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ABSTRACT: Land use regression (LUR) models are widely
applied to estimate intra-urban air pollution concentrations.
National-scale LURs typically employ predictors from multiple
curated geodatabases at neighborhood scales. In this study, we
instead developed national NO2 models relying on innovative
street-level predictors extracted from Google Street View [GSV]
imagery. Using machine learning (random forest), we developed
two types of models: (1) GSV-only models, which use only GSV
features, and (2) GSV + OMI models, which also include satellite
observations of NO2. Our results suggest that street view imagery
alone may provide sufficient information to explain NO2 variation.
Satellite observations can improve model performance, but the
contribution decreases as more images are available. Random 10-
fold cross-validation R2 of our best models were 0.88 (GSV-only) and 0.91 (GSV + OMI)�a performance that is comparable to
traditional LUR approaches. Importantly, our models show that street-level features might have the potential to better capture intra-
urban variation of NO2 pollution than traditional LUR. Collectively, our findings indicate that street view image-based modeling has
great potential for building large-scale air quality models under a unified framework. Toward that goal, we describe a cost-effective
image sampling strategy for future studies based on a systematic evaluation of image availability and model performance.
KEYWORDS: empirical models, exposure assessment, air quality, image sampling and processing, computer vision, machine learning

■ INTRODUCTION
Nitrogen dioxide (NO2) is an important traffic-related air
pollutant (TRAP) and a criteria pollutant. NO2 has been
associated with a wide range of adverse health effects, including
premature mortality, asthma, lung cancer, and cardiovascular
disease.1−6 As a short-lived pollutant, NO2 concentrations
decay rapidly near emission sources, with published estimates
of typical distance-decay gradients ranging from <500 to
<2000 m, depending on the atmospheric dispersion con-
ditions.7−10 Capturing intra-urban variations of NO2 concen-
trations is essential for accurately assessing human exposure to
NO2 and the corresponding health outcomes.

11,12 Among the
many efforts to improve the spatial resolution of air quality
models, land use regression (LUR) has been frequently applied
as a cost-effective way to estimate fine-scale ambient air
pollutant concentrations.13−16 According to a review, LUR was
the most popular method for NOx studies in the last decade.

17

National LUR models have been developed for, e.g., the
United States,18−21 Australia,22,23 Europe,24,25 and China.26,27

Traditional LUR models rely on predictors collected from
curated GIS-derived databases.13,28 For example, Kim et al.
collected geographic variables from 11 categories to build
national air quality models, including traffic, population, land
use, elevation, emissions, and satellite estimates.18 Larkin et al.

developed a global NO2 LUR model using satellite estimates
and land use variables, including normalized difference
vegetation index, impervious surface, road length, and emission
sources.29 However, the availability of curated GIS-derived
databases may vary across jurisdictions,30 and preprocessing
geographic predictors originating from various data sources can
be a labor-intensive process. Additionally, there is evidence
that traditional GIS variables may not capture street-level
features that may be important determinants of air quality.11,31

In recent years, innovative image data sources (e.g., street
view imagery, high-resolution satellite imagery) have emerged
as possible tools to capture hyperlocal characteristics of the
natural and built environment. Image-based data may be
promising for replacing or augmenting traditional LUR
predictors32,33 when enabled by imagery processing techniques
(i.e., computer vision) and advanced modeling (e.g., machine
learning).34 For example, information (e.g., traffic, land use,
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built environment features) provided by traditional LUR
predictors are also encoded in high-resolution digital images35

and can be extracted and quantified via advanced computer
vision techniques. Compared to traditional curated geo-
databases, image data sources allow consistent and uniform
data collection and processing across jurisdictions.
As an emerging research topic, a small number of studies

have explored using these new data sources to build empirical
air quality models.32,33,36−38 For example, Lu et al. compared
national empirical models of six criteria pollutants using
traditional LUR variables versus microscale variables (e.g.,
street view imagery, point of interest, local climate zones).32

