary approach (“sen-
sitivity analysis”) that is temporally and weather corrected using re-
gression techniques. We do not attempt to shed light on the specific
causes of any changes nor on regulatory implications.
2

This paper uses nationwide, publicly-availablemonitoring data from
the US Environmental Protection Agency (EPA) to investigate changes
in criteria air pollutants, before, during, and after Covid stay-at-home
orders. These data represent the largest source of publicly-available
and robust measurements of criteria air pollutants for the US. Our
methods control for random and systematic variability on multiple
time scales, and by state and nationally. There have been many investi-
gations into how air pollution levels have changed during Covid; yet, to
our knowledge, no prior research has systematically analyzed changes
in in-situ measured criteria air pollution concentrations before, during,
and after stay-at-home orders across the US.

2. Methods

2.1. General approach

We use “before”, “during”, and “after stay-at-home orders” as general
terms: “before stay-at-home orders” refers to weeks before stay-at-home
orders, when, in 2020, Covid had little or no impact on activities in the
US; “during stay-at-home orders” refers to a few weeks preceding the
stay-at-home order dates and weeks during stay-at-home orders; “after
stay-at-home orders” refers to weeks after the states have removed
stay-at-home orders. Those labels are applied to specific weeks, as
described in the analyses below. The scope of the stay-at-home orders
varies from state to state. The term “stay at home” refers to a specific
requirement (also called “shelter in place”), with a specific start and end
date (Table S1), announced by most state governments.

2.2. Data acquisition and selection

We employ publicly-available daily-average in-situ air pollution
concentrations measured at EPA monitors. We downloaded data from
the EPA AirData website (https://www.epa.gov/outdoor-air-quality-
data/download-daily-data) on September 2, 2020. As of September 2,
2020, data for two pollutants are available from the EPA for the time-
period of interest for Covid (March 2020 and later): fine particulate
matter (PM2.5, i.e., particles with aerodynamic diameter less than or
equal to 2.5 μm) and ozone. Other pollutants or averaging times are cur-
rently unavailable from EPA.

We also downloaded and analyzed NO2, CO, and PM10 data from the
Environmental Sensor Data Repository (ESDR; https://esdr.
cmucreatelab.org). ESDR data are EPA measurements that EPA has pro-
vided in real-time but not yet in an archival or database format; ESDR
saves (“scrapes”) those real-time data and shares them in their raw
form. (Available EPA data for SO2were too imprecise to support a robust
analysis.)

We started by downloading all data (daily 24-hour average concen-
trations for PM2.5 and PM10, daily 8-hmaximum for ozone and CO, daily
1-hmaximum for NO2; December 18, 2009 - December 31, 2019) for all
monitors from EPA AirData. We then downloaded the year-2020
(January 1, 2020 - September 1, 2020) PM2.5 and ozone data from EPA
AirData and NO2, CO, SO2, and PM10 data from the ESDR website for
all monitors with one ormore days of data in year-2020. (Asmentioned
above, SO2 datawere downloaded butwere too imprecise to support ro-
bust analysis.) Finally, we matched the historical and year-2020 data
based on the monitor's latitude and longitude. We restricted the
analysis to consider a specific window of days each year: for 2020, the
window is January 1–September 1 (245 days); for years 2010–2019,
the window is December 18–September 15 (Total: 273 days), i.e., the

https://www.epa.gov/outdoor-air-quality-data/download-daily-data
https://www.epa.gov/outdoor-air-quality-data/download-daily-data
https://esdr.cmucreatelab.org
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year-2020 range ± 2 additional weeks. Data outside of those windows
were excluded from the analysis.

Analyses extend through September 1, 2020 (the 245th day of 2020
and the completion of the 35thweek of the year).Weeks are sequential:
week 1 is days 1–7 of the year, week 2 is days 8–14 of the year, etc.
(Table S2). By stopping our analyses at week 35, we avoid the massive
wildfires that occurred on theWest Coast starting inweek 36 (September
4 to September 10) (Cal Fire, 2020; Fuller and Healy, 2020).

We carefully examined the completeness of data from each year and
each monitoring site to determine whether it would be included in the
study. As described next, these checks are performed as a two-step pro-
cess for each monitor.

