
Ambient Air Pollution and Socioeconomic Status in China
Yuzhou Wang,1 Yafeng Wang,2 Hao Xu,3 Yaohui Zhao,4 and Julian D. Marshall1
1Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington, USA
2Institute of Social Survey Research, Peking University, Beijing, China
3Department of Earth System Science, Tsinghua University, Beijing, China
4National School of Development, Peking University, Beijing, China

BACKGROUND: Air pollution disparities by socioeconomic status (SES) are well documented for the United States, with most literature indicating an
inverse relationship (i.e., higher concentrations for lower-SES populations). Few studies exist for China, a country accounting for 26% of global pre-
mature deaths from ambient air pollution.

OBJECTIVE: Our objective was to test the relationship between ambient air pollution exposures and SES in China.
METHODS: We combined estimated year 2015 annual-average ambient levels of nitrogen dioxide (NO2) and fine particulate matter [PM ≤2:5 lm in
aerodynamic diameter (PM2:5)] with national demographic information. Pollution estimates were derived from a national empirical model for China
at 1-km spatial resolution; demographic estimates were derived from national gridded gross national product (GDP) per capita at 1-km resolution, and
(separately) a national representative sample of 21,095 individuals from the China Health and Retirement Longitudinal Study (CHARLS) 2015
cohort. Our use of global data on population density and cohort data on where people live helped avoid the spatial imprecision found in publicly
available census data for China. We quantified air pollution disparities among individual’s rural-to-urban migration status; SES factors (education,
occupation, and income); and minority status. We compared results using three approaches to SES measurement: individual SES score, community-
averaged SES score, and gridded GDP per capita.

RESULTS: Ambient NO2 and PM2:5 levels were higher for higher-SES populations than for lower-SES population, higher for long-standing urban resi-
dents than for rural-to-urban migrant populations, and higher for the majority ethnic group (Han) than for the average across nine minority groups.
For the three SES measurements (individual SES score, community-averaged SES score, gridded GDP per capita), a 1-interquartile range higher SES
corresponded to higher concentrations of 6–9 lg=m3 NO2 and 3–6 lg=m3 PM2:5; average concentrations for the highest and lowest 20th percentile of
SES differed by 41–89% for NO2 and 12–25% for PM2:5. This pattern held in rural and urban locations, across geographic regions, across a wide
range of spatial resolution, and for modeled vs. measured pollution concentrations.
CONCLUSIONS:Multiple analyses here reveal that in China, ambient NO2 and PM2:5 concentrations are higher for high-SES than for low-SES individ-
uals; these results are robust to multiple sensitivity analyses. Our findings are consistent with the idea that in China’s current industrialization and
urbanization stage, economic development is correlated with both SES and air pollution. To our knowledge, our study provides the most comprehen-
sive picture to date of ambient air pollution disparities in China; the results differ dramatically from results and from theories to explain conditions in
the United States. https://doi.org/10.1289/EHP9872

Introduction
Ambient air pollution causes ∼ 4million deaths per year (Cohen
et al. 2017; Lelieveld et al. 2015; Lim et al. 2012), yet the disease
burden is not evenly distributed across individuals, communities,
countries, regions, or demographic groups. Between-country dis-
parities in ambient air pollution are well documented (Brauer et al.
2016; Cohen et al. 2017); in contrast, within-country disparities,
including how ambient pollution levels correlate with socioeco-
nomic status (SES) and other demographic attributes, are poorly
studied other than in the United States and a few other high-income
countries. Much of the existing literature documents disparities for
specific locations (e.g., in a specific city). A smaller body of litera-
ture documents disparities nationwide for the United States (Bell
and Ebisu 2012; Clark et al. 2014, 2017; Liu et al. 2021; Miranda
et al. 2011). The vast majority of the literature indicates, for North
America, higher pollution levels for low-SES than for high-SES

communities and individuals (Clark et al. 2014, 2017; Hajat et al.
2015; Liu et al. 2021; Table S2 of Marshall et al. 2014; Marshall
2008); evidence for European countries is more limited and sug-
gests a mixed relationship (Hajat et al. 2015; Temam et al. 2017).
Limited knowledge exists for China or other low- or middle-
income countries (Hajat et al. 2015), where 91% of the premature
deaths from outdoor air pollution occur (26% are in China) (Cohen
et al. 2017; WHO 2021). Less than 20% of the Chinese population
lives in cities that meet the national annual fine particulate matter
[PM ≤2:5 lm in aerodynamic diameter (PM2:5)] standard (the GB
3095-2012 standard; 35lg=m3) (China MEE 2016), and none live
in cities meeting the World Health Organization’s (WHO) annual
guideline (5lg=m3) (Song et al. 2017; Xu et al. 2019a; Zhang and
Cao 2015). Publicly available census data for China are relatively
coarse [county level (县级); average per county: 0:4million peo-
ple; 2,642 km2]; this limits the potential for some census-based de-
mographic/air pollution analyses in China that, in the United
States, are common.

The environmental inequality patterns in the United States are
generally explained in part by past and present racial discrimina-
tion and race- and class-based market dynamics: Low-SES com-
munities lack social capital and political power and access and are
therefore less able to stop locally undesirable land uses such as
highways, industry, and other sources of pollution (Brulle and
Pellow 2006; Hajat et al. 2015; Lane et al. 2022; Tessum et al.
2019, 2021; Marshall et al. 2014). Longstanding residential segre-
gation by race and income adds to the potential for disparities
(Chambliss et al. 2021). Racism by private individuals (e.g., racial
covenants on the sale of property) and systemically by private com-
panies (e.g., banks’ lending practices) and by local, state, and
national government (e.g., redlining) in the past and present has
supported and accelerated exposure disparities (Bullard 2008;
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Rothstein 2017; Lane et al. 2022). The net result in the United
States is disproportionate air pollution burdens for low-SES com-
munities and individuals, with well-documented theory to explain
those disparities.

