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ABSTRACT: Growing evidence links traffic-related air pollution
(TRAP) to adverse health effects. We designed an innovative and
extensive mobile monitoring campaign to characterize TRAP
exposure levels for the Adult Changes in Thought (ACT) study, a
Seattle-based cohort. The campaign measured particle number
concentration (PNC) to capture ultrafine particles (UFP), black
carbon (BC), nitrogen dioxide (NO2), fine particulate matter
(PM2.5), and carbon dioxide (CO2) at 309 roadside sites within a
large, 1200 land km2 (463 mi2) area representative of the cohort.
We collected about 29 two-minute measurements at each site
during all seasons, days of the week, and most times of the day over
a 1-year period. Validation showed good agreement between our
BC, NO2, and PM2.5 measurements and monitoring agency sites (R2 = 0.68−0.73). Universal kriging−partial least squares models of
annual average pollutant concentrations had cross-validated mean square error-based R2 (and root mean square error) values of 0.77
(1177 pt/cm3) for PNC, 0.60 (102 ng/m3) for BC, 0.77 (1.3 ppb) for NO2, 0.70 (0.3 μg/m3) for PM2.5, and 0.51 (4.2 ppm) for
CO2. Overall, we found that the design of this extensive campaign captured the spatial pollutant variations well and these were
explained by sensible land use features, including those related to traffic.
KEYWORDS: mobile monitoring, air pollution, particle number count (PNC), ultrafine particles (UFP), black carbon (BC),
nitrogen dioxide (NO2), exposure assessment, epidemiology

1. INTRODUCTION
An extensive body of evidence has linked air pollution to
adverse health effects including respiratory, cardiovascular, and
mortality outcomes.1 Recent evidence has begun to link traffic-
related air pollution (TRAP) exposure to cognitive function
among various populations, including the elderly.2−6 While
TRAP is a complex mixture that varies over time and space,
pollutants include ultrafine particles (UFPs; typically defined
as particles with aerodynamic diameter ≤ 100 nm), black
carbon (BC), oxides of nitrogen including nitrogen dioxide
(NO2), and carbon dioxide (CO2).

7 In particular, UFPs have
increasingly been associated with health outcomes, including
elevated levels of neurotoxicity and systemic inflammation
when compared to larger particles.8−14

To date, however, much of the epidemiology air pollution
research has been limited to the federally defined criteria air
pollutants, monitored nationwide through the EPA’s regulatory
Air Quality System (AQS) monitoring network. This network
is supported by local monitoring agencies and has measured
criteria pollutant levels throughout the US since the 1990s,
although none specifically include UFPs.15 Furthermore, this

network is spatially sparse and thus fails to capture the spatial
variability of more quickly decaying pollutants, including many
TRAPs.16 The Seattle Census Urbanized Area, for example,
averages about 1 AQS monitor every 174 km2 (∼14 active
monitors within about 2,440 km2), most of which measure the
mass concentration of fine particulate matter with a diameter
of less than 2.5 μm (PM2.5) and BC.

17,18

Mobile monitoring campaigns for assessing air pollution
exposure have been used since at least the 1970s and have
become increasingly common in recent years in an effort to
address the limitations of traditional fixed-site monitoring
approaches.19−26 Typically, a vehicle is equipped with air
monitors capable of measuring pollutants with high temporal
resolution. The platform is used to repeatedly collect short-
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term samples at predefined sites. Past work has shown that
repeated short-term air pollution samples can be used to

calculate unbiased long-term averages, thus reducing the need
for continuous fixed-site monitoring.19,20,27 Because the

Figure 1. Mobile monitoring routes (n = 309 sites along nine routes) and jittered ACT cohort locations (n = 10,330 unique sites). The inset map
shows the monitoring area within the Washington (WA) state.

Environmental Science & Technology pubs.acs.org/est Article

https://doi.org/10.1021/acs.est.2c01077
Environ. Sci. Technol. 2022, 56, 11460−11472

