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ABSTRACT: There is growing evidence that ultrafine particles (UFP;
particles smaller than 100 nm) are likely more toxic than larger particles.
However, the health effects of UFP remain uncertain due in part to the lack
of large-scale population-based exposure assessment. We develop a national-
scale empirical model of particle number concentration (PNC; a measure of
UFP) using data from mobile monitoring and fixed sites across the United
States and a land-use regression (LUR) modeling framework. Traffic,
commercial land use, and urbanicity-related variables explain much of the
spatial variability of PNC (base model R2 = 0.77, RMSE = 2400 cm−3).
Model predictions are robust across a diverse set of evaluations [random 10-
fold holdout cross-validation (HCV): R2 = 0.72, RMSE = 2700 cm−3;
spatially defined HCV: R2 = 0.66, RMSE = 3000 cm−3; evaluation against an
independent data set: R2 = 0.54, RMSE = 2600 cm−3]. We apply our model
to predict PNC at ∼6 million residential census blocks in the contiguous United States. Our estimates are annual average
concentrations for 2016−2017. The predicted national census-block-level mean PNC ranges between 1800 and 26 600 cm−3

(population-weighted average: 6500 cm−3), with hotspots in cities and near highways. Our national PNC model predicts large
urban−rural, intra-, and inter-city contrasts. PNC and PM2.5 are moderately correlated at the city scale, but uncorrelated at the
regional/national scale. Our high-spatial-resolution national PNC estimates are useful for analyzing population exposure
(socioeconomic disparity, epidemiological health impact) and environmental policy and regulation.
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1. INTRODUCTION

The health effects of fine particulate matter mass (PM2.5) are
well established.1 However, uncertainty remains about what
characteristics of PM2.5, such as sources, composition, and size,
are most responsible for the observed health effects.2,3 Some
researchers have proposed that ultrafine particles (UFP;
particles smaller than 100 nm) have higher toxicity than larger
particles. There is some toxicological evidence to support this
hypothesis.4−9 Some city-scale epidemiology studies also
suggest possible UFP health effects, but outcomes are
inconsistent and inconclusive between different studies.2,10−12

A recent systematic review found evidence for adverse short-
term associations between UFP and inflammatory and
cardiovascular changes that may be at least partly independent
of other pollutants.13 However, the evidence for independent,
chronic health effects of UFP remains inconclusive or
insufficient.2,13

A major obstacle for UFP epidemiological studies is the lack
of long-term, large-spatial-scale exposure estimates.2,13−15 This
is due to a number of factors. First, exposure assessment for
UFP is hindered by the lack of routine monitoring networks.
Therefore, existing UFP epidemiological studies rely on short-
term data collection in specific cities,10,11 which lack the

potentially larger urban−rural and intercity contrasts that
national estimates may provide. Second, UFP concentrations
are highly spatially variable within cities.3,14,16−20 Therefore,
the spatial patterns of UFP will not be resolved using a
traditional national monitoring strategy of a small number (1−
5) of sites per city, usually located to capture “urban
background” locations.21−23 That approach is reasonable for
PM2.5 since intraurban differences are modest, but is unlikely
to capture the variability in UFP concentrations.16,22,24 UFP
characterization needs data on both intra- and interurban
variations.6,25 Third, previous research indicates some spatial
correlation of PM2.5 mass and UFP (R2 ∼ 0.4) at the urban
scale,26−28 which may complicate differentiating their
independent health effects.
One way to overcome some of these challenges is through

national-scale UFP concentration estimates at a high spatial
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resolution that capture intracity variation, interurban variation,
and urban−rural gradients. We develop a national model for
ambient UFP concentrations in the United States (US). Our
novel approach combines (1) highly spatially resolved mobile
measurements in three US cities to capture intraurban
variations, (2) longer-term fixed-site data from various urban
locations across the United States to characterize interurban
trends, and (3) longer-term data from rural locations to
capture urban−rural gradients. We apply an empirical
modeling approach [also known as land-use regression
(LUR)] to these data to develop the first national-scale
estimates of outdoor UFP concentrations for census blocks
across the contiguous United States. We discuss the
implications of our results for epidemiology, environmental
policy, and regulations in the United States.