Similar model performance was achieved using the various
combinations of variables, suggesting that microscale variables
could be a suitable substitute for traditional predictors.
Another study trained convolutional neural networks (CNN)
on Google Maps satellite and street-level images, together with
traditional LUR variables, to predict ultrafine particle (UFP)
and black carbon (BC) concentrations.33 Those results suggest
that images may capture similar features as traditional GIS
predictors while also allowing for the inclusion of higher-
resolution (i.e., street-level) features that traditional GIS
variables lack.37 Another notable trend in recent air quality
modeling studies is the adoption of advanced machine learning
approaches to improve model performance, including random
forest,39−41 gradient boosting,42,43 artificial neural net-
work,44−46 and hybrid algorithms.47,48

Our previous study successfully developed single-city LUR
models solely using street view images.36 In this study, we scale
this approach to develop national NO2 models for 2007−2019
using street view images and machine learning algorithms.
Using the Environmental Protection Agency (EPA) fixed-site
network as a basis (dependent variable), we employed the
same image processing protocol developed in our previous
study36 to extract street-level features for modeling. We
developed two types of random forest models: (1) using
Google Street View (GSV) imagery, and (2) using GSV
features plus satellite observations of NO2 tropospheric vertical
columns. To our knowledge, this is the first national NO2
model which is based on street view imagery. We systemati-
cally assess the impact of GSV image availability on model
performance, which may provide important evidence for

optimal image sampling strategies for future image-based air
quality modeling studies.

■ MATERIALS AND METHODS
Modeling Variables. Figure 1 shows the sampling and

processing procedure for preparing variables for modeling. We
collected annual average NO2 concentrations at EPA monitors
across the contiguous U.S. during 2007−2019 from the EPA
AQS data set. For predictor variables, we used street-level
features extracted from GSV images and satellite observations
of NO2 tropospheric column density. In this paper, we use the
term “GSV image” to refer to GSV panoramic images with
unique image IDs. Each unique “GSV image” has four flat
images corresponding to the four cardinal directions.
GSV Image-Derived Variables. We downloaded 336,544

GSV flat images within 500 m of EPA NO2 monitors. For
image collection and processing, we followed a similar
procedure as detailed in our previous study.36 Specifically,
we created 100 m × 100 m grids within 500 m of each EPA
monitor and retrieved the metadata for all GSV images within
the grid cells. To improve temporal consistency between the
NO2 observations and GSV features, we constrained the
selection of GSV images such that only images taken during
the same year or within the previous 4 years of the NO2
observations were downloaded and processed. Further details
about the choice of image inclusion by year are explained in
the modeling approach section. After image retrieval, we used a
deep learning model called Pyramid Scene Parsing Network
(PSPNet),49 to extract GSV features through image semantic
segmentation (i.e., each pixel of the image is assigned to a
feature category). A total of 150 GSV features were extracted
through PSPNet processing. To improve the model
interpretation, we removed features that are unrelated to air
pollution (47 variables (Table S1) remained for model
development). We categorized GSV features into seven
subgroups: built environment (n = 8), transport network (n
= 8), transport vehicles (n = 9), natural (n = 8), vegetation (n
= 6), water (n = 6), and human (n = 2). To tabulate GSV
features for modeling, we stratified the GSV images into
different buffer radii. Within each buffer radius, we calculated
the mean percentage of GSV features to represent the
surrounding natural and built environment characteristics.

Figure 1. NO2 measurement and GSV locations for the national NO2 models. (A) Spatial distribution of NO2 EPA monitors and GSV images
within 500 m of monitors. (B) Example of GSV features extracted via image semantic segmentation. (C) Illustration of spatiotemporal variation in
GSV image availability for one EPA monitor.
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Unless specified otherwise, we used 250 and 500 m buffer radii
as the default for modeling.
Satellite Variable.We also retrieved satellite observations of

NO2 from the Ozone Monitoring Instrument (OMI). OMI
was launched in 2004 on the Aura platform and had a nadir
footprint of approximately 13 km × 24 km.50 Many studies
have demonstrated the predictive power of satellite-based
variables in NO2 models.