11461

https://pubs.acs.org/doi/10.1021/acs.est.2c01077?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.2c01077?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.2c01077?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.2c01077?fig=fig1&ref=pdf
pubs.acs.org/est?ref=pdf
https://doi.org/10.1021/acs.est.2c01077?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


sampling duration at individual sites can be quite short,
campaigns can increase their spatial coverage with a single
platform, thus making this approach more time- and cost-
efficient than traditional fixed-site monitoring.
Still, the designs of past mobile monitoring campaigns have

arguably limited their epidemiologic application. Importantly,
most campaigns have been sampled during limited time
periods, for example, weekday business hours during one to
three seasons.21,28−30 We previously showed that these limited
sampling campaigns likely result in biased long-term exposure
estimates because they do not capture the high temporal
variability of many TRAPs and that the exact degree of bias
varies (is not consistent) across sites.27 Heterogeneous diurnal
patterns in TRAP exposures have been recently shown to
occur on a fine spatial scale, motivating the need for a balanced
sampling design to reduce biases in the annual average
estimates.31 Additionally, many campaigns have sampled along
nonresidential areas such as highways and industrial areas
where air pollution levels may be much higher than the levels
that most people are exposed to. Most have also collected
nonstationary (mobile) on-road samples rather than stationary
samples along the side of the road closer to participants’
residences. While nonstationary designs increase spatial
coverage, further work is needed to demonstrate whether
these are representative of residential human exposure
levels.21,32 The additional bias that likely results from these
limited sampling schemes is unclear.
To address the limitations of past campaigns, we designed an

extensive, multipollutant mobile monitoring campaign to
characterize TRAP exposure levels for the Adult Changes in
Thought (ACT) study cohort. ACT is a long-standing,
prospective cohort study that has been investigating aging
and brain health in the greater Seattle area since 1995.33 The
campaign measured TRAP at 309 stationary roadside sites
representative of the cohort in a temporally balanced approach
throughout the course of a year. The goal of this paper is to
describe the design and implementation of a novel mobile
monitoring methodology explicitly developed to produce
relatively unbiased exposure predictions of annual average
exposures to TRAP for the ACT cohort. To the best of our
knowledge, this is one of the most extensive mobile monitoring
campaigns conducted in terms of the pollutants measured, the
spatial coverage and resolution, and the campaign duration and
sampling frequency.

2. METHODS
Repeated short-term measurements of TRAP, including
particle number concentration (PNC), BC, NO2, PM2.5, and
CO2, were collected over a 1-year period at 309 roadside sites
in the Puget Sound region. Sites were spatially and geo-
graphically similar to ACT cohort residences in the area. A
temporally balanced, year-long driving schedule that measured
TRAP during all seasons, days of the week, and most times of
the day enabled us to estimate unbiased annual average
estimates at the site level. Details are described below.
2.1. Spatial Compatibility of the Selected Roadside

Sites and the ACT Cohort.We selected a mobile monitoring
region in the greater Seattle, WA area that was roughly 1200
land km2 (463 mi2; Figure 1). The monitoring region was
composed of Census Tracts where most of the ACT cohort
(87% of the 11,904 locations) had historically resided between
1989 and 2018. This large region fell in western King County
and southwest Snohomish County, and it included a variety of

urban and rural areas with various land uses including
residential, industrial, commercial, and downtown areas. We
used the Location-Allocation tool in ArcMap (ArcGIS v.
10.5.1)34 to select 304 sites within the monitoring region that
were representative of the ACT cohort (approximately one
monitoring site per 33 participant locations; see the
Supporting Information [SI], Note S1 for details). Sites were
spatially distributed so that they covered all parts of the
monitoring region. The exact sites selected were meant to
minimize the distance between the monitoring and cohort
locations. Five additional sites were collocations at nearby
agency air quality monitoring sites measuring pollutants similar
to our platform (see details below). In total, there were 309
sites, most of which were on A4 (local and neighborhood
roads; n = 282, 91%) and A3 (county and single-lane state
highways; n = 27, 9%) roads. The average (SD) distance
between a cohort location and the nearest monitoring site was
611 (397) m. The monitoring sites and cohort locations had
similar distributions of various TRAP-related covariates (e.g.,
proximity to roadways, airport, railyard), indicating good
spatial compatibility (Figure S1).35

2.2. Fixed Routes. We used ArcMap’s Network Analyst
New Route tool34 and Google Maps36 to develop nine fixed
routes based on the 309 monitoring sites. Each route ranged
from 75 to 168 km (47−104 mi) in length and had 28−40
sites (Table S1). All routes started and ended at the University
of Washington and were intended to maximize residential
driving coverage (i.e., reduce highway driving and driving on
the same roads). Routes were downloaded from Google Maps
to a smartphone and Garmin GPS Navigation System, and
navigation was set to replicate the same route each time
regardless of traffic conditions.
2.3. Sampling Schedule. Sampling was conducted from