2. MATERIALS AND METHODS
2.1. Ultrafine Particle Data Set. We use total particle

number concentration (PNC) as a measure of UFP.17 To
develop our empirical model, we analyzed a national PNC data
set (Figure 1 and Table S1) that consists of longer-term fixed-
site measurements from (i) 19 urban locations in 19 cities, (ii)
15 rural locations, and (iii) 4 near airport locations as well as

(iv) spatially dense intraurban mobile monitoring data from
three cities (Pittsburgh PA, Oakland CA, Baltimore, MD). We
compiled fixed-site data from the literature. Mobile monitoring
data are discussed in Presto et al.29 We briefly describe each
component below.
To characterize background levels, we compiled PNC

measurements from 15 rural locations across the United States
(Table S1). We obtained these data from the NOAA Earth
System Research Laboratories webpage (https://www.esrl.
noaa.gov/gmd/aero/net/stations.html) [Southern Great
Plains (SGP), OK; Bondville, IL; Steamboat Springs, CO;
Mt. Bachelor, OR; Cape Cod, MA; Trinidad Head, CA;
Boone, NC; Table Mt, CO], and other field campaigns
(Centreville, AL; Manitou Forest, CO; UMBS, MI; Duke
Forest, NC; Look Rock, TN; Durham, NC; Fox Chapel, PA).
To characterize interurban variability, we compiled PNC

measurements from 19 urban fixed sites in 19 cities (Table
S1): Queens NY, Long Island NY, Rochester NY, Boston MA,
Somerville MA, Minneapolis MN, Raleigh NC, Houston TX,
Blacksburg VA, Seattle WA, and nine cities in California
(Livermore, Redwood, San Pablo, Santa Rosa, Los Angeles,
Anaheim, Compton, Rubidoux, and Bakersfield).

Figure 1. Data set used for LUR model development. (A) Measurement locations are colored by the average PNC at each site. Inset city maps
show the high-spatial-resolution mobile monitoring data from Oakland, Pittsburgh, and Baltimore. (B) Distribution of PNC at fixed sites and 1 km2

grid average PNC measured with mobile monitoring in three target cities. The box shows the interquartile range; the line inside the box is the
median; whiskers indicate 5th and 95th percentiles, small gray circles show individual outliers, and the red circle represents the mean. (C)
Distribution of major land-use covariates at UFP measurement locations (118 points shown in A) and nationwide census blocks (n = 6 174 588).
Histograms (blue) show the distribution of covariates across measurement locations in 10 equally spaced bins. Cumulative frequency distribution
(CDF; red curve) shows the national census block distribution. The black circle on the red curve is the 99th percentile value of the national
distribution. Figure S6 in the Supporting Information (SI) is the extended version of panel (C). It shows the distribution of various land-use
covariates for 500 and 1000 m buffer sizes. The a1 type road is a primary road with limited access or interstate highway.
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The influence of airports on local UFP concentrations has
been reported in several studies.30−32 We compiled PNC
measurements from four near airport fixed sites located within
5 km from the airport (Table S1): Logan International Airport,
Boston, MA, Pittsburgh International Airport, Pittsburgh, PA,
and Seattle-Tacoma International Airport, Seattle, WA (two
sites).
To complement the fixed-site data, and to characterize the

intraurban spatial variability of PNC, we performed targeted
mobile sampling in three cities. Specifically, we carried out
saturation sampling (driving on every street on every day) in
multiple neighborhoods in each city and on multiple days in
each city: Oakland (20 days; 2017), Pittsburgh (13 days;
2019), and Baltimore (10 days; 2019).
2.2. Data Reduction and Quality Assurance of

Ultrafine Particle Data. Data reduction and quality
assurance methods for mobile sampling data are described in
Saha et al.16 and Presto et al.29 The same instrumentation [a
condensation particle counter (CPC),33 lower size cut of 5
nm] and sampling approach were used in all three cities. We
averaged raw mobile monitoring measurements over space and
time to determine stable mean concentrations on a 1 km2 grid,
following the approach of Shah et al.22,34,35 Briefly, we first
calculated the median concentration measured in each 1 km2

grid cell on each sampling day, and then the mean of medians
across all sampling days. Recent mobile sampling research36−38

suggests that between 7 and 15 days of repeated sampling are
needed to characterize a representative stable mean concen-
tration for PNC LUR modeling in the absence of true long-
term average measurements. Therefore, we only used grid cells
with 7 or more days of measurements (range 7−20 days) in
the modeling analysis. This inclusion criterion yielded PNC
data for 33 1 km2 grid cells in Oakland, 32 in Pittsburgh, and
15 in Baltimore.
We used a 1 km2 grid to aggregate the mobile monitoring

data because the resulting number of data points avoids
overweighting urban sites in the regression analysis. Since we
have only 15 rural sites, adding too many urban points biases
the regression toward urban locations. The resulting number of
mobile monitoring data points in each city (20−40) using a 1
km2 grid averaging is comparable to that of previous city-level
exposure studies (e.g., ESCAPE study).39,40