19,21,43,51 Some studies found that
directly adopting the satellite column density into the LUR
model is sufficient for modeling, suggesting that the extra step
for estimating the column-to-surface ratio may be unneces-
sary.20,22 In our study, we directly used the satellite
observations (column density) at the EPA sites as an additional
model predictor. We obtained OMI NO2 tropospheric column
density from the OMI L3 product (OMI/Aura NO2
Tropospheric, Stratospheric & Total Columns MINDS Daily
L3 Global Gridded 0.25° × 0.25°)52 provided by the NASA
Goddard Earth Sciences Data and Information Services Center
(GESDISC). For data quality control, we used the cloud-
screened tropospheric vertical column density with effective
cloud fraction (ECF) <0.3, solar zenith angle (SZA) <85°, and
the primary summary quality flag indicating good data.

Modeling Approach. Since GSV images are not updated
at a uniform rate across regions, the density of available images
in the vicinity of NO2 monitors varies depending on the site
location and year. Figure 1C demonstrates the spatiotemporal
variation of image availability using one EPA site for
illustration; here (as with many locations), image availability
varies by year, and in extreme cases, there may be no images
for certain years. To systematically analyze the impact of GSV
image availability on model performance, we designed five
scenarios for temporal matching of images as model inputs
(see Table S2). The strictest scenario (i.e., scenario 1) uses
only GSV images from the same year of the NO2 observations.
Since the built environment changes slowly in developed
countries such as the U.S., we relaxed the temporal match
criteria in other scenarios. The relaxed scenarios (i.e., scenarios
2−5) further include GSV images from the previous 1−4 years
before the NO2 observations. As a result, the data set for a
stricter scenario (i.e., fewer years) is always a subset of the
more relaxed scenario. Data summaries for each scenario are
shown in Table S2. Once all model variables were
preprocessed, we developed two types of random forest
models: (1) GSV-only models, which solely relied on GSV
features, and (2) GSV + OMI models, which used both GSV
features and the OMI variable. Both models included the year
of NO2 observation as a dummy variable in the model.

Model Evaluation. To compare model performance
among different scenarios, we report cross-validation (CV)
R2, mean absolute error (MAE), and root-mean-squared error
(RMSE). Our default cross-validation approach was a random
10-fold cross-validation for which all NO2 records were
randomly divided into 10 subsets. Each subset was sequentially
held out as the test set, a random forest model was trained with
the remaining nine subsets, and model performance was
evaluated on the unseen test set. We iterated this process for
each subset and calculated the overall R2 after all subsets were
predicted. In addition to the conventional random 10-fold
cross-validation, we also report two additional cross-validation
strategies: spatial hold out and temporal hold out. More details
are in the Supporting Information (SI).

Sensitivity Analysis for Image Sampling Strategies. In
addition to exploring the influence of temporal matching

criteria for image−monitor pairs, we also examined the impact
of image availability on model performance using different
image sampling strategies. Our base models downloaded all
available images; in this sensitivity analysis, we limited the
number of GSV images retrieved for each 100 m × 100 m grid
within the 500 m buffer of NO2 monitors. We chose thresholds
of 1, 2, or 3 GSV panoramic images (i.e., 4, 8, or 12 GSV flat
images) for each grid cell. In this paper, we refer to these
models as image-limited models. We refer to models with no
image inclusion threshold, i.e., including all GSV images
available within the grid cell for modeling, as image-unlimited
models. For image-limited models, when multiple images from
different years were available, we chose images with the best
NO2-GSV temporal match. We also examined image sampling
strategies among different sampling grid sizes. We compared
150 m × 150 m, 200 m × 200 m, and 250 m × 250 m grids.
Direct comparison between image-unlimited and image-limited
models was feasible within the same temporal matching
scenario because the model training size remained the same
among different sampling strategies.

■ RESULTS AND DISCUSSION
Summary of Model Inputs. We collected 4867 unique

NO2 annual average records for the contiguous U.S. during the
13-year study period. NO2 concentrations declined over time
(Figure S1); the number of NO2 EPA monitors slightly
increased from 356 stations in 2007 to 407 in 2019 (average
374 stations/year during the study period).
GSV image availability varies across regions and years (see