March 2019 through March 2020 during all seasons and days
of the week between the hours of 5 AM and 11 PM. Our
previous work has shown that this balanced but slightly
reduced sampling schedule that takes driver safety and
operational logistics into consideration should still generally
produce unbiased annual averages.27 This work further showed
that the sampling temporality rather than the visit sampling
duration has the largest impact on the accuracy of the annual
average estimates and that common sampling designs like
weekday business and rush hours regularly produce more
biased annual averages. To increase temporal coverage, routes
were started at different times of the day and driven in both
clockwise and counterclockwise directions. A single route was
driven each day (∼4−8 drive hours). Make-up site visits were
conducted throughout the study to resample sites with missing
readings (i.e., due to instrumentation or driver errors). Make-
up visits occurred during similar times as the originally
scheduled sampling time (i.e., season, day of the week, general
time of day).
Twenty-eight 2 min samples were scheduled to be collected

at each site while the vehicle was parked along the side of the
road. This design choice was justified by our analyses of 1 min
measurements from a near-road and a background agency site
in Seattle. These analyses showed that at least 25 two-minute
samples were sufficient to produce annual average estimates
with a low average percent error (see Figure S2). There was
only a negligible improvement in annual average estimates
when the sampling duration was extended from 2 to 60 min.
2.4. Data Collection. We equipped a Toyota Prius hybrid

vehicle with fast-response (1−60 s), high-quality instrumenta-
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tion that measured various particles and gas pollutants.
Pollutants included BC (AethLabs MA200), NO2 (Aerodyne
Research Inc. CAPS), PM2.5 (Radiance Research M903
nephelometer), CO2 (Li-Cor LI-850), and PNC with various
instruments, including two TSI P-TRAK 8525s (one
unscreened, the primary instrument in this analysis, and one
with a diffusion screen), a TSI NanoScan 3910, and Testo
DiSCmini. PNC serves as a surrogate for UFP since most
particles by count are smaller than 100 nm.37 The discussion
further comments on the use of various PNC instruments. CO
measurements were also collected, but these were not included
in this analysis because they did not meet our quality
standards. The platform additionally collected temperature,
relative humidity, and global positioning with real-time
tracking. Table S2 has instrumentation details, including the
manufacturer-reported size ranges for the four PNC instru-
ments. We had duplicates (back-ups) of every instrument type
that were periodically collocated for quality assurance purposes
(see Quality Assurance and Quality Control section). Note S2
and Figures S3 and S4 have additional details on the platform
configuration and data collection procedures.
2.5. Quality Assurance and Quality Control. We

conducted various quality assurance and quality control
(QAQC) activities throughout the study period to ensure
the reliability and integrity of our data. Activities included
calibrating gas instruments; checking particle instruments for
zero concentration responses; assessing collocated instruments
for agreement; inspecting time series data for concentration
pattern anomalies; and dropping readings associated with
instrument error codes or those outside the instrument
measurement range. Section S1.3 has additional details.
2.6. Site Visit Summaries. All data analyses were

conducted in R (v 3.6.2, using RStudio v 1.2.5033; Note S3
has computing details).38

We calculated the median pollutant concentrations for each
2 min site visit. While means can be highly influenced by large
concentration deviations (which may be important in some
settings), medians are more robust to outliers and may better
capture the typical values of skewed data.
We estimated PM2.5 concentrations from nephelometer

readings using a calibration curve fit to agency monitoring data
between 1998 and 2017 (eq S1). Nephelometer light scattering
is strongly correlated with PM2.5 and has been used in the
Puget Sound region to monitor air quality since 1967.39 We fit
the model using daily average measurements from nine
nonindustrial agency air monitoring sites in the region where
both PM2.5 (using federal reference methods) and nephel-
ometer light scattering data were collected. We excluded the
years 2008−2009 due to nephelometer instrumentation issues
noted by the local monitoring agency. The model’s leave-one-
site-out cross-validated R2 and root mean square error (RMSE)
were 0.92 and 1.97 μg/m3, respectively.
Median visit and annual average concentrations for BC,

NO2, and PM2.5 estimated from these data were compared
against estimates from the five agency air monitoring
collocation sites.
2.7. Spatial and Temporal Variability. We ran analysis

of variance (ANOVA) models for each pollutant to character-
ize the breakdown of the total variability of the site visit-level
data over space, time, and within the site. The dependent
variable for each pollutant model was the median 2 min visit
concentration (n = 8,697−8,999 measurements per pollutant),
while the independent variables were the site (n = 309), day of

the week (n = 7), hour of the day (n = 21), and season (n = 4)
in that order. Any remaining variability (random or residual
temporal) within a given site and time is captured by the
residual term.
2.8. Estimation of Annual Averages. We calculated

