ELSEVIER

Available online at www.sciencedirect.com

“ScienceDirect

Atmospheric Environment 42 (2008) 5499-5503

ATMOSPHERIC
ENVIRONMENT

www.elsevier.com/locate/atmosenv

Short communication

Environmental inequality: Air pollution exposures in
California’s South Coast Air Basin

Julian D. Marshall™

Department of Civil Engineering, University of Minnesota, Minneapolis, MN 55455, USA

Received 3 October 2007; received in revised form 31 January 2008; accepted 4 February 2008

Abstract

Environmental inequality is quantified here using linear regression, based on results from a recent mobility-based
exposure model for 25,064 individuals in California’s South Coast Air Basin [Marshall et al., 2006. Inhalation intake of
ambient air pollution in California’s South Coast Air Basin. Atmospheric Environment 40, 4381-4392]. For the four
primary pollutants studied (benzene, butadiene, chromium particles, and diesel particles), mean exposures are higher than
average for people who are nonwhite, are from lower-income households, and live in areas with high population density.
For ozone (a secondary pollutant), the reverse holds. Holding constant attributes such as population density and daily
travel distance, mean exposure differences between whites and nonwhites are 16-40% among the five pollutants. These

findings offer a baseline to compare against future conditions or to evaluate the impact of proposed policies.

© 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Understanding exposure variations among sub-
populations is important for risk management,
epidemiology, and environmental justice. Environ-
mental health policy seeks not only to reduce
population-average risk, but also to ensure that
specific subpopulations are not unduly burdened
relative to the overall population (Anand, 2002).
Previous research has documented higher outdoor
air pollution in regions with a greater portion of
nonwhite and low-income groups in California’s
South Coast Air Basin (SoCAB) (Morello-Frosch
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et al., 2001, 2002) and elsewhere (Bell et al., 2005;
Brown, 1995; Brulle and Pellow, 2006). Low socio-
economic-position groups tend to have high vulner-
ability to air pollution, i.e., a given exposure level
may cause greater-than-average health reduction for
these groups (O’Neill et al., 2003; Samet and White,
2004).

This short communication explores environmen-
tal equality for air pollution exposure in California’s
SoCAB. Marshall et al. (2006), presenting a new
mobility-based exposure model, documented air
pollution inequalities among ethnic and income
subpopulations; however, they did not report
whether these inequalities persist after accounting
for differences in attributes such as education, daily
travel distance, and neighborhood population
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density. For example, because low population-
density areas generally have low primary pollutant
concentrations and also tend to have high income
and be white, the question arises as to whether
white/nonwhite exposure differences are attributa-
ble solely to differences in population density. I
address this question here using linear regression.
Findings indicate that exposure inequalities by
ethnic and income group persist even after account-
ing for population density, daily travel distance, and
other attributes.

2. Methods

Air pollution exposure estimates are derived from
a spatiotemporal exposure model of 25,064 indivi-
duals in the SoCAB. The model was described
previously in this journal (Marshall et al., 2006).
Five pollutants are studied: benzene, 1,3-butadiene,
ozone, fine particulate matter emitted from diesel
engines (DPM, s), and hexavalent chromium in the
form of fine particulate matter (CrPM, 5). Results
reflect (indoor and outdoor) exposure to pollution
of outdoor origin only.

Because exposure estimates employed here are
log-normally distributed, the dependent variable in
the regressions (SAS v9.1, PROC REQG) is the
logarithm of exposure concentration. Geometric
mean exposure concentrations are used to compare
central tendencies among subpopulations. Indepen-
dent variables, listed in Table 1, are parameters
hypothesized in advance as potentially important
for exposures (see Fig. 1).

3. Results
3.1. Descriptive statistics

For traffic-related pollutants, exposures are posi-
tively correlated among primary pollutants (Pear-
son correlation coefficients: 0.94 for benzene-
butadiene; 0.83 for benzene-DPM,s; 0.77 for
butadiene-DPM, 5), and negatively correlated with
ozone exposures (Pearson: —0.47 for ozone-ben-
zene; —0.46 for ozone-butadiene; —0.39 for ozone-
DPM,5). As a result, exposure trends frequently
differ between primary pollutants and ozone.

