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ABSTRACT: Communities of color in the United States are
systematically exposed to higher levels of air pollution. We explore
here how redlining, a discriminatory mortgage appraisal practice from
the 1930s by the federal Home Owners’ Loan Corporation (HOLC),
relates to present-day intraurban air pollution disparities in 202 U.S.
cities. In each city, we integrated three sources of data: (1) detailed
HOLC security maps of investment risk grades [A (“best”), B, C, and D
(“hazardous”, i.e., redlined)], (2) year-2010 estimates of NO2 and
PM2.5 air pollution levels, and (3) demographic information from the
2010 U.S. census. We find that pollution levels have a consistent and
nearly monotonic association with HOLC grade, with especially
pronounced (>50%) increments in NO2 levels between the most
(grade A) and least (grade D) preferentially graded neighborhoods. On a national basis, intraurban disparities for NO2 and PM2.5 are
substantially larger by historical HOLC grade than they are by race and ethnicity. However, within each HOLC grade, racial and
ethnic air pollution exposure disparities persist, indicating that redlining was only one of the many racially discriminatory policies
that impacted communities. Our findings illustrate how redlining, a nearly 80-year-old racially discriminatory policy, continues to
shape systemic environmental exposure disparities in the United States.
KEYWORDS: air pollution, redlining, NO2, PM2.5

■ INTRODUCTION

In the United States, communities of color are exposed to
higher levels of air pollution at every income level.1−4 As with
other environmental justice (EJ) issues, the causes of systemic
racial/ethnic air pollution exposure disparities are complex and
rooted in part in historical patterns of exclusion and
discrimination. While air quality has improved in the United
States over the past several decades,5−7 people of color (POC),
particularly Black and Hispanic Americans, are still exposed to
higher-than-average levels of air pollution.8−11 We examine
here how redlining, a historical, racially discriminatory 1930s
federal mortgage appraisal policy, is associated with present-
day air pollution disparities in 202 U.S. cities.
Racial/ethnic air pollution exposure disparities persist in part

because the underlying sociological, economic, and policy
drivers typically evolve on generational time scales. Multiple
legacies of discrimination, including redlining and land use
decision-making, have shaped the current spatial distributions
of pollution sources among diverse communities.12−18 The
resulting locations of emissions infrastructure, including roads,
rail lines, industrial facilities, ports, and other major sources of
pollution, are typically long-lived. Similarly, while housing
discrimination was deemed unconstitutional more than 50
years ago, many areas in the United States remain racially
segregated.19−22

Redlining has emerged as an area of interest because it is
well documented and was explicit in its discriminatory
implementation, widespread, and carried out by the federal
government. Beginning in the 1930s, the federally sponsored
Home Owners’ Loan Corporation (HOLC) drew maps
characterizing neighborhood security for emergency home
lending for several hundred U.S. cities in the wake of the Great
Depression.23,24 These maps, which are digitized for 202 U.S.
cities,25 graded neighborhoods on a four-point scale: A (most
desirable), B (still desirable), C (definitely declining), and D
(hazardous, i.e., redlined). Many neighborhoods received the
worst grade due to the presence of Black and immigrant
communities and/or known environmental pollution sour-
ces.25,26 For example, racist language provided to HOLC
agents describes “infiltration of foreign-born, Negro, or lower-
grade population” as cause for a lower neighborhood grade.25

Homes in D neighborhoods were typically ineligible for
federally backed loans or favorable mortgage terms. This
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practice isolated communities of color, restricting their ability
to build wealth through home ownership, and informed later
local government land use decisions that placed hazardous
industries in and near D neighborhoods.24 The discriminatory
practices captured by the HOLC maps continued until 1968,
when the Fair Housing Act banned racial discrimination in
housing, yet the legacy of explicit racial discrimination still
shapes patterns of racial residential segregation today.27

A growing body of scholarship finds associations between
redlining and present-day environmental health disparities in
U.S. cities. For example, in 64% of grade D neighborhoods, a
majority (>50%) of the population is POC (i.e., not non-
Hispanic White); in 74% of grade D neighborhoods, the
median income is low to moderate.27 Redlining designations
are associated with a variety of exposures, including greenspace
prevalence,28 tree canopy,29−31 urban-heat exposure dispar-
ities,29,32,33 and health effects, including asthma,34 cancer,35,36

adverse birth outcomes,37,38 and overall urban health.39 To
date, limited research has investigated air pollution exposure
and redlining,31,34 despite its importance as an environmental
risk factor.
We focus here on two key air pollutants that are significant

causes of ill health and premature mortality, nitrogen dioxide
(NO2) and fine particulate matter (PM2.5), and have distinct
sources, atmospheric behavior, and spatial patterns. NO2 is a
relatively short-lived, localized pollutant emitted by traffic,

industry, power generation, and other high-temperature
combustion processes. Urban areas tend to exhibit spatially
sharp NO2 gradients because primary traffic emissions are a
major source of NO2.