First, we tested each monitor-year for data sufficiency. For years
2010–2019, if anymonitor-year contains <75% of the expected number
of days in the target window (75%×273=206 days), then that year of
data for that monitor is excluded. For year-2020, we checked the num-
ber of days of data pre-Covid (January 1–March 18; 78 days) and after
the start of Covid (March 19–September 1; 167 days); if either period's
data contains <75% of the expected days (75%×78 days=59 days;
75%×167 days=125 days), then that monitor is excluded.

Second, we ensure that amonitor has a sufficient number of years of
valid data to calculate the temporal correction. This step employs the
following three data requirements (Fig. S1): (1) monitors with fewer
than 3 years of data are excluded. (2) Monitors without at least two of
the last three years of data are excluded. (3) (i) For monitors with 8 or
more years of data for 2010–2019, we calculate the 10-year slope
from that monitor's available data. (ii) For monitors with under
8 years of data for 2010–2019, we determined if there are one or
more monitors within 50 km. If there are, then we impute a slope
using inverse distance weighting (IDW) of the slopes from up to 3 clos-
est monitors within 50 km. This approach (3 nearest monitors within
50 km) has been adopted by prior articles (e.g., Brauer et al., 2008).
Bravo et al. (2012) state, “a distance of 50 kmwas chosen because it rep-
resented a reasonable distance for extrapolation of observed air pollut-
ant concentrations and has been used previously in epidemiological
settings (Hanigan et al., 2006; Lipsett et al., 2011; O'Donnell et al.,
2011; Spencer-Hwang et al., 2011), but other distances could have
been selectedwith similar justification.”Marshall et al. (2008) reported
that this approach (3 nearest monitors within 50 km) yielded better re-
sults than two analogous approaches (all monitors within 50 km; and
all monitors within 10 km). If there are no other monitors within
50 km, then we exclude that monitor from the analysis.

The AirData and ESDR websites provided year-2020 concentrations
for 1141 PM2.5, 1206 ozone, 436 NO2, 270 CO, and 673 PM10 monitors.
Our data completeness algorithm excluded a total of 583 (51%) PM2.5,
543 (45%) ozone, 343 (79%) NO2, 207 (77%) CO, and 565 (84%) PM10

monitors. Therefore, the results and discussion are based on data from
558 PM2.5, 663 ozone, 93 NO2, 63 CO, and 108 PM10monitors. Consider-
ing varying sampling frequency for ozone (e.g., sampled only during
warm months in some locations), we conducted a sensitivity analysis
with additional ozone monitors (total of 949) that have more than
14% data completeness (Fig. S6). Each monitor is in a different location.
State-specific results refer to stateswithmonitors thatmet the inclusion
criteria (Table S3).

We downloaded meteorology data (hourly temperature, precipita-
tion, mixing height, and dew point data for US; December 18, 2009 -
September 1, 2020) from European Center for Medium-RangeWeather
Forecasts (ECMWF) ERA5 Reanalysis (Hersbach et al., 2018). Then we
extracted hourly meteorological data for each monitoring station and
calculated the daily average values. We also analyzed US public transit
mobility data from Google Community Mobility Reports (https://
www.google.com/covid19/mobility/).

As a side-analysis, we examined the influence of upwind ozone en-
tering the US. In principle, upwind pollution levels could potentially en-
hance or offset the effects of changes in emissions in the US. We used
observations from two remote upwind sites (Lassen Volcanic National
3

Park, California [LAV] and Trinidad Head, California [THD]) operated
by, respectively, the US National Park Service and the US National
Oceanic and Atmospheric Administration GlobalMonitoring Laboratory
(NOAA GMD) (Finlayson-Pitts and Pitts Jr, 1993).

2.3. Main approach: temporal correction, using robust differences (“D”)

We calculate a “robust differences”metric (“D”): theweeklymedian
concentration for 2020, relative to the temporally-corrected historical
median, normalized to the interquartile range (IQR).

Di ¼ C2020,i−Ch,i
� �

=Ih,i: ð1Þ

Eq. (1) is calculated for each week (“i”) and for each monitor. Di is
the “robust differences” comparison metric for week i, C2020,i is the
weekly-median concentration (i.e., the median of 7 daily-average con-
centrations) for week i during year-2020, Ch,i is the temporally-
corrected historical median concentration for week i plus/minus
2 weeks, and Ih,i is the interquartile range (IQR, 75th percentile minus
25th percentile) for week i plus/minus 2 weeks. For example, to calcu-
late Di for week 10, we use C2020 for week 10, for Ch,i and Ih,i we use his-
torical data (i.e., years prior to 2020) for weeks 8–12. The “plus/minus 2
weeks” approach for historical data increases the sample size for the
comparisons (historic vs year-2020), gives a broader historical compar-
ison than just oneweek, and helps smooth atypical weeks in the histor-
ical dataset.