winsorized annual average concentrations for each site such
that concentrations below the 5th and above the 95th quantile
concentration were substituted with the 5th and 95th quantile
concentrations, respectively (the mean of winsorized medians).
This was done to reduce the influence of large outlier
concentrations on the annual average. In sensitivity analyses,
we calculated nonwinsorized averages (the mean of medians)
and medians (the median of medians).
2.9. Annual Average Prediction Models. The develop-

ment of annual average prediction models allows the
predictions to be used for epidemiologic inference. The data
were randomly split into a training-validation (90%, n = 278
sites) and a test (10%, n = 31 sites) set. The training-validation
set was used to select the 191 geographic covariate predictors
(e.g., land use, roadway proximity) that had sufficient
variability and a limited number of outliers from 350 original
covariates (see Note S5 for details). These were summarized
using pollutant-specific partial least squares (PLS) regression
components. We built pollutant-specific universal kriging (UK)
models for annual average concentrations, using log-trans-
formed concentrations as the dependent variable and the first
three geocovariate PLS principal components as the
independent variables (eq 1). We used UK rather than land
use regression (LUR) alone since the UK uses geospatial
smoothing to capture any residual spatial correlation not
otherwise captured by LUR. Past work has used a similar UK-
PLS modeling approach.40,41 We selected the kriging vario-
gram model for the geostatistical structure using the
fit.variogram function in the gstat42 R (v 3.6.2,
using RStudio v 1.2.5033)43 package. The models were

= + +
=

Log Conc Z( )
m

M

m m
1 (1)

where Conc is the pollutant concentration, Zm is the PLS
principal component scores (M = 3), α and θm are model
coefficients, and ε is the residual term with mean zero and a
modeled geostatistical structure.
We used RMSE and mean square error (MSE)-based R2 to

evaluate the performance of each pollutant model on the native
scale using 10-fold cross-validation and the test sites. We used
MSE-based R2 instead of traditional, regression-based R2
because it evaluates whether predictions and observations are
the same (around the one-to-one line) such that it assesses
both bias and variation around the one-to-one line. Regression-
based R2, on the other hand, solely assesses whether pairs of
observations are linearly associated, regardless of whether
observations are the same or not.

3. RESULTS
3.1. Data Collected. After dropping visit concentrations

that did not meet the quality assurance standards (0.61%), the
final analyses included over 70,000 2 min median visit
measurements (almost 9000 samples per instrument) collected
over the course of 288 drive days from 309 monitoring sites
(Table S7). Sites were sampled an average of 29 times, ranging
from 26 to 35 times. Due to the logistical constraints of
sampling 309 sites with one platform along nine fixed routes,
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some sites were visited fewer times of the day than other sites,
though sampling times were still well distributed throughout
the day (e.g., morning, afternoon, and evening; see Figure S7).
Site Visits in the SI, Section S2.1 have additional details on the
visit-level pollutant concentrations used to estimate site annual
averages.
3.2. Quality Assurance and Quality Control. Median 2

min BC, NO2, and PM2.5 measurements from mobile
monitoring were generally in agreement with measurements
from agency sites (MSE-based R2: BC = 0.69, NO2 = 0.71,
PM2.5 = 0.61; Figure S12). Annual average estimates from our
mobile monitoring campaign measurements were similar to
annual average estimates from comparable 2 min samples at

collocation agency monitoring sites, and these were in
moderate agreement with the true annual average concen-
trations at those sites based on all of the available data during
the study period (Figure S13).
While we were unable to compare CO2 or PNC measure-

ments to regulatory or agency-operated observations, duplicate
instrument collocations generally showed good agreement
(Figure S6). Additionally, CO2 instruments performed well
during periodic calibration assessments and PNC instruments
during zero checks (Table S3, Figure S5).
3.3. Spatial and Temporal Variability. We conducted

pollutant-specific ANOVA analyses of winsorized site visit
concentrations to characterize the relative spatial and temporal

Figure 2. Pollutant prediction surfaces for the monitoring region.
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variability of the 2 min concentrations. These results indicated
that most of the concentration variability occurred within sites
rather than across sites or over time (Figure S14). PNC had
the most spatial variability (17%), followed by NO2 (12%), BC
(8%), CO2 (5%), and PM2.5 (2%). Unlike other pollutants,
PNC had more spatial than temporal variability. CO2 (27%)
had the most temporal variability, followed by NO2 (24%), BC
(17%), PM2.5 (14%), and PNC (7%). After accounting for the
site and time, PM2.5 had the highest within-site variability (i.e.,
random or residual temporal variability; 84% of the total),
followed by PNC from the P-TRAK (76%), BC (75%), CO2
(69%), and finally, NO2 (64%). Figure S14 shows similar
results for other PNC instruments.
3.4. Annual Average Estimates. Estimated annual