40−43 In contrast, PM2.5 varies more on a
regional scale because it has an atmospheric lifetime of days to
weeks and is influenced strongly by both a broad array of
emission sectors and multiple secondary formation pro-
cesses.44−47

This paper explores associations between historical redlining
and year-2010 air pollution levels and census demographics for
202 U.S. cities home to 65% of the U.S. urban population. We
find monotonic and highly consistent associations between
pollution levels and HOLC grades for both pollutants, with
larger intraurban disparities associated with NO2. To the best
of our knowledge, this study is the first full-scale examination
of air pollution disparities relative to historical redlining and
advances our understanding of the origins and persistence of
inequities in air pollution exposures in the United States.

■ MATERIALS AND METHODS

Demographic and HOLC Data. We used georeferenced
1930s era HOLC maps developed by the University of
Richmond’s Mapping Inequality project to identify HOLC
codes in 202 cities (148 U.S. census urbanized areas) across
the United States, shown in Figure S1.25 Mapped neighbor-
hoods were categorized by HOLC into one of four grades: A,

Figure 1. Population-weighted distributions of NO2 and PM2.5 levels within HOLC-mapped areas at the census block level. Bars represent 25th and
75th percentiles. Medians are indicated with horizontal lines, and means by the dot marker; the overall mean is indicated by the dotted line.
Unadjusted national distributions are presented for (a) NO2 and (b) PM2.5. Adjusted distributions (c and d) report the national distributions of
intraurban differences for census blocks within a given HOLC grade relative to the PWM level within each city. In each panel, pollution level
distributions are reported by both HOLC grade (left cluster) and race/ethnicity (right cluster). Vertical lines between these clusters reflect the
pollution range of the group means: the difference in the population-weighted mean between groups A and D (left line) and between the highest-
exposed and lowest-exposed racial/ethnic group. Panels c and d illustrate how intraurban disparities are consistently higher by historical HOLC
grade than by race/ethnicity.
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best; B, still desirable; C, definitely declining; or D, hazardous
for mortgage appraisal. We linked HOLC maps to individual
U.S. Census blocks from the most recent available decennial
census (2010);48 census blocks provide a spatial resolution at
approximately the scale of a city block in urban areas
(geospatial procedures are described in the Supporting
Information). The resulting data set incorporates 45 million
people in 202 U.S. cities (n = 562,078 census blocks; average
population of 80 people per block).
Because of urban expansion post-1930, the HOLC areas

represent only a subset of the overall present-day urban
footprint in most metropolitan areas: the present-day urban
core. To provide context and comparison, we also separately
extend our analysis to the full U.S. Census urbanized areas
(CUA; n = 148) that contain the HOLC-mapped neighbor-
hoods. These 148 CUAs had a year-2010 population of 161
million people (∼65% of the full U.S. population residing in
urbanized areas in 2010).
We combine race/ethnicity data to develop four aggregate

groupings for analysis: people who are Hispanic of any race
[24% of HOLC population (Table S1)], non-Hispanic White
(henceforth White, 43%), non-Hispanic Black (Black, 23%),
and non-Hispanic Asian (Asian, 7%). The remaining 3% of the
HOLC population (Other) includes Pacific Islander, Native
American, and populations self-identifying as belonging to two
or more races. The broader CUA population demographics are
as follows: 56% White, 15% Black, 7% Asian, and 19%
Hispanic.
Air Pollution Data. We characterized NO2 and PM2.5

levels using empirical (i.e., land-use regression) models
developed by the Center for Air, Climate and Energy Solutions
(CACES; www.caces.us/data).5 This data set provides annual
ambient concentration predictions for census blocks for 1979−
2015. We employ year-2010 pollution data here to align with
the most recent available (2010) decennial census. This model
surface and its predecessors are commonly used for disparity
analyses1,2,49 and predict NO2 and PM2.5 at U.S. EPA
monitoring sites with high fidelity (R2 = 0.81 and 0.84,
respectively).1 Our core results are expressed as population-
weighted statistics [i.e., population-weighted mean (PWM)
and other percentiles from the population distribution of
exposures].
We first aggregate data in terms of unadjusted statistics (e.g.,

the national PWM concentration for all blocks in the D grade).
Next, to isolate associations between redlining and intraurban
gradients, we present adjusted statistics that hold constant for
city-to-city differences in air pollution and therefore reveal only
within-urban disparities. This adjusted statistic is computed as
the national PWM of the intraurban concentration difference,
i.e., the difference between census block levels and the
corresponding urban PWM across all HOLC areas in a CUA
(see section S1.2 of the Supporting Information). An example
of the input data sets for Atlanta, GA, is included in Figure S2,
and population demographics are outlined in Table S1 and
Figure S3.

