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ABSTRACT: National-scale empirical models of air pollution
(e.g., Land Use Regression) rely on predictor variables (e.g.,
population density, land cover) at different geographic scales.
These models typically lack microscale variables (e.g., street level),
which may improve prediction with fine-spatial gradients. We
developed microscale variables of the urban environment including
Point of Interest (POI) data, Google Street View (GSV) imagery,
and satellite-based measures of urban form. We developed United
States national models for six criteria pollutants (NO2, PM2.5, O3,
CO, PM10, SO2) using various modeling approaches: Stepwise
Regression + kriging (SW-K), Partial Least Squares + kriging
(PLS-K), and Machine Learning + kriging (ML-K). We compared
predictor variables (e.g., traditional vs microscale) and emerging
modeling approaches (ML-K) to well-established approaches (i.e., traditional variables in a PLS-K or SW-K framework). We found
that combined predictor variables (traditional + microscale) in the ML-K models outperformed the well-established approaches (10-
fold spatial cross-validation (CV) R2 increased 0.02−0.42 [average: 0.19] among six criteria pollutants). Comparing all model types
using microscale variables to models with traditional variables, the performance is similar (average difference of 10-fold spatial CV R2

= 0.05) suggesting microscale variables are a suitable substitute for traditional variables. ML-K and microscale variables show
promise for improving national empirical models.
KEYWORDS: Empirical models, street-level features, urban form, exposure assessment, machine learning

1. INTRODUCTION

Ambient air pollution contains a mixture of particles and gases,
many of which have adverse effects on human health.1,2 To
assess air-quality patterns at unmonitored locations, empirical
modeling (earlier name: land use regression [LUR]) is a well-
established method that is based on the correlation of
monitoring data with predictor variables (e.g., land use and
geographic factors).3,4 Developing LUR models with an
improved efficiency and spatial resolution is an important
goal for improving the exposure assessment and understanding
issues of health impacts,5 health disparities,6 environmental
justice,7 and urban planning.8

While there is a growing number of studies that develop
empirical models for large geographies (e.g., national),
traditional predictor variables (e.g., traffic intensity, land use
types, and population dynamics) have limitations. For example,
variables tabulated within Census geographies9−11 may suffer
from issues like the modifiable areal unit problem.12 Variables
assembled using data developed by administrative sources may
miss local information,13 making it difficult to generalize LUR
models across regions.14 Standardized land use (e.g., grid-
based land cover data) and traffic data developed by federal

agencies may capture regional air pollution emission sources
but likely do not capture many local emission sources or
features that modify air pollution dispersion.15 This is partly
because the process by which they are developed is slow, and
they serve administrative needs that do not necessarily align
with goals of air-quality modeling.12 Data available at the
microscale (e.g., street level) through emerging data science
(e.g., data mining) and open-access data platforms may help
address these issues.16,17

Google Point of Interest (POI) data have the potential to
improve an empirical-model performance by capturing street-
level attributes (e.g., restaurants, gas stations) related to air
quality.18 Similarly, Google Street View (GSV) imagery could
provide information on the street-level built environment (e.g.,
greenness, infrastructure, sky view factor)19−21 for modeling air
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pollution.22,23 A newly developed satellite-based urban form
database (Local Climate Zones [LCZ]) that classifies built and
natural environments based on urban morphology (e.g., street
configuration, building heights) and climate-related proper-
ties24,25 may also be helpful in air-quality modeling.26 While
these microscale variables provide a consistent way of
capturing local features across various regions, questions
remain as to whether they can be used to improve empirical
models for large geographies.
The inclusion of microscale predictor variables and tradi-

tional LUR predictor variables at multiple spatial scales may
require more flexible modeling approaches. Traditional LUR
models employ a stepwise regression approach22,27 or hybrid
modeling framework (e.g., partial least-squares in a kriging
framework [hereafter PLS-K])15 as well as many others (e.g.,
generalized additive model).28,29 Emerging air-quality model-
ing studies report that machine learning (ML)-based models
(e.g., random forest, neural network) allow for processing large
data inputs with high predictive power and faster processing
time.30−33 An understudied topic is how ML-based approaches
could be leveraged along with the microscale predictor
variables to develop national LUR models.
In this study, we develop national LUR models to predict

annual average concentrations of six criteria pollutants (i.e.,
NO2, O3, PM2.5, CO, PM10, and SO2) in the contiguous United
States based on regulatory monitor measurements. We
compare LUR model performance using (1) different sets of
predictor variables (i.e., traditional, microscale, and combined)
and (2) different modeling approaches (i.e., traditional vs ML-
based). We define traditional variables as including institu-
tional data sets (e.g., Census-based geographic variables,

satellite-based land cover data) and satellite-based air pollution
estimates used in previous national models.15 We develop a set
of microscale variables that includes destinations derived from
Google POI data, street-level built environment features for
GSV imagery, and measures of urban form and morphology
based on estimates of LCZs.24 We compare combinations of
predictor variables (e.g., traditional vs microscale vs a
combination of all variables) and various established (Stepwise
Regression + kriging [hereafter SW-K], PLS-K) and emerging
(Machine Learning + kriging [hereafter ML-K]) modeling
approaches. We focus our comparison on how emerging
modeling approaches (ML-K) coupled with new microscale
variables compare to well-established modeling approaches
(e.g., SW-K or PLS-K with traditional variables). Our
overarching goal is to evaluate whether microscale variables
and ML approaches can be leveraged to improve empirical
models.