Yet, theories developed in the United States may not be appli-
cable for China and elsewhere owing to the different historical,
social, economic, political, urbanization, and industrialization
characteristics (Guo et al. 2020; Jian 2005;Ma 2010). For example,
others have found that environmental inequality patterns in
European countries are different from the United States owing to
the lower extent of social segregation and the greater tendency (rel-
ative to in the United States) for lower-SES groups to live on the
outskirts of the city (Temam et al. 2017). Urban expansion patterns
(Cesaroni et al. 2010), local housing policy (Havard et al. 2009),
and discrete choice between benefits/amenities and negative
aspects of the environment (Padilla et al. 2014) are also found to
influence the exposure inequality patterns in Europe. A study in
India proposed an environmental Kuznets curve [EKC; i.e., a
theory that environmental degradation first rises and then falls
with an increasing per capita income (Cole et al. 1997; Stern
2004;Marcotullio et al. 2005)] -like pattern (i.e., a U-shaped rela-
tionship), where marginalized communities are excluded from
negative and positive externalities of industrial development
(Kopas et al. 2020).

As theworld’s largest developing economy, China has in recent
decades experienced rapid urbanization (Liang and Yang 2019;
Zhang and Song 2003), increased income disparities (Li et al.
2013; Xie and Zhou 2014), and widespread rural-to-urban migra-
tion (Chan 2013; Chan and Zhang 1999; Zhang and Song 2003).
Secondary (manufacturing) industry represents a large proportion
of gross national product (GDP) in China (in 2018, 41% in China
vs. 19% in the United States); cities or places with more industry
and manufacturing jobs tend to be of higher income, on average,
and potentially also experience more air pollution (Chen et al.
2018; Li et al. 2019). In addition, with comparatively (relative to in
the United States, on average) larger city size and population den-
sity, more-centralized urban structure, and poorer traffic conditions
(Liu and Wang 2016; Wu et al. 2006), people in China tend to live
(on average, relative to in the United States) closer to their work-
place (Chen et al. 2008). Those strong aspects in regional and urban
form reflect differing housing preferences and civil infrastructure
(e.g., transportation systems) (Zheng and Kahn 2008); they also
reflect differences in history in China relative to the United States
[e.g., China did not experience “White flight”—an exodus of afflu-
ent White people in the United States, largely starting in the 1950s
and 1960s, from urban to suburban communities (Rothstein
2017)]. The net result is, in China, a comparatively higher concen-
tration of high-SES population in urban centers (often with higher
air pollution levels) and lower-SESpopulation in outskirts and sub-
urban areas (Guo et al. 2020; Wu 2002; Xiao 2016). These many
conditions support the hypothesis that, unlike in the United States,
in China air pollution exposures might be higher for high-SES than
for low-SES populations.

Previous studies in China have investigated air pollution in-
equality with respect to specific sources, including industrial
emissions (He et al. 2019; Ma 2010; Schoolman and Ma 2012),
emissions from electric vehicles (Ji et al. 2015), and household
consumption (Zhao et al. 2019a). Studies on ambient concentra-
tions (Guo et al. 2020; Huang et al. 2019; Li et al. 2018; Zhao
et al. 2018) have focused on a single city or yielded inconclusive
results (Xu et al. 2019b; Shen et al. 2020; Wang and Komonpipat
2020). The lack of comprehensive research on environmental in-
equality in China, including theories and national empirical stud-
ies of SES and ambient air pollution, are important gaps in the
literature.

Here we put forward an alternative hypothesis (i.e., distinct
from the EKC theory, described above) that, in China, higher-
SES populations are more exposed to ambient air pollution than
are lower-SES populations. We test the hypothesis using ambient
annual-average NO2 and PM2:5 levels in China. To test our hy-
pothesis, we conduct multiple national investigations of air pollu-
tion disparities by SES, including for individual- and area-level
measures of SES, based on ambient air pollution levels for two
pollutants: NO2 and PM2:5.

Materials and Methods
For clarity and precision, where a specific term is used from a
survey or data set, that term is provided in English and in the
original language (Mandarin).

Individual SES Characteristics and Migration Status
To obtain spatially explicit demographic information on a group of
individuals, we employ data from the 2015 China Health and
Retirement Longitudinal Study (CHARLS) (Zhao et al. 2014).
CHARLS is an interview-based nationally representative survey of
people in China ≥45 years of age and their spouses (n=21,095;
see Liu et al. 2017 for CHARLS locations). All participants in
CHARLS gave informed consent, and the protocol was approved
by the ethical review committee at PekingUniversity.We obtained
each individual’s highest education attainment (hereafter, educa-
tion), occupation, and household annual per capita income in yuan
(hereafter, income) from the survey. Education was classified as a)
illiterate, b) sishu/home school and below, c) elementary school, d)
middle school, or e) high school and above. Occupation was cate-
gorized according to people’s lifetime profession instead of the
current working status (given that some people were retired):
Individuals who have only done agricultural work (have never
done nonagricultural work for >10 d) in their lifetime were classi-
fied as engaging in agricultural work; those who have ever done
nonagricultural jobs for >10 d (no matter whether they also have
done agricultural work) were classified as engaging in nonagricul-
tural work. Income was calculated for each household (shared by
the sample individuals on the same household) and is presented as
the net post-tax income. The household total annual income
includes a) household members’ wages, bonus incomes, or pen-
sions, and b) household agricultural, self-employed activities, pub-
lic transfer, and other types of transferred income (e.g., from
parents, children, relatives). Household per capita income was cal-
culated by dividing the household total annual income by family
size.