D is called a “robust” metric because it employs median and IQR
rather than mean and standard deviation, so it is not impacted by out-
liers. D=0would indicate that the year-2020median is equal to the “ex-
pected” value (i.e., the temporally-corrected long-term average
median). D=1 would indicate that the year-2020 value is one IQR
above the expected value; D=-2would indicate two IQRs below the ex-
pected value. D reveals whether year-2020 concentrations are higher-
or lower-than expected, for before, during, and after stay-at-home
order weeks, but does not elucidate their cause nor inform regulatory
aspects such as comparisons against national standards.

Temporal correction is needed because air pollutant concentrations
exhibit systematic long-term (multi-year) trends that can vary by loca-
tion (see example temporal collection in Fig. S2). The temporal correc-
tion for a monitor in week i is the 10-year slope (i.e., 2010–2019) of
weekly-median historical concentrations at that monitor (Fig. 1). In
this manner, we compare actual year-2020 measurements to the “ex-
pected” level for week i in year-2020, accounting for 10-year trends
for that week-of-year at that location. (As a sensitivity analysis, we
used 5- rather than 10-year trends; results were similar (Fig. S3).) The
interquartile range (Ih,i) is calculated using the prior 3 years of data
(2017–2019); we employ this metric as a relatively recent measure of
the typical spread in the data.

2.4. Sensitivity analyses: temporal andweather correction, using regression
analyses

As sensitivity analyses, we instead use linear (Eq. (2)) and spline
(Eq. (3)) first-order multivariate autoregression to correct for temporal
patterns and weather:

Ct ¼ β0 þ β1 mtð Þ þ β2 ẟy,2020
� �þ β3 Ct−1ð Þ þ β4 ytð Þ þ εt ð2Þ

Ct ¼ β0 þ bs mt , y,νð Þ þ β1 ẟy,2020
� �þ β2 Ct−1ð Þ þ εt ð3Þ

Here, Ct is the concentration of the pollutant on day t, mt is the daily
average meteorology (temperature, precipitation, mixing height, and
dew point) on day t, “ẟy,2020” is a dummy variable to reveal if the day
is in 2020, (Ct−1) is the concentration on the previous day (i.e., a 1-
day lag), yt is the year of the date the concentration was recorded, εt is

https://www.google.com/covid19/mobility/
https://www.google.com/covid19/mobility/


Fig. 1. Year-2020 pollution levels (red lines) compared to 2010–2019 levels (grey/blue lines). Left panels show historical (2010–2019, unadjusted) and 2020 weekly median
concentrations normalized to the January average for that year (i.e., dividing all weekly median concentrations by that year's January's mean). Right panels showweekly 10-year median
pollution levelswith (blue line) andwithout (grey line) temporal correction, and theyear-2020median (red line). The orange vertical dashed line indicates timing of thefirst stay-at-home
order in the contiguous US: week 12 [CA]. These data indicate that except for PM2.5, pollution levels exhibited a modest, temporary drop around the time of the first stay-at-home order.
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the error, and bs is a b-spline function with degrees of freedom, ν
(splines library in R).

As above, data (concentrations, meteorology) are daily-averages,
Eqs. (2) and (3) are evaluated for each monitor and week (e.g., there
are 44 weeks and 525 PM2.5 monitors, so Eqs. (2) and (3) are evaluated
23,100 times for PM2.5), and historical data (2010–2019) are “±2
4

weeks” (e.g., week 10 in year-2020 is matched to historical data from
weeks 8–12).When analyzing results from Eqs. (2) and (3), then aggre-
gating across monitors, we define the time axis as theweek number be-
fore, during, and after the stay-at-home order.

This analysis revealswhether year-2020 concentrations are different
from the expected concentrations after correcting temporally and for
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meteorology. Eqs. (2) and (3) are autoregressive, explicitly accounting
for temporal autocorrelation in the measurements (Fig. S4).