To investigate the influence of grid resolution on our results,
we performed a sensitivity analysis using mobile monitoring
data compiled on a 200 × 200 m2 grid.29 Figure S1 shows the
comparison of 200 × 200 m2 versus 1 km2 data; the 5th and
95th percentiles range of concentration distributions from
different cities agreed within 2−13%. For sensitivity analysis,
we randomly divided 200 × 200 m2 grid data from each city
(Oakland: 373, Pittsburgh: 219, Baltimore: 108) into nine
subsets and developed nine models using each subset from
each city, along with other fixed-site data.
Table S1 lists the collection year and temporal coverage for

fixed-site data. All of these measurements were collected using
a condensation particle counter (CPC) or scanning mobility
particle sizer (SMPS) system; the lower size cut is ∼5−10 nm
in most cases (Table S1). About 60% of fixed sites (22 out of
38) have at least 1 year of data, and only four sites have 1
month of data (the minimum criteria for inclusion in the data
set). We computed the annual average (or the average of all
available data) from each site for model building.
Our LUR model predicted annual average outdoor UFP

concentrations in 2016−2017. Therefore, if available, we used

data from 2016 to 2017 for model development (33% of the
fixed-site data are from that year). However, if not available, we
used data from other years as well, but not older than 2009.
For data not collected in 2016−2017 and/or collected for only
part of the year, we applied two temporal correction factors:
(i) annual factor and (ii) seasonal factor. The annual factors
are applied to the data collected in a year other than 2016−
2017. The seasonal factors are applied to data that do not have
coverage throughout a full year.
Annual correction factors were applied to data from 25 fixed

sites and mobile data from Pittsburgh (2019) and Baltimore
(2019). We derived annual correction factors by fitting long-
term (2006−2016) annual average PNC concentrations
measured at four sites as a function of years (Rural: SGP,
OK; Bondville, IL; Urban: Rochester NY; and Boston MA)
(Figure S2). The fit indicates a 2% decrease in annual average
concentrations per year. The correction factors vary by year,
ranging between 0.89 and 1.06 (for, 2016−2017, AF = 1;
before 2016, AF < 1; after 2017, AF > 1).
Seasonal factors are applied to data from 14 fixed sites and

mobile sampling data from three cities. We derived seasonal
correction factors by fitting the ratios of monthly-to-annual-
average measured PNC data from 10 sites (seven urban and
three rural sites) (Figure S3). We used the average of ratios
from three consecutive years (2014−2016) to get a stable
profile. The seasonal correction factors varied from 0.94 and
1.09, with higher PNC in the winter than in the summer
months.
Annual and seasonal correction factors are small compared

to a factor of 20 spatial variations in measured PNC (Figure
1B).
We also evaluated a number of other factors that may

influence the robustness of PNC data set, including: (i)
differences in instrumental size cut, (ii) mobile versus
stationary sampling, and (iii) impact of new particle formation
(nucleation) events. Overall, the uncertainty associated with
each of these factors is relatively small (roughly within ±15%)
(see Figures S4 and S5) compared to the factor of 20 spatial
variations in measured PNC (∼1000−20 000 cm−3, Figure 1).
Furthermore, each of these issues likely impacts only a small
fraction of data. Each of these factors is briefly discussed below.
One potential concern is differences in instrument size cut.

Mobile monitoring was performed using the same CPC with a
5 nm lower size cut; therefore, differences in instrumental size
cut is not an issue for this data set. However, it is a concern for
the fixed-site data, which used different instruments with size
cuts ranging from 4 to 20 nm (Table S1). Figure S4 shows size
distribution data from three sites: a rural background (Look
Rock, TN), an urban background (Carnegie Mellon
University, Pittsburgh, PA), and a city center (Downtown,
Pittsburgh, PA). The fractions of total long-term average PNC
below 20 nm at these sites are 3, 11, and 44%, respectively.
This suggests that long-term average PNC measured at rural
and urban background locations are not strongly influenced by
differences in instrument size cut (biases less than 11%).
However, differences in size cut can be more significant in
downtown locations (up to almost a factor of 2). Fortunately,
all of the urban core PNC data used in our analysis is from
mobile monitoring, which used the same instrument with a 5
nm size cut. Therefore, our urban core data should not be
systematically biased. Finally, even a worst-case scenario of a
factor of 2 bias in downtown locations is still much smaller
than the measured PNC variability (Figure 1B). No
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corrections were made to the data for differences in instrument
size cut.
Another potential concern is systematic biases between

mobile and fixed-site sampling. A comparison of our Pittsburgh
mobile data with an independent PNC data set from 30 fixed
locations in Pittsburgh16 does not show any systematic biases
between mobile and fixed-site data (Figure S5). Previous
studies that have reported differences only considered short-
term data collected over a limited number of repeated
days.41,42