In addition to the three SES variables that we mainly focused
on (education, occupation, income), we also investigated each
individual’s ethnicity (民族; sometimes also translated as “nation-
ality,” but referring to group identification, not citizenship) and
household per capita living expenditure (hereafter, expenditure).
According to the 2020 census (National Bureau of Statistics of
China 2021), China is officially composed of 56 ethnic groups,
with Han as the dominant group (91.1% of the total population)
and the other 55 groups as minorities (少数民族) (combined,
8.9% of the total population). Clusters of people who are ethnic
minorities are found in the bordering northwest (e.g., Uygur),
north (e.g., Mongol), northeast (e.g., Manchu), south (e.g.,
Zhuang), and southwest (e.g., Tibet), with some in the central
interior (e.g., Hui). In the CHARLS survey, there are 10 ethnic
categories: Han (汉族, 92.3% of CHARLS respondents), Hui
(回族, 0.5%), Zhuang (壮族, 1.0%), Uyghur (维吾尔族,
0.5%), Yi (彝族, 0.5%), Tibet (藏族, 0.9%), Miao (苗族,
0.6%), Mongol (蒙古族, 1.1%), Dai (傣族, 0.2%), and other
(2.6%) (CHARLS 2015). Expenditure was calculated for each
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household (household annual total expenditure divided by
family size) using the CHARLS survey. Total expenditure
included weekly expenditure on food and restaurants; monthly
expenditure on communication, utilities, transportation,
household and personal items, entertainment, and housekeep-
ers; and yearly expenditure on clothing, traveling, heating,
furniture, education, medical, fitness and beauty, automobile,
taxes and donations, and others.

We separately considered each individual’s rural/urban migra-
tion status by combining each respondent’s household location
[urban districts (区, urban) vs. rural counties (县, rural) within the
prefecture-level cities] and hukou (户口) status. Hukou is the offi-
cial household registry system that records a citizen’s location-of-
origin and determines local residence rights, such as medical care,
unemployment benefits, school enrollments, and public housing
(Chan and Zhang 1999; Zhang and Treiman 2013). Importantly,
hukou is a) typically unchanged during a person’s life even if that
person moves and b) assigned as nonagricultural (非农业户口;
i.e., urban) or agricultural (农业户口; i.e., rural). [Since 2014, the
Chinese government has in some cases initiated the canceling of
the hukou system; although the binary hukou classification still
dominates in most places, some people’s hukou is “unified resi-
dence,” i.e., a single/combined category that sidesteps the urban/ru-
ral distinction. Survey respondents who indicated unified residence
hukou (统一居民户口; n=346, 1.6%) or no hukou (没有户口;
n=31, 0.1%) have been excluded here.] Because rural-to-urban
migrants cannot enjoy many social benefits (e.g., medical care), the
hukou system discourages that migration and also puts such migrants
at a disadvantage relative to urban residents with a nonagricultural
hukou (Afridi et al. 2015; Liu 2005; Whalley and Zhang 2007; Wu
and Treiman 2007; Zhao 1999). We employed three rural/urban
migration categories: urban resident (i.e., with a nonagricultural
hukou); rural-to-urban migrant (i.e., an urban resident with an agricul-
tural hukou); and rural resident (i.e., with an agricultural hukou). [An
urban-to-rural migrant—i.e., someone who lives in a rural area but
with a nonagricultural hukou—is uncommon (<3% of our data set)
and not included in this analysis.]

We also considered population density at the individual’s
household location as a control variable in our analysis. Population
density was determined at the community level, using the popula-
tion count in the community divided by total area of the community.
The community information was collected from the CHARLS 2011
community survey (CHARLS2013).

Constructing Three SES Matrices
As described next, we obtained three SES matrices to represent
demographic conditions at the individual and areal levels in
China, and then compared the results across methods. Using mul-
tiple independent approaches to quantifying SES sheds additional
light on the questions considered and informs whether results are
robust to the methods employed.

1. An individual-level SES was derived from CHARLS data
using a standardized SES score reflecting education, occu-
pation, and income; the approach reflects factor analysis of
mixed data (FAMD), which is a principal component anal-
ysis method applicable to data sets with both quantitative
and qualitative variables (Kolenikov and Angeles 2004;
Vyas and Kumaranayake 2006). We use the “MissMDA”
package in R to handle missing values (see above for cate-
gory classifications), then “FactoMineR” to perform
FAMD: education and occupation as categorical variables,
income (log-transformed) as quantitative. An individual’s
SES (n=21,095) is defined here as the normalized scores
of the first FAMD dimension (explaining 30% of the total
variance; see Figure S1 and Table S1 for weights and

contributions for income and each category of education
and occupation). A higher score represents a higher SES.

2. An area-level SES was derived from CHARLS data by
aggregating individual SES to the community-level aver-
age. “Community” (村;社区) is a formally defined geo-
graphic unit, used in the census and for mail systems; it is
the smallest de facto administration level in China. As
defined in the 2011 (baseline year) CHARLS survey,
CHARLS individuals are from 450 communities, including
237 rural communities [also termed villages (村); located
in rural counties] and 213 urban communities (社区; i.e.,
located in urban districts).