2. MATERIALS AND METHODS

2.1. Regulatory Monitoring Data. We followed a
previously published national air-quality modeling study and
calculated annual average concentrations of criteria pollutants
(i.e., NO2, O3, PM2.5, CO, PM10, SO2) in year 2015 based on
the U.S. Environmental Protection Agency (EPA) Air Quality
System (AQS) monitoring locations.15 All concentrations
(except O3) were annualized based on monitors with (1) at
least 18 h of valid measurements per day, (2) at least 244 d per
year, at least 61 d if reporting measurements each 3 d, or at
least 41 d if reporting measurements each 6 d, and (3) no
more than 45 consecutive days with no measurements. The
concentrations of O3 were annualized using the daily maximum

Table 1. Candidate Predictor Variables Assembled for Developing LUR Models

variable scenario

combined microscale traditional
variable
category

variable
name variable type

spatial
resolution description data sourceb

X X Geographica Traffic Length/density in
buffer (km)

0.05−15
km

Any road, truck route, intersections,
etc.

TeleAtlas

X X Population Count in buffer Block
group

Population in block groups (0.5−3
km)

US Census

X X Land use/
land cover

Area in buffer (%) 30 m Built land, open space, agricultural
land, etc. (0.05−15 km)

NLCD

X X Sources Length in buffer (m) Point Distance to the nearest source (e.g.,
railroad, airport)

NEI

X X Emissions Point in buffer (ton) Point Sum of site-specific facility emissions
(3−30 km)

NEI

X X Vegetation Area in buffer 30 m Normalized difference vegetation
index (0.5−10 km)

University of
Maryland

X X Impervious Area in buffer (%) 30 m Impervious surface value (0.05−5
km)

NLCD

X X Elevation Value 30 m Elevation above sea levels; counts of
points above or below a threshold
(1−5 km)

USGS NED

X X X Satelliteb Air pollution
estimates

Column abundance
or surface (μg/m3
or ppb)

10−25 km Satellite-based air pollution estimates
(NO2, SO2, CO, HCHO, PM2.5)

Multiple
sourcesb

X X POIb Point of
interest

Count in buffer Point 90 categories of POI (e.g., gas station,
restaurant)

Google

X X GSVb Google
street view

Object pixel (%) Point 57 categories of ambient GSV-related
features (e.g., tree, grass, person,
building)

Google

X X LCZb Local
climate
zones

Counts in buffer 100 m 15 categories of LCZ (e.g., compact
high-rise, dense trees)

Demuzere et
al., 2020

aA detailed description can be found in the Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air) Database (Kim et al., 2020). bA
detailed description is in the Supporting Information.
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of the 8 h moving average at monitors with at least 18 h/d
during the ozone season (i.e., May to September). All the other
pollutants were based on a 24 h daily mean. To meet the
normality assumption for linear models, concentrations were
transformed by taking the square root following a previous
study.15

2.2. Predictor Variables for LUR Modeling. We
assembled multiple categories of candidate predictor variables
for developing LUR models (Table 1) with the goal of
exploring how different variable inputs impact the model
performance. Generally, we used three sets of variable inputs:
traditional only (i.e., geographic and satellite estimates of air
quality), microscale only (i.e., microscale variables [POI, GSV,
and LCZ] and satellite estimates of air quality), and combined
(all candidate variables). We included satellite estimates of air
quality in all models, since these variables have been shown to
be important in several studies13,15,34 and are available
consistently across the U.S. While the traditional variables
used in this study may include geographic and land use
information at small spatial scales (e.g., road lengths in small
buffers), we categorized all commonly used covariates as
traditional variables.15 We categorized POI, GSV, and LCZ as
microscale variables, since these new variables were designed
to capture street-level and neighborhood information.
2.2.1. Geographic Variables. We used the same geographic

variables used in a previous study including eight categories of
covariates (e.g., traffic, population, land use/land cover, and
vegetation).15 The variables were calculated and tabulated as
count, length, and area within different buffers according to
different data types, since it was unclear which size of buffers
best represents each variable. This process resulted in ∼360
geographic variables for an LUR model development (Tables 1
and S1). Detailed data processing and variable calculation
procedures are available elsewhere.15