Geometric mean exposures (Fig. 1) and arith-
metic mean exposures (not shown) are ~50% higher
(for ozone: ~35% lower) for lower-income
(<$50,000 annual household income) nonwhites
than for higher-income (> $50,000) whites. Expo-

Table 1
Coefficients (standard errors) of linear regressions for exposure
concentrations, by pollutant®®

Pollutant Variable Whites Nonwhites

DPM,s (Intercept) 0.231 (0.008) 0.350 (0.008)
Lower-income - -
Population density  0.286 (0.014) 0.120 (0.010)
Travel distance 0.127 (0.007) 0.126 (0.010)
Model R? 0.055 0.032

CrPM, s (Intercept) —4.38 (0.01)
Lower-income -
Population density  0.340 (0.018) 0.167 (0.012)
Travel distance 0.0843 (0.0099) 0.0431 (0.0128)*
Model R? 0.039 0.027

—4.18 (0.01)
0.0184 (0.0110)"

Benzene  (Intercept) 0.472 (0.007) 0.570 (0.006)
Lower-income - -
Population density  0.263 (0.010) 0.151 (0.007)
Travel distance 0.0724 (0.0056) 0.0764 (0.0076)
Model R? 0.074 0.053

Butadiene (Intercept) —0.757 (0.012) —0.571 (0.009)
Lower-income —0.0350 (0.0106) -
Population density  0.594 (0.018) 0.329 (0.012)
Travel distance 0.105 (0.010) 0.0965 (0.0121)
Model R? 0.11 0.085

Ozone (Intercept) 0.916 (0.009) 0.787 (0.010)
Lower-income —0.0270 (0.0084)F —0.0265 (0.0092)*
Population density —0.193 (0.014) —0.0902 (0.0104)
Travel distance 0.0640 (0.0075) 0.0917 (0.0104)
Model R? 0.038 0.035

The dependent variable is the base-10 logarithm of
exposure concentration (ugm~>). Independent (explanatory)
variables are as follows: two dummy variables (values: 0 or 1)
for age category (under 7 years; over 65 years), two dummy
variables for education level (high-school graduate; college
graduate), two direct survey responses (male/female; household
annual income above/below $50,000), total straight-line
(“crow-flight”) distance traveled (calculated by the exposure
model), and population density in the Census tract of the
respondent’s residence. For coefficients above, units are (1000
people km~2) for population density and (100kmd~") for travel
distance.

PAll coefficients shown are significant at 0.0001, except as
noted using the following significance scale: ¥ = 0.10, £ = 0.005.
Omitted coefficients (“—’) are not significant at the 0.10 level.
Model R? values (range: 3-11%) are statistically significant
(<0.0001) even though they are low by conventional standards.
The limited number of possible combinations for many indepen-
dent variables (ethnicity, income, etc.) may reduce the maximum
possible R? to below 1 (Weisberg, 2005). Large R values are less
important for the aim here, i.e., correcting for covariates, than for
predictive models (McNamee, 2003). If exposures were not
dependent on the predictive variables, the expected R*> would
be ~0.0004% (the number of data points divided by number of
predictive variables (Weisberg, 2005)), or about two orders of
magnitude lower than the R> values above, which further
emphasizes that the model R> values above are statistically
significant.
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Fig. 1. Estimated geometric mean exposure concentration for each subpopulation relative to the overall population geometric mean.
Values for the five pollutants are presented in the same order in each plot (left to right: benzene, butadiene, chromium PM, s (CrPM),
diesel PM, s (DPM), ozone). Note that the ordinate scale for population density (middle right plot) differs from that of the other plots.

sure differences are larger between whites and
nonwhites than between income categories. This
finding is consistent with extant studies in the
SoCAB (Morello-Frosch et al., 2002) and elsewhere
(Ringquist, 2005).

High-exposure subpopulations (people with ex-
posures above the 75th, 90th, and 95th percentiles)
for primary pollutants are more likely than average
to be low-income, to be nonwhite, and to reside in
high-density areas. In contrast, average ozone
exposures are lower for nonwhites, lower-house-
hold-income individuals, young children (0—6 years
old), and individuals residing in high-density areas.

Mean densities (km~2) for the top 25% and 5% of
the exposure distributions, respectively, are 2900
and 2110 for ozone, compared to 4590 and 5230
averaged among primary pollutants. The overall
mean density is 3580 km 2.

3.2. Linear regression model

Table 1 presents ethnicity-stratified linear regres-
sion results for exposure concentration. For exam-
ple, for nonwhites, increasing population density by
1000km~2 yields a 32% increase in DPM, s
exposure concentration (i.e., a 0.12 increase in the



5502 J.D. Marshall | Atmospheric Environment 42 (2008) 5499-5503

logarithm of exposure) and a 19% decrease in ozone
exposure. As expected, the regression models have
low R? values (range: 3—11%): there is significant
scatter in the exposure estimates, only some of
which is explained by the independent variables
employed. Nevertheless, all models are significantly
better than the null (p-values <0.0001). Equations
in Table 1 reveal underlying trends and are not
intended for exposure prediction. In many cases,
income category is not a statistically significant
predictor of exposure, corroborating from Fig. 1
that exposures vary more by ethnicity than by
income category.