■ RESULTS AND DISCUSSION
Associations between Concentration and HOLC

Category. Because HOLC-mapped areas tend to cover only
city centers and exclude suburban areas, air pollution levels in
the HOLC-mapped areas tend to be higher than in the
corresponding overall CUAs (Figure S4). Year-2010 PWM
concentrations were 15.0 ppb (NO2) and 10.6 μg m−3 (PM2.5)

for the 45 million people residing in HOLC-mapped areas,
versus 10.9 ppb (NO2) and 9.9 μg m−3 (PM2.5) for the
corresponding CUAs.
Unadjusted national statistics show that redlining is strongly

associated with NO2 and more weakly but detectably
associated with PM2.5 (Figure 1a,b). PWM NO2 pollution
levels are 6.0 ppb (56%) higher in the D-grade (“hazardous”)
than in the A-grade census blocks (16.8 ppb vs 10.8 ppb).
PWM concentrations increase monotonically across HOLC
grades. For PM2.5, this monotonic association also holds, but
the PWM difference between A and D groups is smaller, 0.4 μg
m−3 (4%; 10.7 μg m−3 vs 10.3 μg m−3). The smaller difference
for PM2.5 aligns with existing research showing comparatively
smaller intraurban pollution variations that are superimposed
on a larger regional (mostly secondary) background.50,51

Redlining is also associated with intraurban pollution
gradients. PWM NO2 pollution levels for each HOLC zone,
relative to that city’s average level (Figure 1), are 1.0 and 0.1
ppb higher for D and C areas, respectively, and 0.8 and 2.0 ppb
lower for B and A areas, respectively (Figure 1c). Therefore,
the PWM intraurban difference between the D and A grades is
∼3 ppb NO2. Intraurban differences are smaller for PM2.5 than
for NO2 (Figure 1d): maximum of 0.1 μg m−3 (D grade) and
minimum of −0.3 μg m−3 (A grade), for a net 0.4 μg m−3

difference.
We find a high degree of city-to-city consistency in

intraurban disparities. PWM NO2 levels are higher in D
neighborhoods than overall (i.e., considering all HOLC-
mapped areas) in 80% of the 202 cities and are lower in A
neighborhoods than overall in 84% of cities. Disparities exist
not only for the average (PWM) but also throughout the
distribution. Indeed, in most (52%) cities, the interquartile
ranges (IQRs) for NO2 exhibited no overlap for the A and D
neighborhoods (i.e., the A group 75th percentile was lower
than the D group 25th percentile). For PM2.5, disparities are
again in the same direction though more modest. PWM PM2.5
levels were higher than average for D neighborhoods in 55% of
cities and lower than average for A neighborhoods in 68% of
the cities, and the A and D IQRs exhibit no overlap in 20% of
cities. Overall, trends associated with redlining hold across city
size (Figure S5), across geographical region (Figure S6), and
for the most recent-year (2015) CACES model predictions
(Figure S7).
HOLC security maps were drawn on the basis of the

demographic makeup of neighborhoods, reflecting preexisting
racial residential segregation. However, redlining further
solidified and accelerated those patterns that exist today. In
addition, areas graded as C or D often hosted industrial
facilities, railroads, and other pollution sources. We find that,
within HOLC-mapped areas, D-grade neighborhoods are more
likely to be near industrial sources and that the average number
of sources nearby increases from A to D (Figure S8).
Additionally, the portion of people living near railroads and
primary roadways increases monotonically by HOLC grade
from A to D (Figure S9). While U.S. rail infrastructure was
largely constructed before the 1930s, limited-access highways
were constructed almost entirely after the 1930s and were
preferentially constructed through Black and brown commun-
ities in U.S. cities. This comparison using rail lines and
highways emphasizes that racial disparities in air pollution
exposure reported here reflect infrastructure placement that
occurred both before and after HOLC redlining.52,53
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Disparities by Race/Ethnicity. We further stratified our
results by comparing each HOLC-grade PWM concentration
for individual racial/ethnic groups. Consistent with the
substantial literature on racial/ethnic disparities for air
pollution, we find that people of color experience higher-
than-average NO2 and PM2.5 levels and are overrepresented
within C and D neighborhoods, consistent with prior redlining
research (Figure 1). For example, on average, PWM intraurban
pollution differences for NO2 (Figure 1c) are greater than
average for Hispanic, Asian, and Black populations (0.8, 0.4,
and 0.2 ppb higher than the urban average, respectively) and
below average for the White population (−0.6 ppb).
Differences for PM2.5 are proportionally smaller (Figure 1d)
but reflect similar racial disparities (PWMs of −0.1 μg m−3 for
White and Asian populations and 0.1 μg m−3 for Black and
Hispanic populations). Overall, intraurban PWM differences
by HOLC grade are larger than by race/ethnicity (Figure 1).
We find a substantially larger PWM differences between D and
A HOLC grades (3.0 ppb NO2 and 0.4 μg m−3 PM2.5) than
between the most- and least-exposed racial/ethnic groups [1.3
ppb NO2 and 0.26 μg m−3 PM2.5 (see Figure 1c,d)].
Next, we examined how racial/ethnic disparities interact