Figure S2). Hence, not every NO2 site in every year has
sufficient GSV images for model training. By including images
from neighboring years, we were able to include a larger
training data set while striving to capture similar built
environment characteristics to the target year. In scenario 1,
only 42% of NO2 annual records had one or more images for
the target year within 250 m of the monitor. Google started
collecting street view images in 2007; image availability at EPA
monitors varied by year. We found that 51% of NO2 monitors
had GSV images within 250 m in 2007; however, very few EPA
monitors had images in 2008−2010 (e.g., only five locations
had images in 2010). Relatively more images were collected in
2011, but the number of NO2-GSV pairs dropped again from
2012 to 2014. In more recent years, the number of available
GSV images generally increased. By relaxing the requirement
for an exact temporal match (e.g., in scenario 5), far more
images are available for modeling, leading to a more balanced
training set across years. Overall, 72% of NO2 annual records
were successfully paired with GSV features in scenario 5.
Among these GSV-NO2 pairs, the median (P10/P25/P75/
P90) of GSV images within 500 m of one EPA monitor was 53
(12/26/104/164).
Figure S3 shows the spatial distribution of NO2-GSV pairs

among years for scenario 5. GSV image availability near NO2
monitors increased from early years to the present. Variation in
GSV image availability among monitor sites also increased, i.e.,
for a given year, some monitors include hundreds of images
while others only have a few images. We also examined the
spatial distribution of NO2 monitors, which were excluded
from modeling due to insufficient images, and found that
monitors located around the Rocky Mountains have the fewest
GSV images. In general, the EPA locates NO2 monitors for a
variety of purposes (e.g., near-road monitoring, area-wide
monitoring, or to protect susceptible and vulnerable
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populations). Table S3 shows the distribution of NO2
monitors by urbanicity (i.e., urban/suburban/rural) using
2019 for illustration: of the 407 monitors, 45% were located in
urban areas versus 28% (suburban) and 27% (rural). For
context, the U.S. population is 32% urban, 47% suburban, and
22% rural. Because of how GSV images are collected, more
images were available in urban than in other areas: the
proportion of monitors having GSV images within 500 m in
scenario 5 was 96% for urban areas, 84% for suburban areas,
and 38% for rural areas. Detailed descriptive statistics of GSV
features for NO2 monitors by urbanicity are listed in Table S4.

Model Results of Image-Unlimited Models. Using the
image-unlimited models (i.e., including all images), we
compared model performance among the different NO2-GSV
temporal match scenarios and investigated the ranking of
feature importance among models.

Model Performance. Figure 2A shows the results of the
random 10-fold cross-validation for both GSV-only and GSV +
OMI models. Figure S4 shows the corresponding results for
MAE and RMSE. Full model performance is shown in Table 1.
Both GSV-only and GSV + OMI models showed increasing
performance from scenario 1 to scenario 5. With the addition
of satellite observations, the GSV + OMI models outperformed
GSV-only models in all scenarios. In the strictest scenario, the
GSV-only model showed moderate performance (random 10-
fold CV R2: 0.50; MAE: 2.95 ppb; RMSE: 3.90 ppb), while the
corresponding GSV + OMI model showed improved results
(random 10-fold CV R2: 0.69; MAE: 2.26 ppb; RMSE: 3.05
ppb). However, the advantage of adding the satellite-based
data gradually narrowed when more images were included in
the model. From scenario 1 to scenario 2, the GSV-only model
showed a dramatic jump in model fit, with CV R2 increasing by
0.26. As more images were included in the model, the model

Figure 2. Comparison of random 10-fold cross-validation R2 between GSV-only and GSV + OMI models. Panel (A) shows the results of image-
unlimited models, while panel (B) shows the results of image-unlimited models with constrained training sizes. The training sizes of models in
panels (A) and (B) are shown in the bar chart within panel (B). Panel (A) also shows the feature importance score of the OMI variable in the GSV
+ OMI models among the five scenarios. Both panels (A) and (B) show results for five scenarios, while subplots in panels (C) to (F) only show
results by scenario 5 from models in panel (A). Panels (C) and (D) show hexagonal binned plots of model predictions versus observations. The
color reflects the number of data points within each hexagon. Panels (E) and (F) show the rank of feature importance in the random forest models.
Results of other scenarios are shown in Figures S5 and S7.
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performance increased but plateaued by scenario 5. Corre-
spondingly, the difference in the random 10-fold CV R2
between GSV + OMI models and GSV-only models decreased
from 0.18 in scenario 1 to 0.02 in scenario 5. A similar
decreasing trend was observed for the feature importance of
the OMI variable in the GSV + OMI models. Both the GSV-
only model (10-fold CV R2: 0.88; MAE: 1.25 ppb; RMSE: 1.88
ppb) and GSV + OMI model (10-fold CV R2: 0.91; MAE: 1.13
ppb; RMSE: 1.69 ppb) achieved the best performance in
scenario 5, where the advantage of the GSV + OMI model over
the GSV-only model became marginal. Compared to other
national NO2 modeling studies (R2: 0.72∼0.91),18,21,32,53 the
performance of our best models was consistent with or better
than previous efforts. Our results indicate that with sufficient
images, GSV imagery alone may explain the variation of long-
term national NO2 concentrations.
Relaxing the temporal matching criteria for GSV-NO2 pairs