Finally, new particle formation or nucleation can create
intermittent bursts in PNC. Nucleation is generally a regional
phenomenon43 and can vary seasonally. Therefore, the
previously discussed seasonal correction factors should account
for the effects of nucleation at any site with less than 1 year of
data (Table S1). In addition, previous studies have shown that
the contribution of freshly nucleated particles to the long-term
average PNC at the urban background locations is relatively
small (5−10%).44,45
2.3. Land-Use Regression Model Development. We

combined the PNC data set (Figure 1) with a set of national
land-use covariates (Table S2) to develop a land-use regression
(LUR) model to predict annual average PNC for 2016−2017
at census blocks across the continental United States. Two
things are critically important for LUR model development and
predictions: (1) the measurement data used for model building
should be representative of long-term average concentra-
tions;46 (2) the measurement locations used for model
building should span the distribution of land-use covariates
across the prediction domain.
The representativeness of our data set with respect to long-

term averages and temporal corrections are discussed in
Section 2.2. To assess the representativeness of our measure-
ment locations, we compared the distribution of land-use
covariates at our measurement locations to nationwide census
blocks (Figures 1C and S6). The distribution of covariates at
measurement locations spans the 0−99th percentile ranges of
national distributions in all cases. This demonstrates the
representativeness of sampling locations for developing a
national model. Furthermore, when applying the model, we did
not extrapolate it beyond the covariate values for the
measurement locations used for model building (see Section
2.5).
Table S2 lists the covariates used for LUR model

development. Land-use variables were compiled from various
sources (e.g., NEI Database, TeleAtlas, US Census Bureau,
USGS, National Landcover and elevation data, Bureau of
Transportation); detailed information is available in Kim et
al.47 Variables include traffic, population, land-use type
(commercial, transportation, industrial, residential, rural),
surface imperviousness, latitude, longitude, elevation, restau-
rant count, distance from an airport, criteria pollutant
emissions, and satellite air pollution estimates. Imperviousness
refers to the percentage of area that is covered with an
impervious surface, such as pavement or concrete. Each
covariate was calculated for different buffer sizes from 100 m to
15 km at the centroid of each census block across the
contiguous United States. Since our mobile PNC data from
three cities were aggregated over a 1 km2 grid, we averaged the
covariate data over each grid cell and then assigned that value
to the grid-cell center. For the fixed sites, we assigned the
nearest census block’s covariate data to the measurement
location.

We used a stepwise forward selection regression method for
the LUR model building, similar to the ESCAPE protocol.36,39

The model selects variables one at a time, starting with the
variable that provides the highest adjusted-R2 (coefficient of
determination) in univariate linear regressions. The variable
selection process continues until a newly added variable
improves the overall model R2 by less than 0.01. Among the
selected variables, we remove those with p values (predictor
significance) greater than 0.05. Following the ESCAPE
protocol, we also examined the Cook’s D for influential
observations, variance inflation factors (VIF) for collinearity,
and Moran’s I for spatial autocorrelation. We describe the
model performance in terms of adjusted-R2, root-mean-square
error (RMSE), and normalized mean bias (NMB).

2.4. Model Evaluation. To characterize model perform-
ance, we performed three types of model evaluation: (i)
traditional 10-fold cross-validation (CV) by randomly dividing
the 118 measurement locations into 10 groups, (ii) defined
spatial holdout cross-validation (similar to spatial clustered
holdout48), and (iii) evaluation against a fully independent
data set. For each evaluation, we computed performance
statistics (R2, RMSE, NMB) by comparing predicted versus
measured concentrations at the holdout locations. We
compared these statistics to the performance of the base
model, developed by fitting the entire input data set.
For spatial clustered holdout, we remove specific subsets of

the measurement data (e.g., all Oakland data), derive an LUR
model using the remaining data, and then apply the model to
predict concentrations at the holdout locations. This approach
is a more stringent test than the traditional random CV47,48

because it more rigorously tests the ability of the model to
extrapolate in space. We performed seven spatial clustered
holdouts. These include holding out the data from (i)
Oakland, (ii) Pittsburgh, (iii) Baltimore, (iv) all other (fixed)
urban sites, (v) near airport sites, (vi) half of the rural sites, and
(vii) the other half of the rural sites. We performed rural
holdout by randomly dividing all of the rural sites into two
groups. We need to include some rural sites in each model to
capture the rural background.
Finally, we evaluated model performance against a fully

independent UFP data set from Pittsburgh. This data set is
described in Saha et al.16 It was collected by multiweek
continuous PNC measurements in the winter of 2017 and
2018 at 30 fixed sites in Pittsburgh that span a wide range of
urban land-use attributes. It is completely independent of the
Pittsburgh mobile data set used for model development.

