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ABSTRACT: This paper investigates the feasibility of developing
national empirical models to predict ambient concentrations of
sparsely monitored air pollutants at high spatial resolution. We
used a data set of cooking organic aerosol (COA) and
hydrocarbon-like organic aerosol (HOA; traffic primary organic
PM) measured using aerosol mass spectrometry across the
continental United States. The monitoring locations were selected
to span the national distribution of land-use and source-activity
variables commonly used for land-use regression modeling (e.g.,
road length, restaurant count, etc.). The models explain about 60%
of the spatial variability of the measured data (R2 0.63 for the COA
model and 0.62 for the HOA model). Extensive cross-validation
suggests that the models are robust with reasonable transferability. The models predict large urban−rural and intra-urban variability
with hotspots in urban areas and along the road corridors. The predicted national concentration surfaces show reasonable spatial
correlation with source-specific national chemical transport model (CTM) simulations (R2: 0.45 for COA, 0.4 for HOA). Our
measured data, empirical models, and CTM predictions all show that COA concentrations are about two times higher than HOA.
Since COA and HOA are important contributors to the intra-urban spatial variability of the total PM2.5, our results highlight the
potential importance of controlling commercial cooking emissions for air quality management in the United States.
KEYWORDS: fine particulate matter, spatial modeling, aerosol mass spectrometry

1. INTRODUCTION
Over the past two decades, researchers have used land-use
regression and other empirical models to predict air pollution
concentrations at high (census block or zip code) spatial
resolution at the country or continental scale.1−6 These models
use a variety of approaches that combine satellite measure-
ments, chemical transport model (CTM) simulations, and/or
land-use measures to obtain spatially and temporally resolved
estimates of ground-level concentrations.7−14 These models
have enabled investigation of air pollution health impacts15−17

and exposure disparities18−20 in very large populations. These
studies have provided substantial insight into the health
impacts of pollutant concentrations among different popula-
tions.

Deriving empirical exposure models requires large amounts
of air pollution monitoring data. Therefore, national-scale
empirical exposure models were first developed for criteria
pollutants (PM2.5, NO2, etc.), which have large, well-developed
regulatory monitoring networks. Few national-scale empirical
models have been developed for pollutants that are costly to
monitor, and thus, national networks do not exist (e.g.,
ultrafine particles, air toxics, and particulate matter compo-
nents). There is substantial interest in the potential health

impacts of these types of air pollutants. Of particular interest
are source and chemically specific subcomponents of fine
particulate matter (PM2.5),21−30 which could disproportionally
contribute to the adverse health associated with PM2.5 mass.

The lack of monitoring data is a major challenge for
developing large-spatial scale empirical models for source- and
component-specific PM2.5. National empirical model predic-
tions exist for the total PM2.5 concentrations, but they typically
are not speciated. A few studies have developed empirical
models for PM2.5 components (e.g., OC, EC, SO4, and NO3)
using chemically resolved measurements, land-use regression,
and chemical transport modeling,31−33 but they are not source
resolved. CTMs have been used to estimate source-resolved
PM2.5 concentrations,34−36 but these simulations typically have
relatively coarse spatial resolution for a national-scale
simulation. There is a paucity of high-spatial-resolution
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exposure estimates for source-resolved or novel markers of
PM, especially at the national scale.

High-resolution aerosol mass spectrometry (HR-AMS)
provides nearly real-time chemical characterization of major
organic and inorganic species in PM2.5.

37,38 Source apportion-
ment of the HR-AMS mass spectra using positive matrix
factorization (PMF) provides concentrations of source-specific
organic aerosols (e.g., traffic, cooking, biomass burning, and
secondary organic aerosols).39 Over the past decades, this
measurement and source apportionment technique has been
widely applied in atmospheric chemistry research.39−41 The
HR-AMS is a complex and expensive instrument; its
application in air pollution spatial modeling and exposure
assessment is rare.

The goal of this paper is to investigate the feasibility of
developing national-scale models for source-specific primary
components of PM2.5 using a relatively sparse (compared to
regulatory networks) HR-AMS data set. We have developed
national models for primary organic aerosols from two
important urban sources: traffic and cooking. Recent measure-
ments in several U.S. cities42−44 showed that these two primary
PM2.5 components contribute 5−25% of the overall PM2.5 mass
and are major contributors (more than 50%) to intra-urban
spatial variability of the total PM2.5. It is noted that we develop
models for two primary PM components (HOA and COA).
Other important primary PM2.5 components include biomass-
burning organic aerosol (BBOA) and black carbon (BC),
which are not modeled here.