3. Results

3.1. Temporal correction, using robust differences

As described next, concentrations during stay-at-home orders are
slightly higher-than-expected for PM2.5, and modestly lower-than-
expected for ozone, NO2, CO, and PM10. The ozone anomaly was largest
two weeks before the stay-at-home order; ozone levels returned to ex-
pected levels a few weeks after the stay-at-home orders were imposed.
The anomalies for NO2, CO, and PM10 are highest 2–3 weeks after the
stay-at-home orders, and then levels returned to expected levels.

Fig. 1 presents year-2020 and 2010–2019 pollution levels. After stay-
at-home orders were imposed, PM2.5 levels are towards the high end of
the historical range, indicating, on average, a modest (~3%) increase rel-
ative to expected concentrations. In contrast, average ozone, NO2, CO,
and PM10 levels are lower than expected, with the largest drop occur-
ring during weeks 10–11 (i.e., March 4–18, 2020).

Historical PM2.5, NO2, CO, and PM10 concentrations are lower
with temporal correction than without it (Fig. 1, right) because pol-
lution levels generally decrease each year. Ignoring that decrease (by
comparing against uncorrected levels) would mean, on average, in-
appropriately concluding that most weeks are “lower than average”,
for any year. In contrast, temporally corrected results accounting for
that long term trend (Fig. 1) suggest that PM2.5 concentrations dur-
ing stay-at-home orders are similar to or higher than expected
concentrations.

For ozone, the temporal correction is minor (~0.2% per year): ozone
levels exhibit year-to-year variability but without a strong 10-year
trend. Seasonally, ozone levels generally increase during January to
April, reflecting increasing photochemical activity. Therefore, a direct
comparison of weeks before vs during stay-at-home orders would in-
correctly suggest that ozone levels are higher than expected; that con-
clusion fails to account for ozone's seasonal trend. Similarly, NO2 and
CO levels generally decrease during January to April. Hence, direct com-
parison of pollution levels before vs during stay-at-home would exag-
gerate the effect of stay-at-home orders on NO2 and CO levels.

General conclusions here are robust to the temporal correction
method. Selecting an alternative temporal correction method might
modestly shift up or down the corrected historical median concentra-
tions (blue line, Fig. 2 right-panels), but that shift would not alter the
year-2020 concentrations (red line, Fig. 2 right-panels) and so would
be unlikely to suggest, for instance, that after stay-at-home orders,
PM2.5 concentrations are substantially lower-than-expected based on
historical trends plus year-2020 concentrations before stay-at-home
orders.

Fig. 2 showsweek-by-week robust differences before, during, and
after the stay-at-home orders (adjusting the time-axis to align with
the date of a state's stay-at-home order); in this way, Fig. 3 focuses
directly on the impact of the stay-at-home order: before versus dur-
ing the order (Fig. 2, left) and during versus after the order (Fig. 2,
right). The number of states included in Fig. 3 varies byweek because
states started and stopped stay-at-home orders on different dates.
The air pollution levels in states that have not initiated stay-at-
home orders on a given date can be influenced by traffic and eco-
nomic activity changes in the neighbouring states that imposed a
stay-at-home order or vice versa. Therefore we also included week-
to-week robust difference results where the time-axis is calendar
weeks of the year in 2020 (Fig. S5).

Noticeable ozone, NO2, CO, and PM10 declines start three weeks be-
fore stay-at-home orders, and the strongest ozone deviations occur two
weeks before the stay-at-home order. The transit mobility analysis re-
sults (Fig. S15) indicate that transit mobility started to decrease from
the baseline ~3 weeks before stay-at-home orders, which is consistent
5

with this timing. (In many locations, people curtailed social and eco-
nomic activity starting before the official stay-at-home orders (Badger
and Parlapiano, 2020; Kroll et al., 2020). However, the pre-stay-at-
home order reduction in ozone was not sustained; over time, “D” in-
creases and the size of the anomaly decreases. By six weeks after the
stay-at-home orders, ozone concentrations were not significantly dif-
ferent from their expected levels.