2.5. Predicted National Concentration Surface. We
applied the LUR model to predict census block-level PNC
across the contiguous United States. The census block is the
smallest geographic unit used by the US Census Bureau
(average population: 50, 5−95th percentile range: 2−174). In
urban areas, blocks vary in size and shape but typically cover an
area of ∼0.01 km2. We only made predictions at census blocks
with predictor variable values within the 1st and 99th
percentile range of the measurement data set used for model
development. This means that model predictions do not
extrapolate in covariate space. After applying this constraint,
the model predicts outdoor concentration at 6 056 703
residential census block centroids in the contiguous Unites
States, which corresponds to 98.6% of the population. This
constraint censors predictions for only 2% of census blocks
(1.4% of the population) in the contiguous United States.
Censored census blocks are generally in extremely urban (e.g.,
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some blocks in Manhattan of New York City) and rural
locations.

3. RESULTS

3.1. Spatial Variability in Measured Particle Number
Concentrations. Figure 1 summarizes the PNC data used for
LUR model development. The measured PNC ranges between
∼1000 and 20 000 cm−3 with substantial variability between
rural and urban, and within and between urban locations. The
intraurban variability ranges from ∼5000 to 20 000 cm−3. The
average urban PNC is ∼3× larger than average rural PNC
(rural: ∼3000 cm−3, urban: ∼10 000 cm−3). A large amount of
variably exists within urban areas. For example, the mobile
monitoring data show a factor of 3−4 in intracity PNC (ratio
of 95th and 5th percentiles). In each mobile monitoring city
(Figure 1), PNC is generally higher in downtown and
commercial areas, indicating the importance of local sources
that drive the intracity spatial variation of PNC in urban areas.
The spatial variability in PNC is generally greater within- than
between-city in the measured data set.
3.2. Land-Use Regression Model for Particle Number

Concentration. Figure 2 summarizes the LUR development
and evaluation results. Model parameters and performance
metrics are listed in Table S3.
The base LUR model has an R2 of 0.77 and RMSE of 2400

cm−3 (Figure 2A). The stepwise linear regression selected
traffic and urbanicity covariates to explain the spatial variability
in PNC. Specifically, the model uses five predictor variables:
(i) impervious land surface within a 750 m buffer, (ii) inverse
distance from the nearest highway, (iii) length of highway and
city roads within a 3000 m buffer, (iv) commercial land-use
area within a 1500 m buffer, and (v) residential land-use area

within a 15 000 m buffer. The base LUR model has an
intercept of 1800 cm−3.
The selected variables are physically meaningful. For

example, traffic is a known major source for PNC.49

Commercial land-use and impervious surface are measures of
urbanicity. PNC is higher in urban, commercial, and residential
areas because of traffic and other urban sources like
commercial and residential cooking. Many city-scale PNC
LUR models identify similar land-use predictors.50−64 There
are likely other localized sources that are not accounted for in
our model (as is true in any empirical LUR model).
Several recent field measurements indicate that aircraft

operations can be an important source of ultrafine particles
near very large airports.31,65 Our model development included
PNC data from four near airport sites. The distance from the
nearest airport was included as a potential predictor variable.
However, the stepwise regression did not select this parameter
as a significant predictor variable. The impact of airports on
ultrafine concentration is generally a localized phenomenon
that depends on prevailing winds, flight volume, flight patterns,
etc. It is not clear how airports will significantly impact PNC
spatial patterns at the national level. Our defined holdout
cross-validation (Figure 2C, discussed in Section 3.3) indicates
that a model developed holding out all of the near airport data
can reasonably predict PNC at these sites.
Our model R2 is substantially better than most published

city-scale PNC LUR models,37,50−59,61−64 which generally have
an R2 of <0.5. Many city-scale models are derived from short-
term stationary or mobile sampling with a limited amount of
data (∼1−3 days) per site. In comparison, our model is based
on much longer time-averaged data. Since LUR modeling
assumes representative mean concentrations,46 the better

Figure 2.Model development and evaluation. (A) Base LUR model performance. (B) Random 10-folds cross-validation performance. (C) Spatially
defined holdout cross-validation performance. (D) Independent evaluation of the base model against a 30-site stationary CPC network in
Pittsburgh.
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statistical performance of our model suggests that our data
represent long-term average concentrations. A few city-scale
models predict concentrations at finer temporal scales (e.g.,
hourly).66 It is to be expected that the finer temporal
resolution models might have lower R2 compared to our
annual average models.
3.3. Model Cross-Validation and Independent Eval-

uation. The three different distinct model-measurement
evaluations (Figure 2B−D) yield a model performance R2 of
0.54−0.72 and RMSE of 2600−3000 cm−3. This level of
performance is better than many published city-scale LUR
models.50−64