In this paper, we used a nationally representative HR-AMS
data set and a supervised linear regression technique to
develop national models to predict traffic and cooking primary
organic aerosol concentrations at high spatial resolution. The
specific objectives of this paper are to (a) examine the
representativeness of the measured HR-AMS data set for
developing national models, (b) develop models for traffic and
cooking primary organic aerosols, (c) investigate the robust-
ness and transferability of the models, (d) apply cross-validated
models for predicting national concentration surfaces, and (e)
compare empirical model predicted concentration surfaces
with CTM predictions.

2. MATERIALS AND METHODS
2.1. Air Pollution Data Set. Empirical models that predict

the spatial variability of pollution concentrations are derived by
fitting measured data that capture the spatial variability of both
the dependent variables (concentrations) and the independent
(predictor) variables.45 Previous studies45−47 demonstrate that
beyond a certain number of locations, additional sites with
similar land-use characteristics do not add much additional
value for empirical land-use regression model development.
Capturing the spatial variability is more important than gross
data coverage (i.e., the total number of points used for model
training). For national model development, monitoring
locations need to capture intra-urban, inter-urban, and
urban−rural spatial variability. Using the above principle, we
previously developed a national model for ultrafine particle
number concentrations in the United States using a relatively
sparse data set.48 In this paper, we applied the same approach
to develop national models for source-specific PM2.5
components using targeted HR-AMS measurements.

The HR-AMS data set includes intra-urban, urban, and rural
background measurements, collected using a hybrid (mobile
and stationary) sampling approach. We compiled this data set

from our recent mobile measurements as well as data reported
in the literature. The data set includes urban and rural
concentration measurements in 12 states (AL, CA, CO, GA,
IL, MD, MI, NY, OK, PA, TN, and TX). It includes data from
11 cities (Atlanta, Baltimore, Conroe, Fort Worth, Fresno,
Houston, New York City, Oakland, Pasadena, Pittsburgh, and
St. Louis) and 11 suburban/remote locations across the
continental United States. We briefly describe the data set
below.

To characterize intra-urban spatial variabilities, we per-
formed mobile measurements in three cities: Pittsburgh, PA;
Oakland, CA; and Baltimore, MD. A mobile laboratory with an
Aerodyne HR-AMS was slowly and repeatedly driven on
predefined sampling routes along many streets in each city
over multiple days: Oakland (20 days, 2017), Pittsburgh (33
days, 2016−2017), and Baltimore (9 days, 2019). The driving
routes in each city were selected to span a range of land-use
and source-activity variables commonly used for land-use
regression models. To characterize a representative stable
mean, mobile monitoring data were collected covering
different times of the day (i.e., the same street was repeatedly
visited covering the morning, midday, and evening). We
derived organic PM concentrations of traffic, cooking, and
secondary organic aerosol by performing PMF analysis of the
HR-AMS data. In the AMS source apportionment literature,39

the traffic factor is commonly referred to as hydrocarbon-like
organic aerosol (HOA) and the cooking factor as cooking
organic aerosol (COA). We use the same terminology in this
paper. The HR-AMS results for the Pittsburgh49 and
Oakland43,50 data sets are described in previous publications.
Similar methods were used for the collection and analysis of
the Baltimore data.

We averaged the mobile monitoring data over space and
time to characterize spatial patterns of long-term concen-
trations. This analysis was done using two different grids: 200
m and 1 km. To determine the average concentration in each
grid cell, we first calculated the median concentration
measured for each sampling day and then calculated the
average of the daily medians across all sampling days. This
procedure was done separately for each grid cell.

Past mobile monitoring studies indicate that between 7 and
15 days of repeated measurements are needed to characterize
representative concentration distributions.51,52 Therefore, we
only considered grid cells with data collected on seven or more
days (range 7−33 days). Application of this selection criterion
resulted in average concentration estimates for 37 1 km grid
cells in Pittsburgh, 31 in Oakland, and 15 in Baltimore. For
200 m grid cells, average concentration values were available
for 243 locations in Pittsburgh, 378 in Oakland, and 108 in
Baltimore.