with historical HOLC grade. Figure 2 illustrates PWM

intraurban disparities that exist by race/ethnicity along the
A−D HOLC grade gradient. Smaller, but still substantial,
intraurban racial/ethnic disparities exist for PM2.5 and NO2
within each historical HOLC grade. On average, the within-
grade white population experiences lower than average levels of
NO2 and PM2.5 while the Hispanic population experiences
above average levels. The Black population experiences
consistently above HOLC-grade-average PM2.5 levels while
the Asian population experiences above HOLC-grade-average
NO2 levels. These within-grade disparities are nearly as large as
the overall racial/ethnic disparity for the HOLC-mapped areas,
implying that a substantial portion of the racial/ethnic
exposure disparity within the study areas exists independently
of historical HOLC status.
Racial/ethnic air pollution disparities reported here are

subdivided next into two distinct effects: those that are
associated with historical HOLC redlining and those that are

not. To explore the sensitivity of our overall results to racial/
ethnic segregation (i) between and (ii) within each HOLC
grade, we used stylized demographic scaling factors to
mathematically redistribute the populations in every city to
(as a counterfactual approach) eliminate intraurban racial/
ethnic segregation first between, and then within, HOLC
grades (details in section S1.3). The reduction in racial/ethnic
disparity from removing between-grade segregation was larger
for NO2 than for PM2.5. However, both results were modest
relative to the reductions produced by removing within-grade
segregation (Figure S10). These findings may reflect various
factors, including changes in demographics since the 1930s
(e.g., gentrification), within-grade gradients of proximity to
undesirable/polluting land uses (potentially preceding red-
lining), and later emission source placement (e.g., highways).
Figure S11 offers a complementary insight. Intraurban air

pollution disparities show distinct relationships with demo-
graphics, but there is also a stratified gradient from HOLC
grade A to D for nearly any level of demographic composition.
This suggests redlining disparity effects are one of multiple
factors that contribute to intraurban racial/ethnic disparities in
pollution exposure. Importantly, if one could remove all
between-grade disparities, that would only modestly change
the overall, because within-grade disparities are the larger
contributor to overall racial/ethnic disparities.

Broader Implications. Converging lines of evidence from
our analysis suggest the following key points. First, redlining is
associated with substantial intraurban air pollution disparities
for NO2 and PM2.5. These findings are consistent with a broad
body of evidence that adverse historical HOLC designations
are associated with worse present-day local environmental
quality and health outcomes, including air pollution, green
space,28 tree canopy,29−31 COVID risk,54 and urban
heat.29,32,33 Second, for the 45 million Americans who live in
HOLC-mapped areas, NO2 and PM2.5 disparities by grade are
larger than those by race/ethnicity. Third, despite the
substantial association between HOLC redlining and aggregate
pollution disparities, we find that intraurban racial/ethnic
disparities in NO2 and PM2.5 are only moderately correlated
with historical HOLC status; most of the disparities we
observe are within grade rather than between grade. This
finding likely reflects that historical redlining is only one of
many racially discriminatory policies that have contributed to
disparate environmental exposures for people of color.
Findings here highlight that present-day disparities in U.S.

urban pollution levels reflect a legacy of structural racism in
federal policy-makingand resulting investment flows and
land use decisionsapparent in maps drawn more than 80
years ago. NO2 and PM2.5 are considered “short-lived”
pollutants (atmospheric lifetimes of approximately hours and
days, respectively), yet the systems that created these
disparities span more than a human lifetime. Results from
this work55 can support decision-makers in their efforts to
improve air pollution policy in ways that address exposure
inequities. Future work should propose, evaluate, and imple-
ment solutions that can benefit disparately impacted
communities. Fully addressing exposure inequities will require
transformations sustained across generations.
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Figure 2. Population-weighted mean annual intraurban PWM levels
by HOLC grade and race/ethnicity for (a) NO2 and (b) PM2.5. All
race/ethnicity groups demonstrate monotonic increases by HOLC
grade. Disparities by HOLC grade were larger than those associated
with differences between racial/ethnic groups (100% higher for NO2
and 50% higher for PM2.5).
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