average pollutant concentrations across all monitoring sites
are shown in Figure S15. There was a four to sixfold difference
between the lowest and highest site concentrations of PNC,
NO2, and BC. On the other hand, PM2.5 had a twofold
difference across sites, while CO2 varied little across sites.
Among PNC instruments, the screened P-TRAK measured the
lowest concentrations and had the smallest variability; the P-
TRAK, which did not screen out particles below 36 nm, had
the second-highest averages with approximately double the
values and more variability. The DisSCmini and Nanoscan had
higher medians, more variability, and more outlying annual
average concentrations. Figures S16 and S17 map these
concentrations. The locations with the highest BC, NO2, and
PNC concentrations were near the Seattle urban core. High
PNC concentration sites were additionally located at more
southern locations near the area’s major airport, the Seattle-
Tacoma (Sea-Tac) International Airport. Sites with elevated
PM2.5 and CO2 levels were dispersed throughout the
monitoring region.
3.5. Prediction Models. Based on the training-validation

set, the first three PLS principal components captured between
49 and 51% of the observed concentration variability for each
pollutant model. Loadings from the first PLS principal
component indicated that the normalized difference vegetation
index (NDVI), length of bus routes, major roadways, land
development, population density, and truck routes were strong
predictors of air pollution in the region, with some pollutants,
for example, PNC, being more influenced by these land
features (Figure S18). Cross-validated MSE-based R2 (and
RMSE) values for UK-PLS models were 0.77 (1,177 pt/cm3)
for PNC, 0.60 (102 ng/m3) for BC, 0.77 (1.3 ppb) for NO2,
0.70 (0.3 μg/m3) for PM2.5, and 0.51 (4.2 ppm) for CO2
(Table S9). In the independent test set, these results differed
somewhat with estimates of MSE-based R2 (and RMSE) of
0.78 (815 pt/cm3) for PNC, 0.80 (60 ng/m3) for BC, 0.84 (0.9
ppb) for NO2, 0.73 (0.3 μg/m3) for PM2.5, and 0.77 (2.7 ppm)
for CO2. Sensitivity analyses using the mean of median and the
median of median annual averages performed similarly or
slightly lower due to changes in the number of influential
points and/or reduced overall variability (Table S9). These
model performances are reflected in the generally good
agreement between the estimates and cross-validated pre-
dictions. Figure S19 compares site estimates to their respective
model predictions and shows that most of the predictions are
evenly scattered around the 1−1 line (not systematically
biased) and that predictions are generally within 25% of the
observed values. There were a few high PNC observations that
were underpredicted by the models by more than 25%.

Model predictions for the monitoring region are shown in
Figure 2. While PM2.5 and CO2 are fairly spatially
homogeneous, PNC, BC, and NO2 (traditional TRAPs)
show higher concentrations in the urban core and along
major roads. In addition, PNC shows a higher concentration
near the area’s major airport. All of the PNC instruments
reflect this broad pattern, although there are differences across
instruments in the areas with the highest predicted
concentrations (Figure S20).
Pearson correlation coefficients (R) between all pollutant

model predictions at the 309 monitoring sites are shown in
Figure S21. Different PNC instruments were generally well
correlated with each other (R = 0.85−0.97). Overall, PNC
from the P-TRAK, BC, and NO2 was well correlated with each
other (R = 0.81−0.92) and moderately correlated with PM2.5
and CO2 (R = 0.39−0.70). CO2 and PM2.5 were moderately
correlated with each other (R = 0.46). The biggest deviations
from a linear association were evident for the predicted high
concentrations from the DiSCmini; this was particularly
apparent in its relationship with BC (R = 0.72), NO2 (R =
0.68), PM2.5 (R = 0.38), and CO2 (R = 0.29).