3. A second area-level SES reflects per capita GDP (1-km2 re-
solution). These data were derived by combining year 2015
national gridded GDP predictions based on nighttime lights
and population images (Zhao et al. 2017) (1-km2 resolution)
and the WorldPop year 2015 population density data set
(Stevens et al. 2015) (30 arc seconds resolution, or ∼ 1 km2

at the equator). We resampled the population density data
set to match the coordinates of the gridded GDP data set
using a bilinear interpolation approach and then divided the
gridded GDP by the resampled population density to calcu-
late the GDP per capita. To investigate the air pollution dis-
parities at multiple spatial resolutions, we also resampled
the raster layer of GDP per capita and averaged it to different
grid sizes (2, 5, 10, 20, 50, and 100 km; after removing grid
cells with zero or missing values, the number of grid cells
for the 1-km grid and each of those six grid sizes were
n=3,861,463, n=1,058,301, n=204,565, n=61,863,
n=18,985, n=3,953, and n=1,220, respectively).

As mentioned above, one of the motivations for using three
distinct approaches was to avoid the spatial coarseness of census
data. Other motivations included shedding deeper light on the
question and informing whether the result is robust to the differ-
ent methods employed. Each of these three demographic data
sets was then combined with ambient air pollution concentra-
tions, as described next.

NO2 and PM2:5 Ambient Concentrations
For all three SES data sets, we employed as our ambient air pollution
metric the annual-average concentrations of two pollutants (NO2
and PM2:5). Pollution concentrations were derived from national
empirical models for China (Xu et al. 2019a). The models incorpo-
rated monitoring data, satellite observations, universal kriging, and
predictor data, such as land use, traffic, and meteorological data
(Table S2). Model predictions were year 2015 annual-average con-
centrations at 1-km2 resolution [9:6million cells; 10-fold cross-
validationR2: 0:78 ðNO2Þ, 0:89 ðPM2:5Þ] (Xu et al. 2019a). In sensi-
tivity analyses (below), we used the monitoring data directly [i.e.,
excluding the empiricalmodels ofXu et al. (2019a)].

For the individual-level CHARLS analyses, concentrations
were estimated using the empirical models for that individual’s
residential location (longitude and latitude recorded during the
interview). For community-level CHARLS analyses, concentra-
tions were estimated using the average individual-level concentra-
tion within each community. For GDP per capita, we resampled
the GDP per capita data set to the same grid as the pollution data
using bilinear interpolation and then matched the two data sets to
derive GDP per capita on the 1-km pollution grid. The CHARLS
demographic data, GDP per capita data, and pollution estimation
data from the empirical models all were for year 2015. For sensi-
tivity analyses regarding spatial resolution, we resampled the pol-
lution data into the 2-, 5-, 10-, 20-, 50-, and 100-km grids, as
described above for GDP per capita.
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Quantifying Air Pollution Disparities by Each SES Factor
We focused on NO2 and PM2:5. Those two pollutants were
selected because they are important and widely tracked (both are
criteria pollutants); both have important health effects associated
with exposures (e.g., Beelen et al. 2014; Kaufman et al. 2016; Lu
et al. 2015; Pope et al. 2011); and, importantly, publicly available
national models exist for the two pollutants (Xu et al. 2019a).
Investigating two pollutants provides additional testing of the hy-
pothesis investigated.

For an individual’s migration status and each factor that con-
tributes to SES (i.e., education, occupation, and income), we deter-
mined relationships with ambient concentrations, considering both
unadjusted and fully adjusted effects. Unadjusted effects were
determined by comparing the means and quantiles (10th, 25th,
50th, 75th, and 90th) of NO2 and PM2:5 concentrations for the sam-
ples in each migration and SES group (here, we grouped income
using quintiles; any missing group for each variable was also
included in our analysis). Specifically, for migration status and
SES factors, we calculated the maximum differences (both abso-
lute and relative differences, with absolute values) in NO2 and
PM2:5 concentrations between the group averages and the popula-
tion averages. We also determined the unadjusted effects for popu-
lation density at household locations (grouped into tertiles).

Adjusted effects were determined using two sets of regres-
sion models: One set comprised multivariate ordinary least
squares regression models that included only individual-level
factors (migration status, education, occupation, income, and
age) as independent variables; the other set comprised multile-
vel mixed-effects linear regression models that also included
prefecture-city (地级市; usually including both urban districts
and rural counties) random intercepts to control for city cluster-
ing effects. In the multilevel mixed-effect models, we also
included population density at the household locations as a con-
trol variable. In both models, migration status, education, and
occupation were treated as categorical variables. To achieve
normality, income data were log-transformed and then standar-
dized to the whole study population; parameter estimates
referred to a 1-unit increase in the z-score for the log of income.
All regressions were run only on individuals with complete data
[n=15,197; 72% of the CHARLS cohort; incomplete data
(n=5,898; 28%) were excluded from the regressions]; results
are reported in terms of best-estimate values and 95% confi-
dence intervals (CIs). To investigate potential bias due to miss-
ing data, we performed sensitivity tests using the multiple
imputation approach (Horton and Lipsitz 2001), which creates
several imputed data sets by replacing missing values with
imputed values and combining the results obtained from each
of them. We used the mice package in R to generate five
imputed data sets using probable means methods and then cal-
culated the pooled regression results of the five imputed data
sets for both individual-level multivariate regression models
and prefecture-city random intercepts regression models.

In sensitivity tests, we also investigated the unadjusted and
adjusted relationships between ethnicity and household per cap-
ita living expenditure and ambient concentrations. For ethnicity,
the unadjusted effects were determined for the 10 ethnic groups;
for the adjusted effects, we created a dummy variable for ethnic
minorities (i.e., individuals who are not Han), and included it in
individual-level multivariate regression models and multilevel
mixed-effects regression models with prefecture-city random
intercepts. For expenditure, the unadjusted effects were deter-
mined for each quintile; for the adjusted effects, we included
the log-transformed and standardized (to the whole study popu-
lation) expenditure in both individual-level and multilevel
models.