increased both the number of GSV images included in the
model and the available GSV-NO2 pairs for model training. To
separate the effects of the two factors, we further constrained
the training size of each scenario by choosing the same NO2
records for model development. Figure 2B illustrates that when
limited to the same training data (i.e., the same NO2
observations), adding more GSV images to the model still
increases model performance significantly. For example, 10-
fold CV R2 for the GSV-only model in scenario 5 increased by
0.25 compared to scenario 1. Comparatively, the increase for
models without constraints in training size was 0.37. As
expected, the model performance was worse when we limited
the training data size, and a larger gap between GSV-only and
GSV + OMI models can be observed. The best model fits
decreased to 0.76 for the GSV-only model and 0.82 for the
GSV + OMI model. Full results are shown in Table S5.
We examined the model performance by comparing model

predictions versus observations. Figure 2C,D illustrates the
results for scenario 5, while the full results are shown in Figure
S5. Overall, the trendlines for model predictions versus
observations are closer to the 1:1 line when including more
images (i.e., moving from scenario 1 to scenario 5). In scenario
5, both GSV-only and GSV + OMI models show good
agreement between the predicted and observed NO2
concentrations. No distinctive spatial pattern was observed in
terms of monitors with the lowest or highest errors (Figure
S6).
Rank of Feature Importance. Feature importance scores

(Figure 2E,F) suggest that traffic-related features were the
largest contributors to our NO2 predictions. Generally,
transport vehicle variables contributed the most, followed by

transport network and built environment variables. This result
is important as traditional GIS-derived variables are not able to
resolve some of these differences (e.g., transport vehicles vs
transport network) that imagery was able to identify. This may
be important as some parts of the urban environment are fixed
(e.g., buildings, roads), while others are transient (e.g.,
vehicles); policy solutions may differ depending on the nature
of these features.
The granularity of GSV features allowed further comparison

among different components of the urban environment. Figure
S8 shows disaggregated model predictors using the top 10
features for illustration. The OMI variable was always the
strongest single predictor in our GSV + OMI models. In
scenario 1, the feature importance score of the OMI variable
was 0.40, while the second highest score was only 0.06 for car.
However, when we added more images into the model, the
contribution of satellite data decreased dramatically, and GSV
features contributed more to the models overall. This finding
may be partially explained by the different spatial resolutions of
GSV features and the OMI variable. The satellite observations
have a coarser resolution (relative to GSV images) and thus
contribute information on regional trends. Our preliminary
analysis of an OMI-only model (i.e., using the OMI variable as
the only predictor) showed that OMI alone could explain
around half of the NO2 variation (CV R2: 0.49; MAE: 3.09
ppb; RMSE: 4.08 ppb). To further capture spatial trends of
NO2, predictors with much higher spatial resolution are
needed.
Among GSV features, the most important features in both

GSV-only and GSV + OMI models included transport vehicles
(car, truck), transport network (sidewalk), built environment
(wall, building), and vegetation (grass). These features have
plausible explanations for inclusion in our models, e.g., traffic-
related features reflect emission sources, built environment
features may be associated with activity centers and pollution
dispersion, and green spaces are typically low-emission areas.
We examined how GSV features influence our models through
accumulated local effects plots using several important features
and the GSV-only model for illustration. As shown in Figure
S9, car, truck, building, wall, and sidewalk positively contribute
to NO2 pollution, while grass has a negative contribution.
Comparison of Different Cross-Validation Strategies.