We can summarize the differences in Fig. 2 by considering “before”
to be the average during weeks 4–14 before the stay-at-home orders,
“during” to be the average of weeks 1–3 before and weeks 1–12 during
the stay-at-home orders, and “after” to be the average during weeks
1–20 after the stay-at-home orders ended. Core results (Table 1) reveal
that during stay-at-home, pollution levels were modestly lower than
expected for ozone, NO2, CO, and PM10, but not for PM2.5. Specifically,
during stay-at-home orders, PM2.5 levels were higher-than-expected
by 10% of its IQR; ozone, NO2, CO, and PM10 levels were lower-than-
expected by 1%–30% of their respective IQRs. Pollution levels were
also not precisely at expected levels before the stay-at-home orders;
for PM10, before stay-at-home levels were higher than expected by
32% of the IQR; remaining pollutants were between 10% of their IQR
lower and 9% of their IQR higher than expected. After the states have
reopened, the ozone and NO2 are close to expected levels (0% - 1% of
their IQR lower than expected), PM2.5, CO, and PM10 are higher than ex-
pected (8% - 33% of their IQR).

Fig. 3 shows results before, during, and after stay-at-home orders
by state. (Alternative versions of this figure – based on calendar date
rather than relative to stay-at-home orders (Fig. S7), or also includ-
ing states that did not issue a stay-at-home order (Fig. S8) – reveal
similar results.) The overall patterns described above (during stay-
at-home orders, ozone, NO2, PM10, and CO levels (but not PM2.5

levels) were modestly lower than expected) are observed for Fig. 3;
however, none of the patterns are ubiquitous. Considering each
map in Fig. 3 separately, some trends hold for most states but none
hold for all states.

3.2. Sensitivity analysis: temporal and weather correction, using regression

As Eq. (2) corrects for temporal trends and meteorology, the esti-
mated coefficients directly indicate whether year-2020 concentrations
were higher (positive coefficients) or lower (negative coefficients)
than expected. The results from the linear regression analysis mostly
agree with the robust difference results (Tables 1 and S5). Specifically,
considering all 5 pollutants both before, during, and after stay-at-
home orders (15 total comparisons), the sign of the result is the same
between the two methods, with two exceptions. (The two exceptions
are for before stay-at-home levels of PM2.5 and CO; see Table S5. Specif-
ically, the average robust difference for before stay-at-home PM2.5 and
CO are 0.09, suggesting that PM2.5 and COwere slightly higher than ex-
pected before stay-at-home orders. In contrast, the regression analysis
indicates that before-stay-at-home PM2.5 was, on average, 0.28 μg/m3

lower than expected and CO was at the expected level.) Furthermore,
the trend in estimated coefficients aggregated by week is similar to
the trend in robust differences by week before, during, and after stay-
at-home orders. The concentration anomaly for all pollutants except
PM2.5 started 3–4 weeks before stay-at-home orders and the anomaly
decreased over time (Figs. 2 and S10).

The results from spline regression (Eq. (3)) are generally consistent.
In some cases the results vary with the degrees of freedom of the spline
function. (Specifically, the results for during stay-at-home order PM10

and after stay-at-home ozone, NO2, and COvaried among spline degrees
of freedom; see Table S6a-d.)

3.3. Potential effects of upwind ozone entering the US

Two upwind background sites in California (LAV and THD) (Parrish
et al., 2017; Quan et al., 2019) exhibit lower-than-expected ozone



Fig. 2.Robust differences (Eq. (1)) between year-2020 and the long-termaverage for thatweek, for PM2.5, ozone,NO2, CO andPM10 concentrations (top to bottom rows, respectively), with
time adjusted to match each state's stay-at-home order. Left column: time = 0 reflects the day that stay-at-home started in that state. These plots compare before (time<0) and during
(time>0) stay-at-home. Right column: time=0 reflects theday that stay-at-home stopped in that state. These plots compare during (time<0) and after (time>0) stay-at-home.Numbers
inset near the top of each panel indicate the number of states andmonitors with data in that range: 41 states enacted stay-at-home orders 4 or moreweeks prior to week #35 of the year
(i.e., the last week for which we have data), 34 states enacted stay-at-home orders 5 or more weeks before week #35, and 28 states enacted stay-at-home orders 6 or more weeks before
week #35 (see Table S1). The change in number of states included in the analysis is indicated via the yellow shading. The box-plots show 10th, 25th, 75th, and 90th percentiles, 50th per-
centile (horizontal line), and the mean (dot); these are summary statistics of monitors throughout the US.
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concentrations around the time of the covid response, but not to the
same degree as seen above at the EPA sites (Fig. S11). Overall, additional
analyses will be needed to ascertain how much of 2020 ozone anoma-
lies seen over the US are due to covid-related vs. transport effects. Our
analysis suggests that the regional transport of ozone cannot fully ex-
plain the observed concentration patterns.
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4. Discussion

Covid's overall impacts are terrible, causing death, disease, job loss,
economic loss, stress, and isolation. The societal response to Covid has
caused enormous economic changes, likely shifting patterns of activity
by people, governments, schools, companies, and industrial facilities.