Metrics Quantifying Air Pollution Disparities by Individual
SES Score, Community SES Score, and Gridded GDP per
Capita
We quantified disparities using two metrics. The first metric
involved linear regressions of concentration on SES score or
GDP per capita (log scale). Here, we calculated the regression
slopes multiplied by the interquartile ranges (IQRs) of SES (SES
score, log of GDP per capita) to quantify the air pollution dispar-
ities between high- and low-SES groups. The second metric
involved the (absolute and relative) disparity in mean NO2 and
PM2:5 concentrations between the population with the highest
20% and the lowest 20% SES (population weighted for GDP per
capita). To better visualize the disparity patterns for each sub-
group of the total population (see below for subgroup classifica-
tions), we also calculated the mean pollution concentration and
mean SES (SES score, log of GDP per capita) for each 10% of
the subsample.

For the individual-level SES score, disparities were quantified
on the overall populations as well as separately for three values for
migration status. In sensitivity analyses, we separately quantified
disparities in five geographic regions in China (Figure S2); this
approach reflects geographic variability as well as, implicitly, eco-
nomic development and climate conditions. For the community-
averaged SES score, we quantified the disparities across all com-
munities and by urban communities and rural villages separately.
For gridded GDP per capita, we quantified the disparities on over-
all grids and by urban/rural grid cells. Urban/rural cells were
defined according to the spatial cities of China in 2015 from
Beijing City Lab (Long 2016) using community boundaries and
urban built-up areas. The urban/rural classifications were done
using the mask function in the Python “rasterio” package (mask
1-km gridded GDP using urban definition shapefiles). Grid cells a)
with the centers inside the urban definition shapefiles or b) selected
by Bresenham’s line algorithm (which determines which points on
a two-dimensional raster should be selected to form a close approx-
imation to a straight line between two given points) were desig-
nated as urban; all other grid cells were defined as rural. To
investigate whether the results were robust to the specific urban/
rural definition employed, we also conducted sensitivity tests
using three alternative urban/rural land classifications: a) town-
ship population density in year 2010 (Wu et al. 2015), b) a
neighborhood-level vector cellular automata model (this model
reproduces global patterns and behavior from local interactions of
cells, representing the cells as a collection of interconnected irregu-
lar geographic objects) based on density, neighborhood condition,
and other spatial variables for year 2012 (Long et al. 2016), and c) a
300-m resolution global land cover map (GLOBCOVER) data set
(Bontemps et al. 2011), which is based on satellite images. All four
urban definition shapefiles were downloaded fromBeijing City Lab
(Beijing City Lab 2014). In our approaches, individuals/commun-
ities/gridswere included in either urban or rural areas.

In addition, separately, we conducted sensitivity analyses
quantifying the disparities using six alternative spatial resolutions
from 2 to 100 km (vs. 1 km in the main analysis). The motivation
was to see whether environmental inequality patterns differed
across spatial scales of analysis.

Sensitivity Analysis Using Monitored Concentrations
To test the robustness of results using modeled concentrations,
as a sensitivity analysis we employed monitoring data directly
(i.e., excluding the empirical model). By definition, this analy-
sis was restricted to locations with a monitor (i.e., the 1-km grid
cells containing a monitor; n=1,466, see Figure S3 for the spa-
tial distribution of the monitor locations). The population-
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weighted average concentrations (in micrograms per meter
cubed) for NO2 and PM2:5 (37 and 55 lg=m3, respectively) at
monitor locations were higher than the national averages (28
and 53 lg=m3), especially for NO2. However, the GDP per cap-
ita (population weighted; in yuan) at monitor locations
(mean= 16,847;median= 13,408) was lower than the popula-
tion average (mean= 59,080;median= 24,691). Below, we give
separate results for all monitor locations (n=1,466), urban
monitor locations (n=1,076; 73% of monitors), and rural moni-
tor locations (n=390; 27%). Comparing the modeled vs. moni-
tored concentrations, the model performance was similar in
both urban and rural locations for both two pollutants [regres-
sion R2: 0:88 ðNO2Þ, 0:95 ðPM2:5Þ for urban monitor locations,
and 0:89 ðNO2Þ, 0:95 ðPM2:5Þ for rural monitor locations].

Results
Based on the individual data (CHARLS cohort), average ambient
air pollution concentrations at home locations were 24 lg=m3

(IQR: 18–31) for NO2 and 51lg=m3 (38–60) for PM2:5. Those val-
ues are several times higher than theWHO annual mean guidelines
for NO2 (10lg=m3) and PM2:5 (5lg=m3) (WHO 2021). The pro-
portion of the population exceeding the WHO guideline was 97%
for NO2 and 100% for PM2:5.

Consideration of individuals’ urban migrant status and SES
groups (Figure 1; Table S3) revealed the following. For NO2,
mean concentrations for rural residents (22lg=m3) and rural-to-
urban migrants (26lg=m3) were lower than for urban residents
(31lg=m3); for PM2:5, mean concentrations were nearly identical
for rural residents (50lg=m3) and rural-to-urban migrants (also
50lg=m3; a <2% difference), which were slightly lower than for
urban residents (55lg=m3). In univariate consideration of all three
SES variables (education, occupation, and income), NO2 and
PM2:5 concentrations were generally higher for higher-SES groups
(i.e., higher education, nonagricultural work, higher income) than
for lower-SES groups, which is consistent with the hypothesis
described in the “Introduction” section. The maximum concentra-
tion disparity percentage (with absolute value) between group
means and the population average was 28% for migrant status and
12–18% for SES groups, for NO2; for PM2:5, analogous relative
disparities were 8% and 3–7%. NO2 and PM2:5 concentrations
were both higher for individuals in middle- and high-population
density communities and lower for low population density com-
munities (Table S3). Air pollution disparities by SES variables
generally held even controlling for migrant status (Figure S4). In
individual-level fully adjusted models and city random intercept
regression models (Table S4), the generally positive relation-
ships still held (except for education in the city random intercept
model for PM2:5, which had nonsignificant negative slopes for
higher education groups), and many but not all SES variables
were statistically significant. In multiple imputation models
(Table S5), the positive relationships generally held; the regres-
sion coefficients for both individual-level models and multilevel
models did not change substantially (differences were generally
<10%).