Besides the conventional random 10-fold cross-validation, we
used two additional cross-validation strategies, i.e., splitting the
training and testing set spatially or temporally (full details are
described in the SI). Briefly, we found that temporal cross-
validation achieved a similar performance as the random cross-
validation approach (Figure S10). However, spatial cross-
validation showed degraded performance, especially for the
GSV-only models (CV R2: 0.46; MAE: 3.05 ppb; RMSE: 4.04
ppb). The GSV + OMI model (CV R2: 0.59; MAE: 2.62 ppb;
RMSE: 3.52 ppb) showed slightly better performance,
indicating improved model generalizability with the inclusion
of regional information (i.e., OMI variable) in the model. One
explanation may be that we were only able to use a small
search area (i.e., 500 m) to retrieve street view images near
NO2 monitors. As a result, only hyperlocal information was
included in the national model�a potential issue for model
extrapolation in regions where there are few EPA monitors. We
speculate that if a denser air pollution monitoring network
were used (e.g., mobile monitoring), this issue could be
mitigated.

Table 1. Model Performance of Image-Unlimited Models

model
type scenario

random 10-
fold CV R2

mean absolute
error (MAE)

root-mean-squared
error (RMSE)

GSV-
only

1 0.51 2.89 3.83
2 0.77 1.86 2.64
3 0.83 1.55 2.27
4 0.87 1.33 1.99
5 0.88 1.25 1.88

GSV +
OMI

1 0.69 2.26 3.05
2 0.83 1.61 2.29
3 0.87 1.37 2.00
4 0.90 1.19 1.78
5 0.91 1.13 1.69
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Sensitivity Analysis Using Image-Limited Models. We
systematically controlled the image sampling strategy by
varying the number of images sampled for each grid cell (as
well as the sampling grid size) to investigate the impact on
model performance. Full model results are in Tables S6 and S7.
As shown in Figure 3A,B, image-limited models generally had
decreased performance compared to image-unlimited models.
However, the reduction in model fit was relatively small. For
example, in scenario 5, when collecting one GSV image per
100 m × 100 m grid, the random 10-fold CV R2 was 0.85
(0.88) for the GSV-only (GSV + OMI) model; comparatively,
it was 0.88 (0.91) for the GSV-only (GSV + OMI) for the
image-unlimited models. This result was due to the fact that
only a small portion of grid cells had repetitive GSV images,
resulting in only 6.2% of GSV flat images being removed from
the analysis.
Although only a small number of images were removed

during model development, this finding is most important for

the model application stage when the number of GSV images
above a given threshold (e.g., 1, 2, or 3 per grid cell) could be
huge. We used Washington DC as an example city to illustrate
model prediction in 2019 at 100 m spatial resolution among
different image sampling strategies (Figure 3E,F). Interestingly,
image-unlimited and image-limited models generated similar
prediction surfaces for NO2, while the former models used
twice the number of images (158,276 vs 79,612 GSV flat
images). This finding is important when making predictions at
national or global scales. Our results suggest that a
parsimonious image sampling strategy may be sufficient and
most cost-effective for model development and application. A
rationale for this approach is that images distributed geo-
graphically close are more likely to provide redundant
information, resulting in little influence on the tabulated
model predictors, i.e., the mean of GSV features within a
certain buffer area. This issue could be further explored in
future research, especially for differences in transient (e.g.,

Figure 3. Results of sensitivity analyses among image sampling strategies. Panels (A) and (B) show model results among all scenarios, with varying
maximum number of GSV images per 100 m × 100 m sampling grid. Panels (C) and (D) show model results in scenario 5 with varying grid sizes.
Each grid cell is allowed one GSV image for sampling. Panels (E) and (F) show model predictions for Washington DC in 2019 using image-
unlimited models and image-limited models, with maximum one GSV image per 100 m × 100 m grid.
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vehicles, people) vs fixed (e.g., roads, buildings) features of the
urban environment.
We also explored the influence of various sampling grid sizes