Fig. 3. Robust differences (see Eq. (1)) by state and pollutant. Here, “before” is the average of weeks 4 to 14 before that state's stay-at-home order; “during” is the average of weeks 1 to 3
before and weeks 1 to 12 during that state's stay-at-home order; and, “after” is the average of weeks 1 to 20 after the end of that state's stay-at-home order. States shown in grey have no
monitors that meet selection criteria and/or did not issue a stay-at-home order. The percentage numbers (right-side of each US map) indicate overall average robust differences (units:
percentage of its IQR).
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These changes create a unique opportunity to investigate the effects
of human activity on air quality. To quantify these impacts, we analyzed
criteria air pollution data from the EPA national monitoring network.
We found that, during stay-at-home orders, levels of ozone, NO2, CO,
and PM10 were lower than expected, but the anomaly was modest
and temporary. (PM2.5 levels during stay-at-home orders were not
lower-than-expected.) The decrease for ozone, NO2, CO, and PM10

started ~3weeks prior to the stay-at-home order, and the anomaly less-
ened over time. Four weeks after the stay-at-home orders, PM10 levels
were at expected levels; five weeks after, ozone, NO2 and CO levels
were at expected levels (p>0.10). Most pollutants exhibited lower-
than-expected levels of air pollution during the Covid response. How-
ever, the modest size of the drop (substantially less than one IQR;
Table 1
Comparison of actual versus expected concentrations and D values before, during, and after st

Pollutant Before
(weeks −14 to −4)

During (weeks −3 to
stay-at-home orders)

Actual Expected Difference D value Actual Expect

PM2.5 7.04 μg/m3 6.69 μg/m3 5.1% 0.09 5.88 μg/m3 5.58 μg
Ozone 34.79 ppb 35.54 ppb −1.8% −0.10 43.01 ppb 45.49 p
NO2 25.11 ppb 25.13 ppb −0.1% −0.01 16.47 ppb 19.16 p
CO 0.55 ppm 0.51 ppm 7.4% 0.09 0.30 ppm 0.36 pp
PM10 17.60 μg/m3 14.83 μg/m3 18.6% 0.32 17.27 μg/m3 18.30 μ

a “Expected concentrations” refer to the temporally-corrected historical medians; here, they
(units: μg/m3) are 7.04 before, 5.88 during, and 7.42 after, compared to expected concentration
and 0.16 after. Those values indicate that before stay-at-home orders, year-2020 PM2.5 concent
concentrations are 0.30 μg/m3 (5.4%) higher than expected, and after stay-at-home orders yea
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i.e., a drop substantially less than typical year-to-year variability) and
the fact that the dropwas not sustained over timewere both somewhat
unexpected given the large reductions in social and economic activity
implied by “stay-at-home” orders. PM2.5 did not exhibit a drop in pollu-
tion levels, which is another unexpected finding.

Air pollution concentrations depend on a complex mixture of
sources, meteorology, and other factors. In order to isolate the effects
of societal response Covid, one must control for non-Covid-response
factors. We applied two methods to control for effects of seasonal and
longer-term patterns and meteorology. The two approaches reveal
broadly consistent conclusions. While our results reveal patterns and
trends, they do not reveal causation nor regulatory impacts; additional
research is needed to quantify the extent towhich the observed changes
ay-at-home orders.a