2.2.2. Satellite-Based Estimates of Air Pollution. The
annual average estimates of satellite-based air pollution
concentrations (i.e., column abundance [atmospheric trace
gas in the vertical column] or surface [ground-level estimates])
for NO2, PM2.5, SO2, and CO were obtained from different
satellite products and data sets (e.g., aerosol optical depth
[AOD], ozone monitoring instrument [OMI]; some estimates
were processed using chemical transport models).35−37 The
data for HCHO (formaldehyde) were a 12-year average
(2005−2016) rather than annual average (Table S2). The
resolution of these gridded satellite-based estimates varied
(NO2, PM2.5, and HCHO: 0.1° × 0.1°; SO2 and CO: 0.25° ×
0.25°). The satellite-based estimates were assigned to the grid
where each regulatory monitor was located.
2.2.3. Google Point of Interest (POI). To explore new/

alternative land use data sets, we web-scraped Google POI
from the Google Places application programming interface
(API) that returns all point-based locations of interest within a
specified buffer. There are 90 POI categories, and we collected
POI data at 5 buffers (100m, 250m, 500m, 750m, 1000m)
resulting in 450 total variables (Table S3). In general, the POI
categories represent locations that might not be included in
other data sets, for example, specific local businesses (e.g., gas
stations, restaurants) that might have direct emissions. More
importantly, the POI data may serve as a uniform and localized
land use proxy for tracking changes over time and assessing air-
quality impacts uniformly across administrative boundaries,
allowing for more generalizable air-quality models across large
geographies.

2.2.4. Google Street View (GSV). Another promising data
source capable of capturing microscale features is GSV
imagery, which provides georeferenced images along major
road networks.21 We processed available GSV images (640 ×
640 pixels) nearest to year 2015 at locations near all EPA
regulatory monitors. Specifically, at least five random locations
were sampled within a 100m buffer of each monitoring
location; each image location was required to be 20m apart to
properly capture the surrounding environment. We extracted
four images in four directions (0°, 90°, 180°, 270°) at each
sampling location. This step resulted in at least 20 GSV images
per monitoring location and a total of 5470 images around all
monitoring locations. Then, we used a deep learning image
segmentation algorithm (i.e., pyramid scene parsing network
[PSPNet]) to classify each pixel in the image into 150 feature
categories, including natural and built environment features
(e.g., trees, buildings, and cars).38 We summarized each image
to give a percentage of all feature categories (Figures S1 and
S2). While the original algorithm was developed to character-
ize both indoor and outdoor features, we only tabulated 57
categories of outdoor-related GSV features (Table S4) for the
purpose of ambient air-quality modeling. For model develop-
ment, the results among all images at the GSV sampling
locations within 100m of monitoring locations (at least 20
GSV images per monitor) were averaged to obtain the final
GSV-based variables.

2.2.5. Local Climate Zones (LCZ). An LCZ characterizes the
urban form and morphology (e.g., building heights, layout)
over time with a potential improvement over existing
administrative data sets. We derived LCZ-based variables
from the first U.S.-wide LCZ map.24 LCZ captures a building
configuration including a compact versus open arrangement,
building height, and natural features. The LCZ map has a
spatial resolution of 100m (with a lower thematic resolution
due to the Gaussian filter applied) and covers 15 LCZ classes.
It was produced in Google’s Earth Engine based on a pixel-
based random forest process using a combination of expert and
crowd-sourced training data and satellite images.24,39 While the
LCZ reflects neighborhood-level information in a design for
urban climatology (∼400 m radius), for simplicity, LCZs were
grouped with the new microscale variables in our study. The
full LCZ classifications (Figure S3) include built environment
variables (LCZ 1−10) and land cover variables (LCZ A-G).25

Figure S4 shows the LCZ surface for the continental U.S.;
Figure S5 shows two selected urban areas. We summarized the
counts of each LCZ category within five buffer sizes (i.e.,
500m, 1000m, 1500m, 2000, 2500m) at all air-quality
monitors. All calculations were conducted in ESRI ArcGIS
(ver. 10.6).

2.3. Modeling Approach. We compared three modeling
approaches (i.e., two traditional and one machine learning)
using the three sets of candidate predictor variables (tradi-
tional; microscale; combined), resulting in nine combinations
of modeling approaches and predictor variables.

2.3.1. Stepwise Regression + Kriging (SW-K). We added a
kriging process (based on a minimum mean squared error
interpolation) after a stepwise regression following a similar
approach to that of Mercer et al.40 For the stepwise regression,
we used the same approach commonly used in LUR
models.22,41 The variable selection process included two
steps: (1) selecting the most correlated variable with the
dependent variable and (2) adding the variable that was most
correlated with the model residuals among the remaining
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variables. This process was repeated until either a variable was
not significant (p > 0.05) or the multicollinearity indicator
(variance inflation factor [VIF]) was greater than 5. We
allowed variables to be selected with multiple buffers, since the
main purpose of this study is to make predictions, and we were
not sure which buffer would be the best. For the second-stage
kriging process, we incorporated spatial smoothing by kriging
the residuals after estimating a trend in the stepwise regression.
2.3.2. Partial Least Squares + Kriging (PLS-K). We