First, conventional 10-fold cross-validation (CV) has an R2

and RMSE of 0.72 and 2700 cm−3, respectively (Figure 2B),
which are similar to the base model (R2 = 0.77; RMSE = 2400
cm−3). In addition, independent variables selected by the
stepwise regression for CV models (traffic and urbanicity
related variables; see Table S3) are similar to the base model.
This indicates that the model fit is not sensitive to random
subsets of the data.
The spatial clustered holdout provides a more robust test of

the ability to model to extrapolate in space. There are only
modest differences between spatially clustered holdout CV
(i.e., holdout data from individual cities, other urban or rural
sites) (R2 = 0.66, RMSE = 3000 cm−3: Figure 2C) and the base
model (R2 = 0.77; RMSE = 2400 cm−3). The stepwise
regression selects similar independent variables for clustered
CV models (Table S3) as for the base model. This indicates
that the model provides robust extrapolations in space.
Finally, the model was evaluated against a fully independent

data set (not used in any of the model building; Figure 2D)
collected in Pittsburgh. This evaluation yields an R2 = 0.54,
RMSE = 2600 cm−3, and normalized mean bias (NMB) =
−8%. This level of performance against a completely
independent data set is better than model building/cross-
validation performance of many published city-scale LUR
models.50−64

3.4. Predicted National Particle Number Concen-
tration Surface. Figure 3 shows census block PNC
predictions across the contiguous United States for 2016/
2017. To our knowledge, this is the first high-spatial-resolution
national PNC estimate in the United States. The predicted

national census-block PNC range is between 1800 and 26 600
cm−3. The national population-weighted PNC is ∼6500 cm−3.
This is lower than the typical urban PNC (∼10 000 cm−3,
Figure 1), but about 3 times the rural background (2000−3000
cm−3). Predicted hotspots are in big cities and near highways.
Using census block predictions, we estimated the MSA

(Metropolitan Statistical Area) and state-level population-
weighted average PNC. An MSA usually consists of one big
city (minimum population: 50 000) with multiple surrounding
counties, townships, and suburban areas. MSA-average PNC
vary between 3000 and 10 900 cm−3 (mean = 7700 cm−3, n =
363); state-level average PNC vary between 3500 and 8600
cm−3 (mean = 5800 cm−3, n = 48). PNC are higher in high-
population-density areas of the mid-Atlantic, some parts of the
Midwest, and in California. Thirteen states have PNC greater
than the national average.
We compare our predicted national PNC surface with the

national PM2.5 and NO2 estimates from Kim et al.47 (see
Figures S7 and S8). The spatial correlation between the
national PNC and PM2.5 surfaces is weak (R

2 values of 0.23 for
nationwide census block-level concentrations; 0.03 for MSA-
average concentrations; 0.05 for state-average concentrations;
and 0.37 ± 0.20 for intracity (population > 100 000, n = 267)).
The national PNC and NO2 concentration surfaces are
spatially correlated (R2 values of 0.74 for nationwide census
block-level concentrations; 0.64 for MSA-average; 0.76 for
state-average; and 0.71 ± 0.15 for intracity (population > 100
000, n = 267)).
PNC and NO2 are spatially correlated because traffic is an

important source of both pollutants.2 The moderate intracity
PNC-PM2.5 spatial correlation (e.g., average of 267 cities, R2 =
0.37) is due to similar traffic and combustion-related sources
driving intracity gradients of both pollutants.26,27 However, as
these urban emissions are transported over suburban and rural
areas on a timescale of several days, the PNC reduces due to
dispersion and coagulation and PM2.5 mass increases due to
secondary formation. This reduces the spatial correlation
between PNC and PM2.5 at the regional/national scale.

3.5. Intra- and Intercity Variations in Particle Number
Concentrations. In this section, we use our predicted census-
block-level PNC to investigate the intra- and intercity spatial
patterns in PNC across the United States. First, to illustrate a

Figure 3. Census block PNC predictions across the contiguous United States. The color scale is in a log scale.
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typical spatial pattern of PNC over a metro area, we show the
data from Pittsburgh MSA as an example (Figure 4). Then, we
examine data from all 267 US cities with a population > 100
000 to investigate the intra- and intercity spatial variations in
PNC across the United States (Figure 5).