Results by ethnicity (Tables S6 and S7) indicate that, relative
to the population-average exposure for NO2 and PM2:5 (24 and
51mg=m3, respectively), average exposures were nearly the
same for people who are Han (25 and 52mg=m3, respectively;
that finding was expected because the overall population is 92%
Han), higher for people who are Hui (39 and 67mg=m3, respec-
tively) or Uyghur (58mg=m3 for PM2:5), and lower for people in
each of the remaining seven groups [and, for Uyghur for NO2
(21mg=m3)]. (Average SES scores were higher-than-average for
people who are Hui or Uyghur, and lower-than-average for the
remaining seven minority groups; thus, results by ethnicity were

generally consistent with the finding above that average NO2 and
PM2:5 exposures in China were higher than average for upper-
SES individuals.) Considering all people in any one of the nine
ethnic minority groups, average exposures were 25% lower
(NO2) and 24% lower (PM2:5) than the overall population aver-
age. For the adjusted effects models, including ethnic minority
status as a dummy (i.e., binary) variable yielded a negative coeffi-
cient for both pollutants in the individual-level fully adjusted
models and a nonsignificant coefficient in the city random inter-
cept models. That finding implies that the lower ambient concen-
trations for ethnic minorities are mainly due to the concentration
differences in the cities they live (i.e., a between-city, rather than
a within-city, effect).

The unadjusted results by expenditure (Table S8) indicate that
NO2 concentration was higher for individuals with higher ex-
penditure (23 vs. 26lg=m3, respectively, for the 20% of individu-
als with the lowest and highest expenditure); there was no
significant relationship between PM2:5 concentration and expend-
iture (50–51lg=m3 for all quintiles of expenditure); the mean
SES scores were higher for individuals with higher expenditure.
For the adjusted effects models (Table S7), expenditure had a
slightly positive coefficient for NO2 in the city random intercept
model, a negative coefficient for PM2:5 in the individual-level
model, and nonsignificant coefficients in the two other models
(PM2:5, city-random-intercept; NO2 individual-level model). The
generally positive relationships for urban migration status and the
three major SES variables (education, occupation, and income)
still held after controlling for ethnicity and expenditure.

The three SES approaches (Figure 2A–C) revealed a consist-
ent pattern: Ambient air pollution concentrations at home loca-
tions were higher for high-SES than for low-SES individuals or
areas across methods, pollutants, and urban–rural status, again
suggesting that the findings here are generally consistent with the
hypothesis offered in the “Introduction” section. According to
linear regression models of concentrations vs. SES, at 1-km reso-
lution, a 1-IQR higher SES corresponded to a higher concentra-
tion of 5:6 lg=m3 NO2 (95% CI: 5.4, 5.9), 3:5 lg=m3 PM2:5 (95%
CI: 3.0, 3.9) for individual-level data (Table S9); 9:4 lg=m3 NO2
(95% CI: 7.9, 10.8), 6:0lg=m3 PM2:5 (95% CI: 3.3, 8.8) for
community-level data (Table S10); and 7:3lg=m3 NO2 (95% CI:
7.1, 7.4), 4:1 lg=m3 PM2:5 (95% CI: 4.1, 4.2) for GDP per capita
(log scale) (Table S11). Those results, rounded and presented as
a range, suggest that a 1-IQR higher SES is associated with a
range of 6–9 lg=m3 NO2 and 3–6lg=m3 PM2:5 higher concentra-
tion of air pollution (expressed as a percentage of the population-
weighted mean exposure: 23–39% NO2, 7–12% PM2:5). Results
by subregion (Figure S5, Table S12) were generally consistent
with Figure 2, with a small number of exceptions (PM2:5 in cen-
tral and northern China).

Disparities were larger for community-level than for
individual-level data (Tables S9 and S10). For example, average
concentrations for the highest and lowest 20th percentage of SES
differed by 41% ðNO2Þ and 12% ðPM2:5Þ for individual-level
CHARLS data, compared with 89% ðNO2Þ and 25% ðPM2:5Þ for
community-aggregated CHARLS data. This finding reflects in
part that within- and between-community variabilities of SES
were similar in magnitude, whereas variability in modeled con-
centrations was less within-community than between-community
(Table S13). Area-level data reflect the average of the commu-
nity, and averaging reduces the overall variability more for SES
than for ambient concentrations. Air pollution concentrations
and SES were higher in urban than rural areas. The positive con-
centration–SES relationships (p<2×10−16) held even when
using different definitions of urban/rural land (Table S11 and
Figure S6).
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Our core result—the positive relationships between ambient
concentrations and SES—persisted even for dramatically different
spatial units of analysis. Specifically, when averaging GDP per
capita and air pollution concentrations across grid sizes from 1 to
100 km (i.e., from 1 to 10,000 km2), slopes of best-fit lines (Figure 3;
Figure S7) remained positive (p<1×10−10). In general, disparities
decreased with coarser resolution. This result is likely because the
coarser resolution smooths out the spatial clustering of SES (Figure
S8); similar findings were noted in the United States for modeled
PM2:5 concentrations (Paolella et al. 2018) and, generally, for empiri-
calmodels ofNO2 and PM2:5 (Clark et al. in prep).