In addition to the detailed intra-urban mobile sampling data
in three cities, we compiled HR-AMS measured PMF factors
from various field campaigns in the United States. These are
stationary measurements made at both urban and rural
background locations for a period of 1 month or more. They
provide information on the inter-urban and urban−rural
concentration differences. Table S1 provides details on these
field campaigns. PMF analysis of the HR-AMS spectra
identified HOA and COA factors at all urban sites. However,
HOA and COA factors were not identified at most remote
background/forested locations. This is not surprising because
HOA/COA concentrations are expected to be very low at
remote locations (below detection limit). For the remote sites,
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if COA and HOA are not reported, we assigned a near-zero
concentration of 0.01 μg m−3 at these sites for model
development.

2.2. Quality Assurance. Since the data set includes
measurements made by different groups and at different times,
we applied various selection criteria and corrections to ensure
temporal and spatial representativeness of the data. We briefly
describe these below. Details are given in the SI (Figures S2−
S5).

While most of the data used for our model building is from
2016 to 2017, a subset is from different periods and/or
collected using different sampling platforms. We applied
temporal correction factors to data not measured in 2016−
2017 (see Figure S2 for details). These correction factors are
based on national trends in traffic- and cooking-related
pollutant concentrations and emissions relative to 2017.
These corrections are needed for a small subset (∼15%) of
total data set. The applied correction factors were relatively
small. For HOA, they varied between 0.87 and 1.04 (i.e.,
between −13% and +4%), and for COA, 0.93 and 1.3 (i.e.,
between −7% and +30%).

The data were collected in different seasons, and the mobile
monitoring was performed during the daytime (between 7 AM
and 7 PM). We analyzed a comprehensive data set from
Pittsburgh to investigate the potential uncertainty created by
day−night and seasonal patterns. Pittsburgh mobile measure-
ments were collected over 5 months in two seasons;
continuous data at an urban background location was collected
for a subset of these 5 months (for those days, mobile
monitoring was not conducted). Pittsburgh continuous data
(see Figure S3) indicates a substantial diurnal variation in
measured COA and HOA concentrations, e.g., elevated
concentrations during morning and evening rush hours.
While comparing the 24 h versus daytime (7 AM to 7 PM)
average, the daytime is 5−10 % higher. In Pittsburgh mobile
monitoring, the difference between summer and winter in
HOA and COA concentrations is 5−15% (Figure S4). We also
utilized CTM-simulated concentrations (discussed in Section
2.5) to investigate the seasonal variation of COA and HOA.
For COA national mean, seasonal averages vary between
−10% and +20% of the annual average (for HOA, −17% and
+45%) (Figure S5). These comparisons suggest that the effects
of diurnal and seasonal variation are relatively small compared

Figure 1. Measured cooking (COA) and traffic (HOA) organic PM2.5 concentrations. (A) Measurement locations colored by COA + HOA
concentrations. The inset maps in (A) show the mobile monitoring data in three cities (Oakland, CA; Pittsburgh, PA; and Baltimore, MD) on a 1
km grid. (B) Box−whisker plots of distribution of COA and HOA concentrations measured at different geographical location groups (intra-urban:
Oakland, Pittsburgh, Baltimore; point locations in other urban and rural areas). (C) Comparison of potential predictor land-use variables at
measurement locations and nationwide census-block-level distribution. Each plot shows the histograms (bar) of variable values across measurement
locations in 10 equally spaced bins and a cumulative frequency distribution (CDF; blue curve) of that variable across all national census blocks (n =
6,174,588). The black circle on the blue curve is the 99th percentile value of the national distribution. Figure S1 shows a similar figure with the
mobile monitoring data aggregated on a 200 m grid.
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to a factor of 10 spatial variations in measured concentration
data (Figure 1).

2.3. Land-Use Regression Modeling. We compiled a
large data set of land-use and source-activity variables at high
spatial resolution to investigate the spatial patterns in HR-
AMS-derived COA and HOA concentrations. A complete list
of the variables is shown in Table S2. The majority of the
variables are from Kim et al.6 who compiled a large database of
traffic-specific, land-use type, imperviousness of land surface,
criteria pollutant emissions, satellite-based air pollution
estimates, surface elevation, and other data at the centroid of
each census block across the contiguous United States for
different buffer sizes (100 m to 15 km). For this work, we
created a new national data set of restaurant activity (i.e.,
restaurant count within various buffer sizes) at the centroid of
each census block using publicly available point of interest
(POI) data from Yelp. Since our mobile data from three cities
were aggregated over two different grids, we averaged the
covariate data over each grid cell and then assigned that value
to the grid-cell center. For the fixed sites, we assigned the
nearest census block’s covariate data to the measurement
location.