employed the same PLS-K modeling approach used in our
previous LUR study.15 The modeling process involved two
major components: variance and mean. Specifically, the
universal kriging (using exponential covariance function for
variogram) accounts for the variance component, and PLS
accounts for the mean component by reducing the dimensions
of independent variables used in a linear regression process. All
kriging covariance parameters and PLS summary variables
were based on a maximum likelihood approach. Following a
previous study,15 which highlighted that parsimonious models
with 3−30 variables outperformed models with all variables, we
first selected the top 30 variables by a forward selection, then
used those variables in a PLS reduction and regression
modeling. Specifically, we used a dimension reduction
approach instead of a stepwise selection; the dimension
reduction approach estimates a few summary predictors (n = 2
or 3 components depending on the cross-validation (CV)
process in Section 2.4). Table S7 shows the top 30 variables
selected as predictor variables for PLS-K models. Details are in
a report by Kim et al.15

2.3.3. Machine Learning + Kriging (ML-K). Finally, to select
our best ML algorithm, we first conducted experiments with
eight common ML algorithms (i.e., ridge regression, elasticnet,
lasso, adaboost, bagging, random forest, gradient boosting, and
extratrees) integrated in Python scikit-learn packages (Python
ver. 3.6.10; Scikit-learn ver. 0.22.142) to develop LUR models
for all three sets of variables (traditional; microscale;
combined). We fine-tuned the parameters using various
combinations of hyperparameters (Table S5) and selected

the ML algorithm with the best performance (highest
predictive power and lowest error; metrics are shown in
Section 2.4). Then, similar to SW-K, we also added a second-
stage kriging step after estimating a trend using the ML
algorithms. We kriged the residuals of the ML algorithm with
the best performance (using the exponential covariance
function for variogram).

2.4. Modeling Evaluation. We conducted two types of
10-fold cross-validation to evaluate the model performance: a
conventional CV (hereafter random CV), which divided the
monitoring locations into 10 groups randomly, and a spatially
clustered CV (hereafter spatial CV), which divided the 10
groups spatially using k-means clustering for training and
testing.15,43 Each CV separately involves 10 iterations of the
following processes: (1) selecting one group out of the 10
groups as the hold-out group and (2) developing models using
the remaining nine groups to predict concentrations at the
hold-out group. Random CV reflects the model performance at
random monitoring locations; spatial CV reflects model
performance for locations distant from a monitor.
We used standardized root-mean-square error (RMSE) and

mean square error (MSE)-based R2 to evaluate the CV
performance. Standardized RMSE (i.e., RMSE/mean concen-
trations of all monitors; hereafter RMSE) allows for a
comparison across the criteria pollutants. The MSE-R2 (i.e.,
one minus the sum of squared error between the observations
and the predictions divided by the sum of squared error
between the observations and the mean of the observations;
hereafter R2) assesses the agreement between observations and
predictions on the 1:1 line instead of the regression line.15

2.5. Comparison of Variable Inputs and Modeling
Approaches. To investigate how the LUR models performed
among different scenarios, we focused on several comparisons
below. We compared the model performance across the three
sets of variables (traditional; microscale; combined) with the
focus on whether (1) the microscale variables could be
alternative choices for LUR models when traditional data
sources are not available and (2) whether adding the

Figure 1. Random and spatial 10-fold CV results of models for six criteria pollutants. SW-K is Stepwise regression + kriging; PLS-K is Partial Least
Squares + kriging; ML-K is Machine Learning + kriging. RMSE is standardized (i.e., RMSE/mean concentrations of all monitors).
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microscale variables to the traditional variables could improve
model performance. Our ultimate goal was to compare
combinations of predictor variables and modeling types to
well-established LUR models (e.g., SW-K or PLS-K with
traditional variables). We compared results primarily using the
two types of CV. Finally, we compared the variable importance
for different models and pollutants.
To further compare the model performance, we also

evaluated the model performance among quantiles of air
pollution concentrations and regions of monitoring locations.
We used the mean normalized bias (MNB) to evaluate the
model performance: MNB = ∑ =i

n
1(concentration iestimates,

−raw iconcentrations, )/ ∑ = (rawi
n

1 iconcentrations, ). First,
we compared the model performance by a variable input and
modeling approach based on 10 quantiles of air pollution
concentrations. Second, we compared the model performance
based on monitoring locations according to the four Census
Bureau-designated regions (i.e., West, Midwest, Northeast, and
South).44 Third, we compared the model performance
between monitors in urban areas and rural areas according
to the U.S. Census classification.45 Lastly, we used the
Environmental Justice Screening and Mapping Tool
(EJSCREEN)46 to compare the model performance between
monitors in low-income minority areas (with a demographic
index over 75% percentile) to all other areas. We used the
MNB to evaluate the performance of all analyses.