Our results were robust to the use of monitored rather than
modeled pollution concentrations (Tables S14 and S15).
Specifically, the core result (positive relationship between SES
and concentrations) generally held when using monitored or

modeled concentrations at all monitored locations and at rural
monitor locations; the results were not significant at urban moni-
tored locations (after controlling for population density, the
results for NO2 became significant at urban monitored locations).
For both pollutants, quantifications of that relationship (the rela-
tive concentration differences between highest and lowest 20%
SES) differed <3% between monitored vs. measured data (Tables
S14 and S15). That agreement in part reflects the strength of the
models employed [R2: 0:78 ðNO2Þ, 0:89 ðPM2:5Þ; root-mean-
square-error: 5:9 lg=m3 ðNO2Þ, 6:3 lg=m3 ðPM2:5Þ].

Discussion
Across several analyses, we found a positive relationship
between SES and ambient air pollution in China: On average,

Figure 1. Estimated ambient (A) NO2 and (B) PM2:5 concentration by individual’s rural-to-urban migration status, education, occupation, and income quintile. Box
and whiskers indicate the 10th, 25th, 50th, 75th, and 90th percentiles and the mean (red circle). Income levels are displayed in the lower right of (B). The percentage
numbers of individuals in each subgroup are annotated at the bottom of (A). Note: NO2, nitrogen dioxide; PM2:5, fine particulate matter, RMB, Renminbi.
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NO2 and PM2:5 concentrations are higher than average for
higher-SES populations and lower than average for lower-SES,
rural-to-urban migrant, and ethnic minority populations. These
findings are remarkably robust, holding for urban and rural loca-
tions, across nearly all geographic subregions within China, for

three measures of SES (one individual measure, two areal meas-
ures), for modeled vs. measured pollution concentrations, for
multiple definitions of urban vs. rural, and across a 100-fold
range (in terms of area: 10,000-fold range) of spatial resolutions.
Findings here are consistent with the hypothesis described in the

Figure 2. Relationship between SES and ambient NO2 and PM2:5 concentrations, based on (A) individual data, (B) areal data derived by aggregating the indi-
vidual data to the community-level, and (C) areal data derived from national gridded GDP and world population density data sets. Data are plotted by urban–
rural status, reflecting available data for individual data (A), three groups (rural resident, urban resident, and rural-to-urban migrant); for areal data (B,C), two
groups (rural, urban). SES values reflect available data: (A) individual SES, (B) community-averaged SES, and (C) GDP per capita. Each plotted point repre-
sents the mean pollution concentration for 10% of the subsample. For example, in (A), the left-most red point represents the 10% of the rural residents with the
lowest standardized SES score, and the right-most blue point represents the 10% of the rural-to-urban migrants with the highest standardized SES score. Plots
also display best-fit lines and kernel densities. All of the best-fit lines have a positive slope {p<0:002 in all cases, except one [PM2:5 for urban residents in
(A); p=0:48]; for NO2 in (B) and all conditions in (C), p<1× 10−6}, indicating that in all cases considered, higher SES is correlated with higher concentra-
tions of ambient air pollution. Note: GDP, gross national product; NO2, nitrogen dioxide; PM2:5, fine particulate matter; SES, socioeconomic status.

Figure 3. Relationship between pollution concentration and log GDP per capita, by grid cell size. Each point shows the mean log GDP per capita and mean
pollution concentration of every 10% of population; each segment shows the IQR of pollution concentration. Best-fit lines by pollutant are shown in each plot.
Note: GDP, gross national product; IQR, interquartile range; NO2, nitrogen dioxide; PM2:5, fine particulate matter.
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“Introduction” section, that ambient air pollution exposures are
higher for higher-SES than for low-SES individuals and areas.

Prior findings on air pollution and demographics in China (e.g.,
Norbäck et al. 2018; Xu et al. 2019b; Shen et al. 2020; Wang and
Komonpipat 2020) have generally been inconclusive; in some
cases, they propose an EKC relationship (e.g., for urban areas;
Zhao et al. 2019b). (In general, this prior work employed census
demographic data.) In contrast, findings here are consistent and
monotonic.

Disparities are larger for NO2 than for PM2:5 (Tables S10–
S13), likely reflecting the greater spatial variability for NO2 than
PM2:5. NO2 is a traffic-related pollutant of predominantly urban or-
igin and is influenced by local emission sources; PM2:5 has long-
range and secondary components and thus varies at a regional level
(Eeftens et al. 2015; Wang et al. 2020b). The larger disparities for
NO2 than for PM2:5 are consistent with results from other countries
(Clark et al. 2014, 2017; Liu et al. 2021; Su et al. 2009), likely
reflecting spatial aspects of the two pollutants [i.e., greater spatial
variability for NO2 than for PM2:5, owing to differences in the
emission sources and atmospheric chemistry (e.g., the strong re-
gional secondary component for PM2:5)], which held in other coun-
tries too (Kim et al. 2020;Wang et al. 2020b).

We mainly explored rural-to-urban migration status and three
SES measures in our study; in addition, we also considered the
effects of ethnicity and of family living expenditures. Other
unmeasured factors (e.g., industrial structure, housing price, and
hukou policies in different cities and regions) may have also influ-
enced our results. For example, on average, cities that rely more on
secondary industry (i.e., manufacturing) may tend to have more
industrial pollution (PM2:5) than cities that mainly rely on tertiary
industry (i.e., services), so even at the same income/GDP per capita
level, the ambient pollution for their residents are different. Future
work could explore those factors that are unmeasured here.