on model performance when sampling one GSV image per grid
cell. Results for scenario 5 are in Figure 3C,D. Increasing the
size of grid cells led to a significant deterioration in the model
performance. When using a 150 m × 150 m (250 m × 250 m)
grid and a maximum of one GSV image per grid cell, the
random 10-fold CV R2 of the GSV-only model dropped to 0.74
(0.70). This result reflects the importance of spatial resolution
of GSV images used in the models. For example, the 100 m ×
100 m grid generated ∼81 grid cells within a 500 m buffer,
while the 150 m × 150 m (250 m × 250 m) grid generated
∼29 (∼7) grid cells. As expected, the GSV + OMI models
were more robust to differences in grid size relative to the
GSV-only models. Overall, our findings suggest that retrieving
GSV images at 100 m resolution may be the most cost-effective
way to establish national NO2 models with high performance.
Sparse resolution of image sampling may miss important
hyperlocal features and lead to underfitting models. Overly
dense sampling within a single grid cell may lead to an
unnecessarily high workload�a cost-prohibitive (e.g., image
downloading and processing) and time-consuming task for
limited improvement in model fit.

Model Prediction and Comparison. Following the same
image collection and processing protocol as in the model
development stage, we collected another 338,084 GSV flat
images to predict NO2 air pollution for Washington DC from

2007 to 2019 (Figure S11). Both the GSV-only and GSV +
OMI models captured fine-scale gradients of NO2 concen-
trations in Washington DC. Consistent with the decreasing
national trend in EPA-monitored NO2 concentrations, our
prediction maps also show reduced NO2 concentrations over
time. The most polluted area is located in the central city, and
the concentrations gradually decrease elsewhere. Major gaps in
the surface are over rivers or large green spaces since most
GSV images are collected by GSV cars driving along roads.
Generally, GSV imagery has good coverage in this region, and
our GSV image-based models were able to predict 88.1 ± 1.6%
of the city.
We compared our GSV models to another national NO2

model developed using a conventional LUR approach (Figure
4). We found that the GSV-only model predicted the highest
NO2 concentrations in the central city in Washington DC (the
GSV + OMI model predicted slightly lower concentrations).
The image-based models predicted significantly higher
concentrations than the conventional LUR for the same
region (Figure 4B). Conversely, in the less polluted areas (e.g.,
city parks and rivers), the GSV-only model predicted the
lowest NO2 concentrations, followed by GSV + OMI model;
the conventional model predicted the highest concentrations.
Previous studies show the tendency of LURs to underestimate
in polluted regions and overestimate in clean regions,29,54,55

which could be partly the result of uncaptured predictors in the
model (e.g., street-level features). Our results suggest that
leveraging street view images for air quality modeling may have

Figure 4. Comparison between GSV-based models and conventional national LUR models using prediction maps for Washington DC in 2015. (A)
Model predictions for the GSV-only model, GSV + OMI model, and conventional national LUR model. For comparison, we masked GSV-based
prediction maps based on where the conventional LUR predictions were available. (B) Predicted NO2 concentrations among different models
along the transect line. The solid lines represent actual model predictions; gaps in the conventional national LUR model (masked GSV-based
models) were filled by interpolation (original GSV-based models) and represented by dotted lines. (C) Values of GSV feature groups along the
transect line.
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the potential to mitigate this tendency and better capture intra-
urban NO2 variability than other LUR methods. We found
similar differences in another example city�San Francisco
(Figure S12). Future work could compare the results with
mobile monitoring campaigns to investigate whether GSV
image-based models capture more spatial variability of air
pollution. Identifying the impact of different features on air
pollution may provide important evidence for making local and
regional air quality policies. We also plotted the distribution of
GSV feature groups along a transect line (Figures 4C and
S12C). NO2 predictions appear to show intuitive associations
with the built environment�a surrogate for human activities.
Figure S13 shows the distribution of GSV feature groups over
the DC area in 2019 for illustration. The spatial patterns of
different feature groups appear to be reasonably consistent
with the land use characteristics of DC. For example, the
transport vehicles and built environment features are high-
lighted in the central downtown area, while transport networks
are more dispersed.