3. RESULTS AND DISCUSSION

3.1. Summary of Monitored Air Pollution Concen-
trations. The number of valid regulatory monitors in 2015
ranges from 196 (CO) to 821 (O3). Annual mean (median)
concentrations were 7.8 (7.1) ppb [NO2], 7.7 (8.0) μg/m3

[PM2.5], 44.2 (44.5) ppb [O3], 0.3 (0.3) ppm [CO], 16.0
(15.6) μg/m3 [PM10], and 1.2 (1.0) ppb [SO2]. Detailed
descriptive statistics are reported in Table S6.
3.2. LUR Model Performance by Variable and

Modeling Approach. Among the eight ML algorithms,
gradient boosting and random forest generally showed the best
performance (Figures S6−S9). Gradient boosting optimizes
the model prediction in an iterative fashion by fitting on the
negative gradients. Random forest has a set of decision trees
(constructed by the best splits randomly chosen through
subset predictors) averaging for regression results in the final
prediction. Since gradient boosting performed slightly better
for the most widely modeled criteria pollutants (i.e., NO2 and
PM2.5), we used the gradient boosting algorithm to represent
the ML approach.
Figure 1 shows the random and spatial 10-fold CV results of

the six criteria pollutants. When comparing the various
combinations of predictor variables alone, we found that the
microscale variables may be a useful substitute for traditional
variables. For example, LUR models using the microscale
variables alone performed similarly to models using the
traditional variables (average difference in the model random
[spatial] CV R2 ≈ 0.06 [0.05] among the three modeling
approaches; CV RMSE ≈ 0.02 [0.03]). We found similar
results when we compared models using combined variables to
those developed with the traditional variables alone (average
difference in the model random [spatial] CV R2 ≈ 0.01 [0.05]
among the three modeling approaches; CV RMSE ≈ 0 [0.01]).
While the model performance did not always improve using
the microscale variables for each pollutant, our findings suggest

that microscale variables are a potential substitute for
traditional variables in LUR models.
When comparing the modeling approaches using the same

predictor variables, we found that ML-K models showed the
best performance. For example, ML-K models among the three
variable inputs generally outperformed SW-K (average differ-
ence in model random [spatial] CV R2 ≈ 0.10 [0.11]; CV
RMSE ≈ 0.04 [0.04]) and PLS-K (average difference in model
random [spatial] CV R2 ≈ 0.17 [0.14]; CV RMSE ≈ 0.08
[0.06]).
We also compared the model type and predictor variable

combinations to the well-established modeling approaches
(e.g., traditional variables combined with PLS-K). We found
that, when including microscale variables in combination with
machine learning approaches, it was possible to improve the
model performance, but improvements varied by pollutant. For
example, using combined (traditional + microscale) predictor
variables in the ML-K models achieved a better performance
for all pollutants based on the 10-fold random and spatial CVs
(average random [spatial] CV R2 increased 0.19 [0.19] among
six criteria pollutants; CV RMSE decreased 0.08 [0.06]). The
models improved the most for CO and SO2 (average random
[spatial] CV R2 increased 0.42 [0.42]; CV RMSE decreased
0.17 [0.15]). However, when using PLS-K, there were minimal
changes between models that used traditional alone versus
microscale alone variables (average difference of random
[spatial] CV R2 ≈ 0.05 [0.03]; CV RMSE ≈ 0.03 [0.02]) or
traditional versus combined variables (average difference of
random [spatial] CV R2 ≈ 0.03 [0.04]; CV RMSE ≈ 0.01
[0.01]). When comparing ML-K models using combined
variables to models using traditional variables, the difference in
the model performance was small (average 10-fold random
[spatial] CV R2 increased by 0.01 [0.02]; CV RMSE increased
by 0 [0.03]). These findings suggest that the combination of
ML-K models with the addition of microscale variables have
the potential to improve the LUR model performance and that
much of the increase in the model performance may be
attributable to the use of an ML-based modeling approach.
An important finding of our work is that ML-K models using

the microscale variables may be more helpful for pollutants
that are less commonly included in LUR studies at the national
scale. For example, when using the microscale variables for
CO, PM10, and SO2, ML-K outperformed PLS-K (average
random [spatial] CV R2 increased 0.31 [0.20]; CV RMSE
decreased 0.13 [0.06]) and SW-K (average random [spatial]
CV R2 increased 0.04 [0.04] among CO, PM10, and SO2; CV
RMSE decreased 0.03 [0.01]). These results suggest that the
microscale variables improve the model performance to some
degree but likely require the use of ML-based modeling tools.
An additional benefit of using the ML-K approach is that it

runs faster than other modeling approaches. For example, the
time needed on a desktop computer (random access memory:
3.00 GB) to develop models for PM2.5 (with 757 monitoring
locations) was ∼135 min when using PLS-K and less than 30
min for ML-K. This difference could be helpful when running
many different modeling scenarios. ML-K in conjunction with
the microscale variables could be a more practical and efficient
modeling framework while ensuring reliable performance for
the criteria pollutants; however, further studies may be needed
to confirm the importance of microscale variables, especially
across administrative boundaries (e.g., multiple countries).

3.3. LUR Model Performance by CV Type. As expected,
and consistent with the literature, random CV consistently
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Figure 2. Sum of variable importance of all variables by variable type (traditional vs microscale vs combined) for the ML-K models (upper panels:
relative importance scores) and PLS-K models (bottom panels: weighted VIP score).