The positive pollution–SES relationship in China is generally
the reverse of patterns typically reported in the literature, which in
part reflects that the existing literature focuses mostly on the
United States and, to a lesser extent, other high-income countries.
This difference in results likely reflects the different cultures, eco-
nomic and political systems, history, demographics, level of indus-
trialization, and urban structure in China vs. the United States.
Several examples of such are described in the “Introduction” sec-
tion. For example, differences in urban characteristics tend to
increase the proportion of a) high-SES populations that live close
to the urban center and b) low-SES populations that live in the sub-
urbs and exurbs (Guo et al. 2020;Wu 2002; Xiao 2016).

Our findings likely have implications for other locations
besides China. Specifically, for countries that are (like China) rela-
tively homogenous racially andwith economic development that is
relatively recent (past decades), results here suggest that exposures
may follow a different pattern than has been observed for the
United States. Future work can usefully explore patterns in other
contexts to develop the underlying framework and look at changes
over time. For example, without further evidence, we would be
hesitant to ascribe our hypothesis to other points in time. If future
economic development and urbanization is concurrent with
improvements in air pollution—especially in high- and upper-
middle-income counties in China (Wang et al. 2020a)—then cur-
rent patterns of environmental inequality may change over time. In
recent years, with economic reform increasing public pressures for
clean production, increased public awareness of air pollution, and
more complete and rigid environmental protection laws, both air
pollution level and GDP growth rate are decreasing in China.
Industries are moving from urban areas to rural/suburbs and from
major cities to surrounding cities (Zhao et al. 2014); these patterns
may, in the future, weaken or shift the relationship between SES

and air pollution that is reported here. In addition, with continued
rural-to-urbanmigration, lower-SES populations may increasingly
move to the heavily polluted megacities (e.g., Beijing, Shanghai,
Guangzhou) for work, which could also weaken the positive pollu-
tion–SES relationship. Environmental justice theory in the United
States (Bullard 2008; Lerner 2010) and elsewhere (Castán Broto
and Sanzana Calvet 2020; Valenzuela-Fuentes 2021) highlights
the concept of sacrifice zones—locations that lack political power
and receive disproportionately high environmental risks. This is a
critical aspect of how relationships here might shift over time that
will depend in part on inequities in political power and whether
sacrifice zones becomemore prevalent.

Limitations of our methods include the following. First, we
investigated ambient concentrations at home locations rather than
personal exposures. This approach, which is common in the litera-
ture, omits factors such as mobility (e.g., travel for work and recre-
ation), occupational exposure, and near-source exposures (e.g.,
environmental tobacco smoke; time spent on-roadways; indoor use
of solid fuels for cooking, heating, or lighting) (Baccarelli et al.
2014; Baumgartner et al. 2011; Du et al. 2010, 2018; Sun et al.
2017; Venners et al. 2001; Xu et al. 1996; Zhao et al. 2006; Zhang
et al. 2002; Marshall et al. 2003, 2006; Pant et al. 2017; Milà et al.
2018). Future work could shed important additional insight by con-
sidering those factors. [Some of the factors are already well stud-
ied, e.g., indoor use of solid fuels for cooking generally happens in
lower-income, not in higher-income, households (Chan et al. 2017;
Duan et al. 2014; Muller and Yan 2018).] Second, two of the three
SES metrics are derived from CHARLS, which is a cohort of indi-
viduals≥45 years of age that is representative of that age group but
is imperfectly representative of the overall (i.e., all ages) Chinese
population (Table S16). (The third SES metric, derived from
gridded GDP data, does not face this limitation.) Third, our methods
do not reveal which emission sources drive the concentrations and
inequalities; future work could usefully investigate this question
(Geng et al. 2021; Ji et al. 2015; Rao et al. 2021; Zhao et al. 2019a).
Fourth, our methods do not employ a spatial regression approach;
future work could shed additional insight by accounting for the spa-
tial clustering of air pollution (Zhang et al. 2021). Fifth, we studied
conditions in China and not in other countries. Future studies could
usefully address this point by, for example, using a unified definition
of SES and exposures to compare acrossmultiple countries.

Our study describes a framework of air pollution inequality in
China and uses several approaches to testify our hypothesis.
Strengths of our approach include use of multiple data sets and
lines of evidence, including multiple approaches to estimating
SES; investigation nationally, comprehensively, and for several
subpopulations (e.g., subnational region; migrant status) using
consistent methods; comparing across two pollutants, with good
spatial precision; use of modeled as well as measured concentra-
tions; use of global population density data and cohort data on dem-
ographics and home-location, which improves the spatial precision
of the demographic information and decreases the spatial aggrega-
tion problem (Paolella et al. 2018; Bowen 2002; Maantay 2002;
Clark et al. in prep); and sensitivity analyses that consider multiple
perturbations to the core analyses [e.g., a 100-fold (by area, a
10,000-fold) change in spatial resolution; use of different defini-
tions of urban vs. rural]. The multiple approaches and sensitivity
analyses reveal similar core findings, which adds confidence
regarding the robustness of findings.

Conclusion
This study finds that for two important air pollutants (NO2 and
PM2:5), average ambient exposures in China are higher for
higher-SES than for lower-SES populations and higher for long-
standing urban residents than for rural-to-urban migrant
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populations. The results are robust to using multiple individual-
and areal-level SES approaches, in both rural and urban locations,
across geographies, across a 100-fold range of spatial resolution,
and for monitored vs. modeled ambient concentrations. The dis-
parity for NO2 is larger than for PM2:5.

Our results are consistent with our hypothesis, which is the
opposite of most of the existing environmental justice literature;
findings here likely reflect correlations among economic develop-
ment, SES, and pollution (i.e., economic development increases
SES and pollution levels). Our findings may have implications
for locations outside of China, especially for other low- and
middle-income countries.
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