4. DISCUSSION
In this paper, we describe the design of an innovative mobile
monitoring campaign specifically developed to estimate
relatively unbiased, highly spatially resolved, long-term TRAP
exposures in an epidemiologic cohort. To date, this is one of
the most extensive mobile monitoring campaigns conducted in
terms of the pollutants measured (five pollutants measured
with eight different instruments, not including CO) spatial
coverage (∼1200 land km2), sampling density (309 monitoring
sites along nine routes or 1 monitor every 3.9 land km2), and
sampling frequency (7 days a week; 288 days over a 1-year
period) and duration (∼5 driving hours per day between the
hours of 5 AM and 11 PM). The spatial resolution achieved by
this campaign was significantly greater than would be expected
from fixed agency monitoring approaches. We had one
monitor per 3.9 km2 of the land area rather than 183 km2
(there were six agency sites in the monitoring area), almost a
50-fold increase. Furthermore, these monitoring locations were
carefully selected to be as representative as possible of our
population of interest, the ACT cohort, and this included the
decision to collect stationary samples off the side of the road
rather than purely rely on roadway data collected while in
driving. The average (SD) distance from an ACT cohort
location to the nearest monitoring site was 611 (397) m rather
than 5805 (2805) m to an AQS site, almost a 10-fold
difference. Monitor proximity to prediction (i.e., cohort)
locations, both in terms of geographic and covariate distance, is
an important determinant of accurate exposure assessment.44,45

For instance, closer monitor proximity to prediction sites can
improve UK model predictions since these incorporate spatial
correlation into LUR predictions. Additionally, we previously
showed that more temporally balanced sampling across hours,
days of the week, and seasons is expected to produce more
accurate and largely unbiased annual average estimates as
compared to more common campaigns with reduced temporal
coverage.27

A unique aspect of this campaign was the collection of
stationary samples along the side of the road. While most other
campaigns have only collected nonstationary, on-road samples,
various studies have shown that mobile samples are generally
higher in concentration than stationary samples.21,46−49 It has
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not yet been documented how to responsibly use nonsta-
tionary data in epidemiologic applications. Among the
relatively few campaigns that have collected stationary rather
than mobile measurements alone, most have sampled for
longer than 2 min (about 15−60 min per measurement).50
Our analyses indicated that shorter sampling periods produce
comparably good estimates without adding excessive amounts
of stationary sampling time to mobile monitoring campaigns
(Figure S2). Our use of a hybrid vehicle meant that the vehicle
was operating by a battery with the engine off during roadside
stop measurement periods, thus reducing the possibility of self-
contamination.
ANOVA model results indicate differences across pollutants

in terms of their spatial and temporal variability. This finding is
particularly relevant for short-term mobile monitoring
campaigns, which can be designed to adequately capture the
variability of the pollutants of interest. These findings suggest
that repeated sampling at any given site is crucial since most of
the variability for all measured pollutants was seen within sites,
even after adjusting for predictable temporal factors (season,
day of week, and hour of day). Following that, all pollutants
other than PNC had relatively more temporal than spatial
variability. Campaigns measuring these pollutants may thus
benefit by inclusion of more temporally balanced site visits.
PNC, on the other hand, has slightly more spatial than
temporal variability, suggesting that both are important. The
implementation of these concepts for epidemiologic exposure
assessment should translate to reduced exposure misclassifica-
tion. Overall, our results are in line with past literature that has
shown differing spatial and temporal contrasts across
pollutants,51,52 though our work increases the robustness of
these findings using a more spatially resolved, multipollutant
dataset that includes less commonly measured PNC.
The findings from this campaign demonstrate the region’s

generally low air pollution levels that result from relatively low
regional emissions of TRAP. The ranges of annual concen-
trations across sites for PM2.5 (3.3−6.3 μg/m3) and NO2 (3.9−
23 ppb) were well below the National Ambient Air Quality
Standards (NAAQS) annual average levels of 12 μg/m3 and 53
ppb, respectively.53 Mean annual PNC (∼7000 [range: 4000−
18,000] pt/cm3) and BC (∼600 [range: 270−1,500] ng/m3)
site concentrations were lower than what others have reported
in cities throughout the world where mean study values range
from roughly 6000−47,000 PNC pt/cm3 and 400−14,000 BC
ng/m3 (PNC;21,47,48,54−67 BC19,21,48,57,58,63,67−79). While CO2
site concentrations (416−455 ppm) were above the 2019
global average of 412 ppb,80 they were in line with past work
noting elevated carbon footprint levels in dense, high-income
cities and affluent suburbs.81,82 Still, the high concentration
variability seen across sites for pollutants like PNC, BC, and
NO2 suggests that future epidemiological cohort analyses may
have more power to observe health effects from these
pollutants than those that are less spatially variable, for
example, PM2.5 and CO2.
The similarity between BC, NO2, and PM2.5 measurements

from our campaign and collocated agency monitoring sites
confirms that our campaign estimates were generally accurate.
Some of the discrepancies between the two monitoring
approaches may be due to differences in the sampling
instrumentation, the exact sampling location, and quality
assurance and quality control procedures. Furthermore,
duplicate CO2 and PNC instrument collocations generally
showed good agreement (Figure S6). CO2 calibrations and