Figure 3. Variable importance of the top 20 variables by variable type (traditional vs microscale vs combined) for the ML-K models (upper panels:
relative importance scores) and PLS-K models (bottom panels: weighted VIP score) of NO2 and PM2.5.
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outperformed spatial CV (Figure S10). Among all pollutants
and variable scenarios, the random CV model performance was
better than the spatial CV using ML-K (average R2 increased
0.18; RMSE decreased 0.06), PLS-K (R2 increased 0.15;
RMSE decreased 0.05), and SW-K (average R2 increased 0.19;
RMSE decreased 0.05), respectively. Among all pollutants and
modeling approaches, the random CV model performance was
better than the spatial CV with traditional variables (R2

increased 0.19; RMSE decreased 0.05), microscale variables
(R2 increased 0.18; RMSE decreased 0.06), and combined
variables (R2 increased 0.15; RMSE decreased 0.05),
respectively. A possible explanation of the relatively worse
performance of the spatial CV could be that EPA monitoring
locations share common attributes (e.g., land use types). These
findings indicate that our model performance is likely less
reliable where few or no EPA regulatory monitors are in close
proximity to a prediction location.
3.4. Rank of Variable Importance. We compared the

variable importance among pollutant, variable type, and
modeling approach. We focused on the variable importance
for the ML-K models and PLS-K models. For ML-K models,
we used the relative importance score to represent importance
ranks of each variable, which does not give any information on
the direction of impact but does offer insight for a prediction
(a trade-off of using ML-based approaches). For PLS-K
models, we used the weighted variable importance in
projection [VIP] score to measure the contribution of the
predictor variables. Figure 2 shows the sum of variable
importance of all variables by variable type (traditional vs
microscale vs combined) for the ML-based models and PLS-K
models.
In general, we found that both traditional and microscale

variables were important in LUR models. Particularly, when
using the traditional variables alone, the geographic variables
were important in both ML-K and PLS-K models for all
pollutants. While the importance of the geographic variables
was also apparent in models with the combined variables, the
microscale variables showed noticeable importance especially
for CO, PM10, and SO2 suggesting that the microscale variables
may be more helpful for these pollutants. When using the
microscale variables alone, a mix of variable types (i.e., GSV,
POI, and LCZ) showed a different magnitude of importance
among the pollutant and modeling approaches. For example,
GSV variables were more important for CO, PM10, and SO2,
while POI variables were important for NO2, PM2.5, and CO in
ML-K models. In comparison, POI variables showed
importance for all pollutants in PLS-K models. This might
be due to the two-stage ML modeling framework; since the
PLS-K approach adjusts the coefficients on the PLS
components it will likely give less weight to variables that
correspond to regional variations.
Figure 3 shows the variable importance of the top 20

variables in ML-K (based on the relative importance scores)
and PLS-K models (based on the weighted VIP score) for NO2
and PM2.5. For the individual variable importance, PLS-K
included many of the microscale variables for NO2 and
relatively fewer for PM2.5 for models using the combined
variables. However, this trend was not clear when using ML-K.
This result suggests that the microscale variables may offer
information on the building configuration and function (e.g.,
amount of building in an image, industrial low-rise buildings)
that might better capture factors that influence air pollution.
However, components of some pollutants (e.g., PM2.5 formed

in the atmosphere) might make it difficult to model the
association between the measurement and local land uses.
Figures S11−S17 show the variable importance of the rest of
the pollutants in the PLS-K, SW-K, and ML-K models.

3.5. LUR Model Performance by Low Versus High
Concentration. The 10-quantile analyses showed that, for all
pollutants studied, models tended to overestimate areas with
the lowest concentrations and underestimate areas with the
highest concentrations, regardless of variable type (Figures
S18−S20). This finding is consistent with previous LUR
studies.47−49 Among the three modeling approaches, ML-K
generally outperformed (e.g., lower deviations in MNB) SW-K
and PLS-K. Second, models were more likely to underestimate
in the West (e.g., for NO2, PM2.5, and O3) and overestimate in
the South (e.g., for NO2 and PM10) as well as the Northeast
region in the U.S. (e.g., for PM2.5, PM10, and CO; Figures
S21−S23). Similar to the stratification by concentration level,
ML-K generally performed the best across the regional
stratification of results. Finally, there was no obvious difference
in the model performance between urban and rural areas
(Figures S24−S26) or between low-income minority area
versus all other areas for most pollutants. For example, for
PM10, models tend to underestimate concentrations in low-
income minority communities and overestimate in all other
categories indicating larger environmental justice (EJ) effects
not captured by the models (Figures S27−S29).