Figure 4A shows the zoom-in map of PNC over Pittsburgh
MSA. Within the Pittsburgh MSA, PNC hotspots are in the
city center and densely populated areas. The predicted PNC
gradually decreases as one moves away from the city center
(Figure 4B). For the Pittsburgh MSA, the background (defined
as the fifth percentile of MSA-wide concentrations) PNC is
2260 cm−3, the city-average PNC is 11 000 cm−3, and the
intracity range (1st−99th percentile) is 7300−17 300 cm−3.
Within the city of Pittsburgh, PNC varies by a factor of 2.5
(ratio of 99th and 1st percentile). The city background PNC is
(7000−8000 cm−3) about 2−4 times higher than the suburban
and rural PNC in this MSA (2000−4000 cm−3).
Figure 5 shows that these trends shown in Pittsburgh are

consistent across the United States. It summarizes city average,
MSA background, and intracity PNC for all 267 US cities with
a population greater than 100 000. To provide context for
results, we compare PNC with PM2.5 mass concentrations in

these cities. PM2.5 data are annual average estimates in 2015
from Kim et al.47 Again the PNC are annual average estimates
in 2016−2017.
The city-average PNC varies between 5000 and 14 000 cm−3

across the 267 cities included in the analysis. This corresponds
to a factor of 3 intercity variability. The city-average PNC is a
factor of 2−4 higher than the MSA background levels (2000−
4000 cm−3). The city-average PNC is greater than 10 000
cm−3 in 63 cities, mostly big cities in California (CA: 25 cities),
Northeast (NY: 5, NJ: 3, MA: 3, PA: 3), and Midwest.
Within a city, concentrations vary by a factor of 2−6 (ratio

of 99th and 1st percentiles). The intracity variation is typically
greater in a city with a larger land area (Figure S9). This is
because a city with a larger land area likely has more dynamic
land-use patterns (e.g., less-polluted suburban areas, more-
polluted downtown/city center).
Compared to PNC, the intracity variations in PM2.5 mass

concentrations are substantially smaller, varying between 1.2
and 1.6 (ratio of 99th and 1st percentile). However, there are
still large intercity variations in PM2.5 mass (5−12 μg m−3).
The factor of 2.4 intercity variations in PM2.5 mass is
comparable to the intercity variations of PNC (a factor of 3).
While both PNC and PM2.5 show a large intercity variation,

the factors driving these patterns are likely different. For PM2.5,
intercity differences are likely due to secondary PM2.5
formation. In the southeast, this is mainly (biogenic)
secondary organic aerosol.67 In the Midwest and northeast, it
is primarily secondary inorganic aerosol (sulfate).68 On the
other hand, the predicted intercity variations in PNC are
driven by primary sources (e.g., traffic, urbanicity, commercial,
and residential land use). The city-average values of these
predictor variables are higher in cities with higher city-average
PNC, as expected (Figure S10).

3.6. Robustness of Predicted Particle Number
Concentrations. A challenge for UFP exposure assessment
is the lack of data. To overcome this limitation, we compiled
measured PNC data from multiple sources. Potential
consistency issues associated with combining data from
different studies are discussed in Section 2.2. The national
model is based on data from 118 locations. This raises
concerns about whether there is enough data for building a
national model and the representativeness and quality of these
data. However, previous studies36,38,46 demonstrate that the
distribution of land-use covariates across the measurement
locations is more important than the absolute number of sites.
Beyond a certain number of locations that ensure spatial
variability, additional sites with similar land-use variables may
not add much additional value for LUR model development.
The distributions of land-use covariates at our sampling
locations basically span the entire range (0−99th percentile, at
least) of the national covariate distribution (Figures 1C and
S6). Therefore, our measurement locations provide a
representative data set for national model development.
Our model explains about 77% of spatial variability of PNC

concentrations measured at 118 locations using five predictor
variables. Therefore, the model is not overfit. In addition, the
model predictor variables are physically meaningful. Finally,
there is strong model performance across different cross
validations. In almost all cases, predicted PNC surfaces using
various cross-validation (random 10-folds, defined spatial
holdouts; Figure S11 and Table S3) and sensitivity analysis
(models using a subset of 200 ×200 m2 intracity data; Figure
S12 and Table S4) agreed within 15% of the base model. This

Figure 4. (A) Predicted PNC surface over Pittsburgh Metropolitan
Statistical Area (MSA; FIPS Code 38300). (B) Transect profile that
passes through the city center (downtown Pittsburgh) shows the
distribution of PNC along the transect line (1−7). The color scale on
panel (B) applies to both panels (A) and (B).
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fact, combined with the relatively high quality of the model fit
(see the Section 3.3), provides confidence that this data set
and the resulting model provide a reasonable representation of
long-term (∼annual) average PNC.
Our predicted PNC variability (1800−26 000 cm−3) is likely

a conservative estimate of the actual spatial variability. This is a
characteristic of LUR models, in general. Since we do not
extrapolate in covariate space beyond the data set used for
model building, we do not have predictions in some highly
urbanized areas (e.g., extremely high-population-density areas
in Manhattan). Concentrations in these areas may be larger
than our predicted range. Our LUR model has an intercept of
∼1800 cm−3. Therefore, the predicted concentration in rural
areas will always be greater than 1800 cm−3. However, data
from rural sites indicate PNC in remote areas can be as low as
1000 cm−3 (Figure 1). In general, our model overpredicts in
some rural areas and underpredicts in high source areas (a
typical limitation of any national LUR model).