12 of After (weeks +1 to +20 after the removal of
stay-at-home orders)

ed Difference D value Actual Expected Difference D value

/m3 5.4% 0.10 7.42 μg/m3 6.68 μg/m3 10.0% 0.18
pb −5.3% −0.30 43.62 ppb 43.82 ppb −0.4% 0.00
pb −14.0% −0.20 14.83 ppb 14.99 ppb −1.8% −0.01
m −15.3% −0.27 0.31 ppm 0.30 ppm 3.7% 0.08
g/m3 −5.7% −0.01 26.55 μg/m3 22.66 μg/m3 17.1% 0.33

are the means of the weekly medians. Example: actual year-2020 PM2.5 concentrations
s of 6.69 before, 5.58 during, and 6.71 after; D values (unitless) are 0.09 before, 0.10 during,
rations are 0.33 μg/m3 (5.1%) higher than expected, during stay-at home orders year-2020
r-2020 concentrations are 0.74 μg/m3 (10.0%) higher than expected.
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are attributable to Covid-related changes (e.g., stay-at-home orders)
versus other factors.

The results reveal important differences among pollutants. NO2 and
CO are primary (i.e., directly-emitted) pollutants; as a result, connec-
tions between changes in activity, emissions, and concentrations are
relatively direct. In contrast, ambient PM2.5 includes both primary and
secondary (forming in the atmosphere from chemical reactions) com-
ponents. Ground-level ozone is secondary. For secondary pollutants,
the connections between activity level, emissions, and concentrations
are more complicated, and, as discussed below, reflect nonlinear atmo-
spheric chemistry and emissions. Traffic is a major source of NO2 and
CO; in contrast, emissions from many sources contribute to levels of
PM2.5, PM10, and ozone.

This paper adds to the emerging literature on the impacts of the
Covid response on air quality by looking nationally, by analyzing avail-
able in-situ measurements for several criteria pollutants, by adjusting
for random and nonrandom temporal variability (including, in the sen-
sitivity analysis, explicitly adjusting for weather), and by analyzing be-
fore, during, and after “stay at home” orders. Our results are largely
consistent with studies that examined wide-spread changes in the
United States. For example, a study examining PM2.5 and NO2 concen-
trations in 122 counties reported, for the US, a 25% decline in NO2, and
a statistically insignificant decline in PM2.5 compared to 2017–2019
levels (Berman and Ebisu, 2020). Another study found that in 20 US cit-
ies, after correcting for meteorology, NO2 concentrations were 9% - 43%
lower than in 2019 (Goldberg et al., 2020). Analyses from individual lo-
cations, cities, or areas, can reveal different, potentially larger, impacts
than the national-level trends are reported here. At a near-road moni-
toring station in Seattle, WA, concentrations of PM2.5, NO2 and CO dur-
ing Covid were 2–4% lower than pre-Covid concentrations (Xiang
et al., 2020). Data froma low-cost sensor network in Pittsburgh, PA, sug-
gest that levels of PM2.5, NO2, and CO were 30–50% lower during than
pre-Covid (Dantas et al., 2020).

Comparatively larger changes in air pollution have been reported in
other countries. For example, in Barcelona, Spain, concentrations of NO2

and black carbon were 50% lower during stay-at-home orders, but
ozone concentrations increased by 50% (Tobias et al., 2020). In Delhi,
India, measured concentrations of PM10, PM2.5, NO2, and CO were sub-
stantially lower (for PM10 and PM2.5, ~2× lower) during shelter-in-
place (Mahato and Ghosh, 2020). In three cities in China, PM2.5 and
NO2 levels in February 2020 were 30% and 61% lower than February
2017–2019 levels, respectively, but ozone levels were 14% higher than
2017–2019 levels (Xu et al., 2020). PM2.5 and ozone concentrations in
theUKduringApril 2020were not systematically different fromaverage
concentrations in 2015–2019, but NO2 concentrations were 20–80%
lower (Alfarra et al., 2020). In general, many of these studies did not
fully account for random and systematic temporal variability, for multi-
ple time-scales, as was done here.

Future research could usefully explore Covid-related changes in
emissions or in atmospheric chemistry (Henneman et al., 2016;
Seinfeld and Pandis, 2016; Thakrar et al., 2020), apply empirical model-
ing (e.g., national land use regressionmodels) to understand spatial pat-
terns in how pollution levels changed (Kim et al., 2020; Bechle et al.,
2015; Novotny et al., 2011), analyze publicly-available networks of
low-cost sensors such as PurpleAir (https://www2.purpleair.com;
Feenstra et al., 2019; Malings et al., 2020), and investigate changes to
existing inequalities in exposure to air pollution (Clark et al., 2014;
Marshall, 2008; Clark et al., 2017).