3.6. Implications for Developing Future National Air-
Quality Models. In this study, we developed national LUR
models for estimating the annual average concentrations of six
criteria pollutants using various combinations of predictor
variables (e.g., microscale vs traditional) and modeling types
(e.g., ML-K vs PLS-K). We found that the combined variables
(microscale + traditional) in the ML-K models generally
outperformed the well-established empirical models (e.g.,
traditional variables using PLS-K). We also found that models
using the microscale variables did not always show a clear
improvement for all pollutants. However, the finding that
microscale variables are a suitable substitute for traditional
variables suggests a promising application when modeling large
geographies (e.g., across countries) where land use and other
covariates are not harmonized. Additionally, the microscale
variables have the potential to better align with ongoing efforts
in the air-quality field to create relatively denser measurement
networks (e.g., mobile monitoring and low-cost sensor
networks). Therefore, the choice of the final “best” model
will likely depend on the intended model application and data
availability. Leveraging ML-based approaches to use microscale
variables can replicate and sometimes improve traditional well-
established approachesa finding that warrants an inves-
tigation of these variables more closely with other data sets. As
described below, our work could be helpful for selecting
predictor variables and modeling approaches for empirical
models.

3.6.1. Developing Empirical Models Using Microscale
Variables. Our work focuses on the development of enhanced
modeling tools capable of estimating air-pollution exposures at
the national scale for environmental scientists, urban planners,
and public health researchers. A unique aspect of our work is
the use of microscale variables that characterize street-level and
destination information in a consistent format across
administrative boundaries. Unlike traditional variables that
are often tabulated using aggregated data (e.g., Census
geographies) to serve administrative needs or capture regional
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predictor variables, our results suggest that microscale
predictor variables could supplement traditional variables to
reduce prediction errors while resolving the modifiable areal
unit problem for LUR models. For larger geographic areas,
microscale variables would stand out by offering a consistent
data set while capturing street-level information for model
development.
Our work has several implications for improving perform-

ance and reliability of empirical air-quality modeling. First, our
microscale variables (i.e., GSV, POI, and LCZ) have the
advantage of characterizing street-level factors to capture
intraurban variations in air quality and help evaluate previously
unmeasured emission sources in national models. For example,
we found that POI variables (e.g., transit station and car
repair) were important for NO2 in our ML-K models; NO2 is
associated with traffic-related emissions.50−52 Other POI
variables (e.g., stores and gas stations) were found to be
significant for estimating PM2.5 concentrations.11,53 Many of
the microscale variables were local sources that may not be
captured by traditional variables, which may be useful for
future empirical modeling efforts. Second, our approach allows
for improving the air-pollution exposure for larger geographies
(e.g., national) with consistent variables across administrative
boundaries, making it more convenient and reliable for
conducting ongoing large-scale epidemiological studies.54

Our models with the microscale variables achieved a similar
performance to those with traditional variables, which is
particularly significant in global cities or countries where
traditional government-based data sources are scarce or less
reliable at large spatial extents. Third, our results could offer
insights into urban planning and policy. While many traditional
predictor variables are indicative of long-term planning efforts
on a macroscale (e.g., population density, land use), our
microscale variables may inform or suggest interventions for a
short-term improvement in microscale infrastructure. For
example, we were able to identify that some infrastructure-
based GSV variables (e.g., building, sidewalk, tree canopy)
were associated with an air quality similar to that of other
studies.20−22,33,52,53 Lastly, our LCZ variables that reflect the
urban morphology imply thermal urban characteristics and
street canyon effects that may be relevant for the formation of
(some of the) key pollutants,24−26 which could be important
for the model improvement. These findings suggest that
empirical models with microscale variables could be used to
provide air-pollution exposure estimates for epidemiological
studies and help to inform strategies for the development of
clean and healthy cities through sustainable urban planning
strategies (e.g., green design of building, active transportation).
Another advantage of using the microscale variables for LUR
models is that the retrieval process typically involves only a
small number of data sources (e.g., Google API) instead of
assembling a variety of variables from multiple local and
regional avenues.
3.6.2. Leveraging the Benefit of Microscale Variables

Using ML-K Models. Our work is consistent with ongoing
efforts to improve exposure assessment by (1) the develop-
ment of improved models to explain more spatial variations of
air pollutants while minimizing estimation biases, (2)
harmonizing a consistent set of predictor variables across
different areas, and (3) enhancing the modeling efficiency. In
terms of model performance, we found that ML-K performed
better than PLS-K and SW-K when using the microscale
variables. Our work suggests that the use of ML-K is needed to

maximize the advantages of using microscale variables for
improving LUR models, especially for pollutants that are not as
frequently studied in LUR literature (e.g., CO, PM10, and
SO2). The improved performance for these pollutants may be
explained by two factors. First, while we added microscale
variables to potentially capture more local variations, we also
included a range of buffer sizes including some at or above
1000m; the larger buffers may also help capture regional
variations. Second, the flexibility of the ML-based approach
was helpful when using the microscale variables as compared
to the data shrinkage of the PLS approach. For example, the
ML-based models are more likely to capture any nonlinear
relationship between the predictor variables and the air
pollution concentrations that may be missed by the PLS-
based models with a focus on linear relationships.
Although our models overestimate low-concentration areas

and underestimate high-concentration areas similar to other
studies,11,15,55 the ML-K generally showed the best perform-
ance. In addition, we found that the ML-K approach ran faster
than the well-established models. The benefits of using ML-
based models are also identified in other studies, including a
minimized manual effort for predictor variables,14 improved
prediction accuracy,9,31,56 and suitability for predicting air
pollution for large geographies.30,57 One could imagine testing
our off-the-shelf ML-based approach to facilitate LUR model
improvement by including a variety of new microscale variables
from open data sources for different geographies.