PNC zero checks additionally showed good performance
(Table S3, Figure S5).
We observed elevated annual average pollutant levels near

areas with low green space (as quantified by NDVI), bus
routes, major roadways, and impervious surfaces. These
findings are generally in line with past work.83

While future mobile monitoring campaigns may be guided
by the design and findings from this study, it is notable that the
unique geographical, meteorological, and source characteristics
of different airsheds may produce slightly different results.
These results do highlight, however, the importance of
collecting multipollutant measurements, particularly in urban
or other areas characterized by major emission sources such as
airports or railroad systems, which may be important
contributors to local and/or regional air pollution levels.
This is particularly true for PNC given the limited monitoring
data available and its unique spatial and temporal patterns.
More generally, multipollutant exposure assessment is a
growing interest in the field of air pollution epidemiol-
ogy.51,84−87

While UFPs are generally characterized as particles under
100 nm in diameter, this definition is not standardized and
varies from instrument to instrument as well as study to study.
Since most particles by count are in the smaller size range with
few above 100 nm,37 PNC should adequately characterize
UFPs. Moreover, the collection of PNC from multiple
instruments in a field setting is unique to this study. PNC
measures from different instruments were strongly correlated
with each other, and they produced broadly similar spatial
surfaces, strengthening our confidence in the quality of our
measurements. Differences in the reported PNC levels across
instruments, however, can be attributed to multiple factors
including differences in technology, each technology’s unique
particle size detection efficacy, and built-in calibration (if
present), all of which impact the reported particle size ranges
and concentrations of each instrument. Differences across
PNC instruments in the predicted absolute concentrations as
well as overall spatial surfaces highlight these differences. By
comparing PNC levels from the unscreened and screened P-
TRAK, for example, we see that roughly half of the measured
(and predicted) particles are between 20 and 36 nm (Figure
S20). Furthermore, these smaller particles are more concen-
trated near the area’s major airport, the Sea-Tac International
Airport. The DiSCmini also captures this rise in PNC near the
airport but shows much lower relative concentrations else-
where, suggesting that it measures smaller particles well.
Reasons could include the different measurement technology
as well as the manufacturer’s reported lower particle size cut of
10 nm. The NanoScan total concentration, on the other hand,
reports concentrations that are roughly 50% higher than the
unscreened P-TRAK, with elevated PNC levels near the
airport, but also in other parts of the monitoring region,
including south of the airport along major roadways and at the
Seattle urban core. Elevated PNC levels are thus predicted
from the NanoScan in a larger area of the monitoring region. It
is not initially clear from this analysis why the P-TRAK may
result in less spatially variable results across time periods when
compared to other instruments (Figures S8−S11). Knowing
that this instrument (although popular in the field) does not
effectively capture very small particles (<20 nm), we
hypothesize that these smallest particles are much more
variable in space. This might explain why we see more
variability in the NanoScan and DiSCmini, both of which have
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lower size cuts of 10 nm. The greater spatial variability of these
smallest particles is consistent with the spatial variability of the
likely sources of the smallest UFPs and their rapid
agglomeration to larger sizes. Without conducting a more in-
depth particle size distribution analysis (for example, in a
controlled chamber environment), however, it is unclear
exactly which instrument features impact the reported
measurements and to what degree.
It is an open question whether the use of different PNC

instruments across epidemiologic studies makes cross-study
comparisons and coherent causal determinations difficult or
whether these differences still produce interpretable findings
for the field as a whole.88 We observed, for example, a slightly
nonlinear relationship between the DiSCmini and all other
PNC instruments when the predicted concentrations were
high (Figure S21). A nonlinear trend was also present when
comparing the BC, NO2, PM2.5, and CO2 predictions to those
from the DiSCmini but less so when comparing these to the
PNC predictions from other instruments. Furthermore, we will
be able to characterize size-specific exposure surfaces, sources,
and health effects by using size-resolved particle counts from
the NanoScan (13 size bins, data not shown) or by looking at
the differences between the unscreened and screened P-

TRAKs, where the minimum sizes are 20 and 36 nm,
respectively.
A feature of mobile monitoring campaigns is their reliance

on repeated, short-term samples to achieve increased spatial
coverage when compared to traditional long-term monitoring
approaches. Since we collected about 29 2 min samples from
each of our 309 sites (about an hour of data at each site), we
recognize that the resulting annual average site estimates are
noisy. Still, with MSE-based R2 values of 0.77 for PNC and
0.60 for BC, our models performed better than many other
models that are based on short-term stationary and nonsta-
tionary monitoring campaigns (R2 of approximately 0.13−0.72
for PNC21,47,48,54,55,58−61,63−67,72,89−95 and 0.12−0.86 for
BC).21,58,63,67,72,75,76,79 While other design features across
studies could be responsible for some of the variability in R2

values, Figure 3 shows that (traditional) long-term stationary
monitoring studies almost always perform better than both
short-term nonstationary and stationary monitoring, both of
which perform like one another. Our performance is clearly
higher than the bulk of other short-term stationary studies for
PNC and near the higher end of the performance scale for BC.
This improved performance is important given the cost and