4.0. DISCUSSION
Our model provides high-spatial-resolution (census block-
level) national estimates of outdoor PNC. It predicts large
urban−rural, intra-, and intercity contrasts in PNC. Our
analysis indicates that PNC and PM2.5 are moderately
correlated at the city scales but uncorrelated at the regional
and national scale. These high-spatial-resolution estimates are
useful for population-based exposure analysis (e.g., socio-
economic disparity analysis of air pollution exposure,
epidemiological health impact analysis) and environmental
policy analysis (e.g., spatial patterns and hotspots, air pollution
regulation).
Due to the lack of large-spatial-scale exposure estimates,

previous PNC epidemiological studies have only considered
data from a single city or urbanized area.10−12 The
independent effects of PNC from PM2.5 remain inconclusive
in these studies. Since PNC and PM2.5 are uncorrelated at the
national scale, national-scale epidemiological studies may have
more power to differentiate the independent effects of PNC
from PM2.5. Due to different spatial patterns, socioeconomic

disparities to PNC versus PM2.5 exposures are likely to be
different.
Most large-scale population-based exposure studies are

based on outdoor concentration estimates. Our model
provides outdoor estimates of PNC. However, personal
exposure can be different than outdoor concentrations.
Exposure depends on where people spend time and varies
between indoor and outdoor environments.69−71 The indoor−
outdoor contrast is much more critical for PNC than PM2.5
mass concentrations.72 Therefore, caution should be taken
when interpreting exposure analysis results (e.g., epidemio-
logical health analysis) applying outdoor concentration
estimates.
The distinct spatial pattern of PNC versus PM2.5 has

implications for environmental policy and regulation. Current
US regulations target PM2.5 but not PNC. The intracity spatial
distributions of PNC and PM2.5 are very different, which
suggests that regulation targeting sources of PM2.5 mass may
not reduce the PNC. For example, reducing secondary PM2.5 is
important for reducing PM2.5 mass, but PNC is strongly related
to traffic and urban sources. Therefore, regulations focused on
traffic and urban air pollution sources are likely needed to
reduce PNC.
Currently, a scarcity of monitoring data is a major challenge

for national-scale ultrafine exposure assessment. The develop-
ment of a high-spatial-density monitoring network over larger
geographical areas is one solution for overcoming the data
limitation. However, this strategy is complicated by the high
cost of monitoring and the lack of regulatory requirements.
Our results demonstrate that a hybrid monitoring approach
that combines fixed sites and mobile data can be used to
overcome the lack of routine monitoring data for the
development of national-scale UFP concentration estimates.
Our model provides national estimates for a single point in

time (2016−2017). However, time-series data are needed to
allow for longitudinal exposure studies. Our results suggest that
a hybrid long-term monitoring configuration could provide
high-spatial-resolution concentration estimates in the United
States. For example, such a network could include about 50

Figure 5. Intra- and intercity spatial variations of PNC and PM2.5 in 267 US cities with a population > 100 000. Cities are grouped by region;
within a region, cities are rank-ordered by city-average PNC (panel A) and PM2.5 (panel B). (A, B: Lower): The MSA background (blue) is the
fifth percentile of (census block-level) concentrations within an MSA boundary. City mean (orange dot) is the arithmetic mean of (census block
level) concentrations within a city boundary. (A, B: middle): Maps show the spatial distribution of city-average concentrations. (A, B: Upper): Box-
whisker plots show intracity variations in each city using census block-level concentrations within the city boundary (box (dark black): interquartile
range, whisker: 1st and 99th percentile range, red dot: city mean). The location of Pittsburgh (for which analysis is shown in Figure 4) is marked by
“PGH” on panel (A).
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fixed sites at rural (20 sites) and urban (30 sites) background
locations to capture the urban−rural and intercity variations
and well-designed mobile sampling in three to five cities to
capture the high-spatial-resolution intraurban spatial variability.
Data at the selected locations need to be collected to
characterize long-term (annual) average concentrations.
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