3.6.3. Limitations and Future Research. Our work could be
improved in several ways. First, more information from the
microscale variables could potentially be extracted. We pulled
the microscale variables at smaller buffers (≤2500 m) than the
geographic variables (≤10 km) with the goal of focusing on the
addition of information at smaller spatial scales. Future work
could explore how larger buffers of the microscale variables
could contribute to the model performance when comparing to
the traditional variables. For GSV variable tabulation, we
simply summarized each image by classifying multiple
categories (e.g., tree, awning) based on the feature percentage.
Additional work could tailor the need to LUR modeling by
combining various measures into more appropriate groups
(e.g., vegetation), using metrics to account for the diversity of
the microscale features, or specifically classifying important air-
pollution sources (e.g., trucks, small industrial sources). A
better classification for GSV variables could also be achieved
with growing repositories of street-view imagery58 and
emerging image-processing techniques based on computer
vision and deep learning algorithms (aside from PSPNet).59

Similarly, POI variables could benefit from an exhaustive POI
data set across different websites and systems (e.g., Facebook
Places, Yahoo! Local) to leverage the quantity and
heterogeneity of the POI information.60

Second, the year of extraction for our microscale variables
(∼2017) is unaligned with the year (2015) of our modeled
pollutants, which may be an issue for microscale variables that
are more likely to change quickly as compared to the
traditional geographic variables (e.g., population density).
Future work could benefit from collecting data across multiple
time periods to characterize changes more accurately. For
example, our LCZ variables have the advantage of tracking a
street-level urban form in rapidly urbanized areas across many
yearsa promising prospect for the development of multiyear
LUR models. Likewise, the combination of remote-sensed
imagery and street-view imagery allows for improved temporal
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precision (e.g., daily to yearly updates) to enhance LUR
models.61 Meanwhile, some microscale variables (e.g., GSV
imagery) may not be available in rural areas, so models with
traditional variables may be a better choice than those using
microscale variables.
Third, since our main focus in this study is to explore the

utility of microscale variables, we stopped at model building
and model evaluation and did not make air-pollution
predictions across the U.S. but only for a small downtown
area. This is further hindered by a costly service fee for the
Google API platform when a large number of GSV images and
POI data is retrieved nationally. However, to illustrate how
predictions might vary among approaches, we made
predictions using both ML-K and PLS-K models of NO2 and
PM2.5 for all variable types (i.e., traditional, microscale, and
combined) for a single downtown area (with a buffer size of
1500m) in Blacksburg, Virginiaa small town in the U.S.
(Figures S30 and S31). We also included a zoning map with
major land uses for reference (Figure S32). We found that
models using the microscale variables did capture more
“hotspots” than models using the traditional and combined
variables, which suggests potential benefits of using the
microscale variables within an ML framework. As more
alternative and freely open-source platforms (e.g., Bing,
Open Street Maps, Yelp, and Baidu) become available, our
approach could be extended to data sources where predictions
might be more easily accomplished. Regardless of the data
source, the general approach increases the possibility of the
development of multicountry LUR modelsan important and
understudied topic.
Fourth, our work aims to assess predictor variables that are

potentially useful for prediction rather than inference. We only
compared a few modeling approaches in this study; a useful
future study would be to compare more modeling approaches
to assess trade-offs, especially the ones that could capture
nonlinear relationships with more interpretable information. As
such, while our variable importance may offer insights into a
predictor variable selection for LUR models, the sensitivity to
different modeling approaches and pollutants cautions the use
and interpretation for developing LUR models.
Lastly, similar to other existing national LUR models, our

models were developed based on the sparse regulatory
monitoring network that was launched for the purpose of
regulation compliance. This limitation resulted in a minor
model improvement using the microscale variables. With the
rapid development in mobile monitoring41,62 and ubiquitous
low-cost sensor networks (e.g., PurpleAir),63,64 future work
could focus on testing our approaches for these monitoring
networks with a larger density and better coverage.
Our work suggests that the combination of ML-K and

microscale variables hold promise for developing improved
national empirical models as compared to the well-established
models (i.e., PLS-K or SW-K with traditional variables).
Importantly, our proposed modeling framework leverages the
value of microscale variables with a finer spatial resolution (i.e.,
street level) and consistent data for the development of
empirical models to track air-pollution exposure for large
populations and geographies. More work is needed to
determine what aspects of the microscale data are most
advantageous or duplicative for empirical models, thus offering
more insights into an exposure assessment.
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