■ LIMITATIONS AND IMPLICATIONS FOR FUTURE
STUDIES

Our results demonstrate promising performance for GSV
image-based air quality modeling, i.e., the potential to capture
fine-scale NO2 using a uniform modeling pipeline that can be
easily scaled. The major limitation of our approach is the
imbalance in image availability over time and space. This
limitation is most prominent in early years and becomes less
severe in more recent years, as more images are available. Most
GSV images are collected by Google GSV cars (with a smaller
number shared by Google users). Depending on priorities set
by the entity collecting images (in this case, Google), the
street-level imagery is updated at different frequencies over
different regions and time periods. We are not able to fully
utilize all monitoring sites from the EPA monitoring network
for model development since some EPA sites (especially in the
rural Midwest and Rocky Mountains areas) do not have GSV
images. Similarly, the model application is affected by image
availability, and gaps in prediction maps may exist. However,
since a priority is to collect images in areas where people live,
the imagery does include the vast majority of the U.S.
population. Another limitation is our choice to relax the
temporal matching criteria between air pollutant observations
and GSV images. While we believe this approach is reasonable
given the slow changes in the built environment in developed
countries (and the results indicate that the added images
increase model performance), it is difficult to quantify the
model uncertainty resulting from this choice. The lack of
temporal resolution in the GSV imagery makes it challenging
to use our approach to develop monthly or daily average
models.
The satellite-based NO2 variable has limitations similar to

other air quality models that include satellite-based observa-
tions. For example, OMI has a coarse spatial resolution, which
is not capable of capturing local hot spots or intra-urban
variation of NO2 concentrations. In addition, satellite-derived
products reflect but do not offer exact attributes of the ground-
level concentrations; retrieval of satellite-derived data involves
many assumptions which may introduce uncertainties in the
model.56 Data availability and quality can be affected by
multiple factors, e.g., errors in NO2 column retrievals are large
during cloudy days or over snow/ice surfaces.52 All of these
uncertainties may affect model performance.

Our models could be enhanced in several ways. We were
only able to apply our models for two cities for illustration. As
retrieval of large volumes of images becomes more common,
our future work may map NO2 concentrations at the national
scale. Our models show reductions in model performance
when using spatial cross-validation. Although other studies also
report decreases in performance when using spatial cross-
validation, the reductions were smaller (0.09−0.20).21 Future
work may mitigate this issue by extracting GSV features from a
larger spatial buffer around each monitoring station, including
interpolation components (e.g., kriging) in the modeling
framework or applying more advanced deep learning models to
directly learn NO2 pollution-related features from the street
view images.57

Another promising direction is to utilize air pollution data
from denser air quality monitoring networks that better match
the granularity of the information in the street view images. For
example, utilizing information from mobile monitoring studies
that identify localized air quality patterns may unlock
additional information in the street-level imagery that tradi-
tional, GIS-based predictors cannot. As mobile monitoring,
low-cost sensing, and the frequency of image collection grows
in future years, we expect this will be a significant area of
research in the near future.
Our results suggest the promise of leveraging street view

imagery and satellite data in building large-scale empirical air
quality models (e.g., national or global) under a unified
framework. Unlike traditional LUR predictors collected from
multiple curated geodatabases, our approach requires few (e.g.,
single source for GSV-only models) data sources that achieve
comparably high model performance to previous models.
Adding satellite observations is a simple way to further boost
model performance. Both data sources are publicly accessible
and have a uniform data format, which makes them excellent
candidates in establishing a consistent data collection and
processing protocol for model development over large
geographies. This may be especially useful for less developed
areas where municipal geodatabases are sparse or absent. Our
study also presents a cost-efficient image sampling strategy
(i.e., one image every 100 m) developed through a systematic
sensitivity analysis�this finding may be helpful for future
image-based modeling work. Our modeling approach is not
restricted to GSV imagery. Many other large open-access street
view image databases have emerged globally, e.g., Bing Maps
Streetside, Apple Look Around, Tencent Maps (China), Daum
Maps (South Korea), CycloMedia (Europe and U.S.), etc.58

Our modeling framework can be applied to any street-level
image. We expect that street view image-based air quality
modeling may play a more important role in the near future
given the fast growth of image resources.
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