To quantify the relationship between the measured
concentrations and the source-activity/land-use variables, we
used a supervised stepwise linear regression (commonly
referred to as a land-use regression (LUR)) similar to the
ESCAPE protocol.47,53,54 The approach systematically identi-
fies which variables are candidates for inclusion in the model
(i.e., correlated with the measured spatial patterns in pollutant
concentrations) and the fraction of the measured concen-
tration variability explained by each of these variables. The
output of the analysis is a multi-linear regression model that
describes the spatial patterns in the measured pollutant
concentrations as a function of the source-activity and land-
use covariates.

Model covariates are selected based on adjusted R2

(coefficient of determination) of univariate linear regressions,
starting with the covariate that provides the highest adjusted
R2. The next covariate selected is the one that provides the
highest adjusted R2 with the model residuals. We repeat this
procedure until including the best of the remaining variables
improves the overall model adjusted R2 by less than 1%. Then,
among the selected covariates, we removed the ones with p-
values (predictor significance) greater than 0.05. We
characterized the model performance in terms of adjusted R2

and root-mean-square error (RMSE). We evaluated the
performance of LUR models using 10-fold cross-validation
(CV).

We created separate LUR models using the 1 km and 200 m
grid averaged mobile monitoring data. The model derived from
the 1 km grid data is the base model. It is fit to 104 data points
(Pittsburgh, 37; Oakland, 31; and Baltimore, 15; urban fixed
sites, 10; rural fixed sites, 11). We used the 200 m data to
investigate the sensitivity of grid resolution. However, models
based on the entire 200 m data set had intercepts that were
much larger than the measured rural concentrations. This
occurred because urban concentrations were overrepresented
in the 200 m data set (11 rural locations versus more than 700
urban locations). We used two approaches to overcome this
problem. First, we randomly divided 200 m grid data from
each city into nine folds and developed nine models using each
fold from each city and all of the fixed-site data. Each of these
200 m models is fit to 102 data points. Second, we fit a model

using all 200 m grid averaged data along with fixed-site data (it
is fit to 751 data points) and forced the intercept of the
regression model through zero. This is a reasonable constraint
because data from rural locations indicate that the intercept
(approximately the rural background level) for HOA/COA
national models should be close to zero. We compared the
predicted concentration surfaces for the three sets of models.

2.4. Assessment of Robustness and Transferability of
LUR Models. We performed extensive analysis to evaluate the
robustness and transferability of the LUR models. Specifically,
we systematically developed a series of LUR models using
different subsets of the air pollution concentration data and
then evaluated the performance of these models against the
entire data set. We use this approach to examine the following
questions: (1) Are the models highly sensitive to specific
subsets of the input data? (2) How sensitive are model
predictions to the number of locations used for model
building? (3) How robust are model predictions in locations
without any training data?

To examine the transferability, we systematically developed
models by removing data from a particular city and then
applied that model to predict the measured concentrations in
the holdout city. Our assessment criteria assume that if the
underlying model-building data set has the power to predict
concentrations in a city/area without any training data from
that city/area, that indicates good model transferability.

2.5. Chemical Transport Model Simulations. We
compare the results of the national-scale model to bottom-up
predictions of COA and HOA using the regional-scale CTM
CMAQv5.3.3 (Community Multiscale Air Quality model; U.S.
EPA)55 for the continental United States at 12 km horizontal
resolution for the full year 2016. Details on CTM simulation
are given in the SI (Section S1) and briefly described here.

CMAQ used input data developed for the EPA Air QUAlity
TimE Series (EQUATES) Project,56 including meteorology
from the Weather Research and Forecasting (WRF) model
v4.1.1, anthropogenic emissions developed for 2016, and land-
use parameters needed for modeling pollutant deposition as
well as bidirectional volatilization of NH3 and energy transfer
between the atmosphere and the underlying land surface.
Boundary conditions were constrained by a coarse-resolution
(108 km) CMAQ simulation over the entire northern
hemisphere, and the model was initialized on December 22,
2015 (i.e., a 10-day model spin-up). CMAQ was run with all
default parameters (base case) and once each with organic
particulate emissions from a key source neglected. These
sources included cooking sources, on-road vehicles, and all on-
road and non-road mobile sources. With these four cases,
source-based POA concentrations were calculated as the
difference between each run with neglected emissions and
the base simulation.