Thewide range in reported air quality changes associatedwith Covid
responses around the world is not surprising. It provides an excellent
example of thewell-recognized complexity of the relationship between
human activity, emissions, and ambient concentrations. There could be
many reasons why we do not observe large, consistent, and sustained
reductions in criteria air pollution levels across the US during stay-at-
home orders, despite the enormous social and economic changes
brought about by Covid.
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First, there is substantial variability – random and systematic –
which complicates finding a “signal” in changes in air pollution.We ex-
pect these effects would not completely hide large concentration
changes, especially given the size of our dataset.

Second, ambient concentrations depend on the activity levels and
emissions of many sources. Therefore, reducing emissions from one or
a small number of source categories may or may not yield large change
in concentrations. For example, whilemajor reductions in vehicle traffic
occured in many locations due to “stay- at- home” orders, traffic is but
one of many sources. In addition, stay-at-home orders could potentially
increase some emissions (e.g., residential wood combustion, backyard
BBQ cooking). Emissions can also nonlinearly follow activity level
(e.g., if traffic-reductions are primarily from newer, lower-emitting
cars, while older and higher-emitting vehicles preferentially stay in
use) or could be offset (e.g., if workplace electricity consumption de-
clines but household electricity consumption increases, or increases at
times-of-day when dirtier generators (coal) are more prevalent).

Third, concentrations of secondary pollutants (e.g., ozone and a large
portion of PM2.5) depend on complex and nonlinear atmospheric chem-
istry, involving, especially, NOx and volatile organic compound (VOC)
emissions (Zhao et al., 2018). NOx is a key player in the photochemical
cycle that produces ozone and is a precursor for PM2.5 nitrate formation.
For example, NOx reacts with ozone; therefore higher NOx emissions
can lead to lower ozone concentrations near the emission source, espe-
cially in urban areas. The VOC:NOx ratio influences the radical chemistry
that produces ozone and secondary organic aerosol (a major compo-
nent of PM2.5). For example, increasing VOC:NOx ratios can increase sec-
ondary organic aerosol yields, leading to increased PM2.5 concentrations
(Chan et al., 2009; Li et al., 2015; Song et al., 2005; Ng et al., 2007).
Finally, changing NOx and VOCs emissions can alter hydroxyl radical
concentrations, potentially leading to more rapid secondary PM and
ozone production (Bahreini et al., 2012). This nonlinear chemistry cre-
atesmultiple ways inwhich lower emissions can lead to higher second-
ary pollutant concentrations. An excellent example is the well-known
weekend ozone effect, whereby lower traffic emissions cause higher
weekend ozone levels (Marr and Harley, 2002). Similar phenomena
may explain the increases in ozone concentration in response to Covid
reported by some studies (Tobias et al., 2020; Mahato and Ghosh,
2020). Overall, the trends we observe are qualitatively consistent with
known atmospheric chemistry.

Finally, the effects on air quality of societal responses to Covid may
be lower in the US than in other countries, in part because of the com-
paratively cleaner air in the US (Apte et al., 2018; Goodkind et al.,
2019). For example, because vehicle tailpipe emission factors are
lower in the US than in many countries, reductions in driving, and the
resulting reductions in tailpipe emissions, may have a smaller impact
on air pollution levels for the US than for other countries.
5. Conclusion

We investigated how social and economic changes from Covid re-
sponse, including stay-at-home orders, impacted levels of criteria air
pollution, using data from hundreds of EPA monitoring stations across
the US. We used two separate methods for deriving “expected” pollu-
tion levels (robust differences; regression). Both methods control for
random and systematic variability on multiple time scales, by
monitor-week, thereby providing an appropriate measure against
which to compare observed pollution levels.

Results from both methods reveal that, during stay-at-home orders,
average PM2.5 levels were higher than expected; average ozone, NO2,
CO, and PM10 levels were slightly lower than expected. A small number
of weeks after the stay-at-home orders were issued, the concentration
anomalies ended; ozone, NO2 and CO levels returned to expected levels
and PM2.5 and PM10 levels were higher than expected. In conclusion,
PM2.5 levels have not dropped during or after stay-at-home orders;

https://www2.purpleair.com
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ozone, NO2, CO, and PM10 concentrations dropped during stay-at-home
orders but the reduction was modest and transient.
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