Results indicate higher primary-pollutant expo-
sures (lower ozone exposures) for nonwhites than
for whites, even after accounting for covariates such
as population density. White/nonwhite differences
in exposure concentrations for a male with median
demographic characteristics (age 7—64 years; high
school but not college education; neighborhood
population density is 2830km~% personal daily
travel distance is 13km; household income is
>$50,000) are 16-21% for benzene, DPM, 5, and
ozone; 29% for butadiene; and 40% for CrPM, s.
Analogous white/nonwhite differences for house-
hold income <$50,000 are similar for benzene,
DPM, 5, and ozone, and higher for butadiene (39%)
and CrPM,s (47%). The magnitude of these
differences is striking.

To confirm Table 1 results, separate regressions
were generated for five pseudo-random data sub-
sets, wherein survey responses were limited to the
following: (1) diary day is Sunday; (2) diary day is
Tuesday; (3) diary day is Friday; (4) household size
is four persons; and (5) employer business type has
no answer recorded. The rationale for this analysis
is that if linear regression models for the five subsets
are consistent with Table I results—which turns out
to be true—then that increases confidence in the
robustness of the findings.

Regression coefficients for population density are
greater for whites than nonwhites, indicating that
exposure differences between more- and less-dense
areas are larger for whites than for nonwhites. This
finding suggests the primary-pollutant hypothesis
that in dense regions of the SoCAB, ambient
concentrations are generally high and all individuals
receive comparatively high exposures, whereas
sparser regions contain greater concentration het-
erogeneity, thereby allowing greater exposure varia-
bility among subpopulations. More work is needed
to investigate this hypothesis. An important im-

Table 2
Example distributive justice frameworks in the context of air
pollution exposures®

Equality of outcome: Exposures should be equal for all
individuals. Central tendencies (e.g., mean values) for important
subpopulations should be equal.

Equality of health impact: Environmental health impacts (risks;
disease rates) should be equal for all individuals. Central
tendencies for important subpopulations should be equal.

Welfare-maximizing: The distribution of exposures should be
such that the population burden-of-disease is minimized.

Equality of opportunity: Individuals and subpopulations should
have equal opportunity to reduce or avoid exposures.

Fuairness: Inequality should yield the greatest benefit for the worst
off. Here, this would imply lower exposures for more susceptible
individuals. Susceptibility to air pollution may derive from
attributes such as age, socioeconomic position, pre-existing
disease, and genetics.

History: If individuals and groups with lower exposures obtained
that position fairly, then the distribution is just. If other
individuals have higher exposures, this fact is largely irrelevant.

Minimum standard: The worst-off should not fall below a certain
standard. The standard can be relative (e.g., the difference
between best- and worst-off) or absolute (e.g., a health-based
concentration standard).

Cost—benefit matching: Environmental health impacts (costs) of a
technology should be proportional to the benefits derived from
that technology (e.g., for motor vehicles: personal mobility and
access to shipped goods; for power plants: use of electricity-
consuming products and services).

4This table focuses on distributable justice (the distribution of
pollution exposures among individuals) rather than retributive
justice (correcting for historic wrongdoings) or procedural justice
(the decision-making process itself).

plication is that environmental equality concerns
hold throughout the urban area, not only in the
high-density urban core.

4. Discussion

The results presented above document environ-
mental inequality, not environmental justice. While
those two phrases are often used interchangeably,
they are distinct (Waller et al., 1999): situations can
be equal but unjust, or just but unequal. For
example, one might believe that a person who drives
more should have higher exposure to vehicle
emissions, or that a person with high susceptibility
should have low exposures. Such value judgments
are not explicitly incorporated into equality indices.
Table 2 provides example justice frameworks as
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applied to air pollution exposures. This table is
illustrative, not exhaustive; it highlights that justice
is normative and is distinct from equality.

The goal for environmental policy, of course, is to
identify and eliminate environmental injustice. An
important step towards that goal is generating
useful metrics to aid in evaluating policy options,
comparing among pollutants and locations, and
tracking progress over time. Environmental man-
agers will be better able to improve environmental
justice conditions when they can measure their own
progress and when stakeholders can hold them
accountable for firm, systematic improvements.
This paper aims to contribute to that goal.

5. Conclusion

Regression results for a new, mobility-based
exposure model indicate environmental inequality
for air pollution exposures in the South Coast, even
after accounting for covariates such as population
density. At median values for the independent
variables, white/nonwhite exposure differences are
16-40%. Compared to whites, nonwhites have
higher exposures for primary pollutants (benzene,
butadiene, chromium particles, and diesel particles)
and lower exposures for ozone.
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