3. RESULTS AND DISCUSSION
3.1. Spatial Variability in Measured Source-Specific

PM Components (COA and HOA). The HR-AMS measured
COA and HOA concentration data set used for LUR model
development is shown in Figure 1 (mobile monitoring data
averaged on a 1 km grid). Figure S1 shows the 200 m grid
averaged mobile data. There is substantial spatial variability in
COA and HOA concentrations. Urban concentrations are a
factor of 4−10 higher than rural concentrations. The measured
urban COA and HOA levels constitute a significant fraction of
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the total PM2.5 mass relative to both the new WHO guideline
and the current U.S. EPA NAAQS.

Spatially dense mobile sampling data indicate a factor of 3−
12 variability within urban areas, estimated as the ratio of 95th
and 5th percentiles values of measured COA and HOA
concentrations in different cities. Within a city, concentrations
are higher in downtown and business districts highlighting the
strong influence of local sources on intra-urban spatial
variability of primary PM2.5 components. The within-urban
area spatial variability is substantially larger than between-city
variability (a factor of 1.5−3) for both HOA and COA. As
expected, the intra-city distribution of concentrations is wider
for the 200 m grid averaged data (Figure S1). COA
concentrations are higher than HOA in each sampled city by
a factor of 1.3, 1.8, and 2.6 in Oakland, Baltimore, and
Pittsburgh, respectively. This means that the primary organic
PM2.5 concentrations from cooking are 30−160% higher than
traffic in these sampled cities.

3.2. Association between Source-Specific PM Con-
centrations and Relevant Land-Use Variables. Figure 2

shows that the concentrations of the HR-AMS-derived source-
resolved PM2.5 components are correlated with source-specific
land-use variables. For example, COA concentrations increase
with restaurant density. The univariate correlation coefficient
(Pearson R) between COA and restaurant count within 1 km
is 0.65; the correlation with restaurant count within 250 m is
0.45. HOA concentrations increase with road density. The
univariate correlation coefficient between HOA and road
length (highway + city road) within 1 km and 300 m is 0.47
and 0.50, respectively. The relationships using the 200 m grid
averaged mobile data and source-specific land-use variables are
similar (Figure S7).

Although the absolute concentrations of the source-resolved
components vary by city, the measured COA and HOA mass
spectra are very similar.43,49 This suggests that the composition
of cooking- and traffic-related organic aerosols is similar across
American cities. However, the level of activity can lead to
different concentration levels. This suggests that if one can

collect source-resolved monitoring data covering the possible
range of variability across the national domain, it may be
possible to build a robust national model. Figure 2 highlights
that spatially dense sampling is required to capture intra-city
variability in both primary PM concentrations and land-use
covariates. The data from the 10 urban fixed sites do not
capture the wide range of intra-urban variability (e.g., the blue
bars in Figure 2 do not capture the high end of measured
concentrations and land-use covariates). Therefore, the mobile
data are critical for capturing the intra-urban trends and the
most source-impacted areas.

3.3. Representativeness of Concentration Data Set
for Developing National LUR Models. To develop an LUR
model, it is important to collect the monitoring data across the
entire range of pollutant exposure and land-use/source-activity
variable values (e.g., national distribution in our case). Figure
1C compares the traffic and cooking variables at our
monitoring locations to the national distribution. The
measurement locations span the 0−99th percentile of the
national data. The basic trends and conclusions are similar for
all variables (Figures S8 and S9); our monitoring locations
span the range of national distributions of relevant source-
activity variables. These comparisons demonstrate that our
measurement locations span the entire national range of land-
use and source-activity variables.

The concentration data set also has reasonable geographical
coverage. Measurements were made in 12 states, 11 cities, and
11 suburban and remote locations across the continental
United States. For model development, we used 104 (using 1
km grid averaged mobile data) to 751 (using 200 km grid
averaged mobile data) data points. This amount of data is
similar to data sets used to develop national models for criteria
air pollutants. For example, Kim et al.6 developed national
models for criteria air pollutants in the United States using
regulatory monitoring data from a few hundred locations (e.g.,
CO, 218; NO2, 327; SO2, 370; O3, 850, and PM2.5, 934, for the
modeling year 2010) along with satellite remote sensing data.
A key aspect of our strategy is to utilize mobile monitoring
data to characterize the large intra-urban spatial gradients in
COA and HOA concentrations. In comparison, regulatory
monitors are subject to detailed siting criteria (typically located
in urban background and rural locations) and therefore may
span less of the covariate space than our modestly smaller data
set.