Figure 3. Cross-validated model R2 estimates from this study and other PNC21,47,48,54,55,58−67,72,89−94,96 and BC21,58,63,67−79 studies. Studies are
stratified by whether the sampling type was traditional, fixed-site sampling (long-term stationary), short-term mobile monitoring campaigns that
collected on-road data while in motion (short-term nonstationary), or short-term mobile monitoring campaigns that collected data while stopped
(short-term stationary). The figure does not include Saha et al. (2021),95 who used a mixed sampling approach for PNC from multiple sources (R2:
0.54−0.72). The horizontal dashed line is the R2 for this study. Plots show the average R2 from a study if multiple models were presented without a
clear primary model.
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challenges of measuring PNC using stationary sampling
designs.
Figures S22 and S23 highlight some important monitoring

design features that are unique to this study, which we
hypothesize are responsible for our improved performances.
For PNC, Saha et al. (2019) reported that studies that collect
short-term stationary samples like ours have generally sampled
between 60 and 644 sites, sampled each site between 15 min
and 3 h at a time, and visited each site between 1 and 5 times.
Similarly, BC studies like this one have generally sampled 26−
161 sites, sampled each site for about 30 min, and visited each
site about 2−3 times. Campaigns with more sites have
generally collected fewer repeat site visits. Since we visited
each site for shorter periods of time (2 min), this allowed us to
collect more repeat site visits (approximately 29) at more sites
(309) than what most short-term stationary studies have
achieved. While our resulting total site sampling durations
(∼58 min) were similar to other short-term stationary studies,
we captured more temporal variability by sampling year-
around during all days of the week and most times of the day, a
limitation of most past campaigns. In terms of our modeling
approach, we focused on annual average site concentrations
from winsorized observations. This is a longer averaging period
than what most other studies have reported and one that
reduces the variability of the observations to focus on the
spatial contrasts of interest. This could have resulted in better
performing models than had we modeled concentrations
without aggregating them to annual averages. Additionally,
some of the models compared here are spatiotemporal
approaches that model shorter-term repeated measures rather
than longer-term site averages. This is in line with past work
showing that mobile models can sometimes poorly explain
their own noisy measurements, but that the same model can
better explain more stable longer-term concentrations.21,27,97

This impact of concentration variability on model perform-
ances is seen in our sensitivity analyses. Calculating annual
averages from nonwinsorized observations, for example,
generally resulted in slightly lower-performing PNC and
PM2.5 models due to the inclusion of more influential points
in the models. Using a measure more robust to extreme
observations, the annual average median produced lower-
performing CO2 models due to the further reduction in
variability. Still, we reported good out-of-sample MSE-based R2
estimates, which better characterize a model’s predictive
performance at new locations and are generally lower than
the in-sample regression-based R2 estimates that many studies
report. We estimated these higher model performances despite
the lower air pollution levels in our monitoring region, which
can make it harder to get good prediction performance due to
reduced variability (e.g., CO2 and PM2.5).
Finally, our monitoring network was larger and denser than

most similar studies. This allowed us to better capture the
concentration variability across a larger geographic area, which
included hotspots that may have otherwise been missed by
more sparse monitoring networks.
When thinking about epidemiologic application, this 2019−

2020 surface may be sufficient for assessing cohort exposures
near this time. Air pollution studies generally use shorter-term
exposure as an indicator of longer-term exposure,5 although a
few have developed methods for extrapolating surfaces over
time.7−14 Exposure assessment using the models developed in
this study will need to be justified by the specific epidemiologic
investigation.

Overall, these results demonstrate how this campaign design
captured the spatial pollutant variations in the region. We
expect that these data will produce robust and representative
annual average TRAP exposures for the ACT cohort and that
this type of design should be considered for future
epidemiologic cohort applications. The next steps include
applying these prediction models to the cohort and conducting
inferential analyses to determine the association of these
pollutants with brain health. The rich dataset from this
extensive campaign also provides an excellent foundation for
investigating many important questions about how to best
design mobile monitoring campaigns for application to
subsequent epidemiologic studies.
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