3.4. LUR Models for Source-Specific PM Concen-
trations. The combination of the correlation between the
measured concentrations and source-specific land-use variables
(Figure 2) and the fact that our measurement locations span
the national land-use/source-activity variable space (Figure
1C) provides confidence that we can derive a reasonable
national model for predicting COA and HOA spatial patterns
across the continental United States. We developed multi-
parameter regression models (LUR models) to describe the
spatial patterns in the measured COA and HOA concen-
trations as a function of the source-activity and land-use
covariates. Separate models were developed using 1 km and
200 m grid averaged mobile monitoring data. Figure 3 and
Figure S10 show the measured versus predicted concentrations
for models developed using 1 km and 200 m grid averaged
mobile monitoring data, respectively. Tables S3 and S4
summarize the predictor covariates and performance metrics
of all these models.

Figure 2. Comparison of measured source-specific PM2.5 concen-
trations and relevant land-use variables in measurement locations. (A)
Histogram of measured COA concentrations. (B and C) average
restaurant density with (B) 250 m and (C) 1 km of measurement
locations for each concentration bin. (D) Histogram of measured
HOA concentrations. (E and F) Same as (B and C) but for road
density (a1 and a3 road length within 300 m and 1 km buffer radius
from measurement locations). a1 road is the highway, and a3 is the
city arterial road.
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The models selected four to five predictor variables,
indicating that they are not overfitted. The selected variables
are indicators for relevant sources and land uses (Tables S3
and S4). They are therefore physically interpretable, which
highlights the value of fitting source-resolved PM2.5 compo-
nents. For example, the model selects restaurant density,
commercial land-use, and urbanicity-related variables to
explain the spatial variability of COA. The model selects
traffic, transportation land-use, and urbanicity-related variables
to explain the spatial variability of HOA. The variable

“impervious land surface” is present in most models, which
likely captures the urban−rural gradients. Some of these
variables are well correlated with population density (e.g.,
impervious land surface and restaurant density). All models
select variables with a range of buffer sizes. The variables with
small buffer distances (e.g., restaurant count within 100 m and
highway length within 150 m) describe the near-source
variation, whereas variables with larger buffer distances (e.g.,
restaurant count within 1000 m and the commercial land-use
area within 1500 m) likely reflect the neighborhood/city-scale
and urban/rural variations.

The R2 values of the COA and HOA LUR base models
(derived using the 1 km grid averaged mobile monitoring data)
are 0.63 and 0.62, respectively; RMSE are 0.36 and 0.24 μg
m−3, respectively (Figure 3). The R2 values of the models
developed for random 10-fold CV are 7−15% lower than the
model fits of the entire data set (Figure 3).

The R2 values of the COA and HOA models using all 200 m
mobile data (n = 751) are 0.52 and 0.51, respectively, with
RMSE of 0.39 and 0.34 μg m−3, respectively. The random 10-
fold CV R2 values are almost same as the models fit using the
entire data set (Figure S10). The R2 values of the models using
a different subset of the 200 m grid data range from 0.6 to 0.76
for COA and 0.5 to 0.67 for HOA (see Tables S3 and S4); the
10-fold CV R2 values of the models are 5−10% lower than fit
R2.

There were only slight differences in the performance
metrics (e.g., R2 values) between models fit to the entire data
set and the 10-fold CV (Figure 3 and Figure S10). This
indicates that the models are not overly sensitive to random
subsets of the data and fits are statistically robust. In addition,
across the base and range of sensitivity cases, available
predictor variables consistently predict more than 50% of the
measured variability. This level of model performance is
typically considered good in the LUR literature.45

Figure 3. Measured versus predicted concentrations from LUR
models. (A and B) Models based on all data. (C and D) Predictions at
holdout locations from random 10-fold CV models.

Figure 4. Predictive performance of LUR models developed using different subsets of the data. (A−C) Models fit using different geographical
location-based subgroups (rural fixed sites, urban fixed sites, Pittsburgh, Oakland, and Baltimore). (D−F) Models fit using a subset of data from
each mobile sampling city along with rural fixed sites. The box−whisker plots in panels (D and E) show the distribution of R2 from 10 random
selections, and the circles are the mean; only means are shown for RMSE. The 1 km grid averaged mobile data are used in this analysis. Panels (C
and F) show the number of locations used for training (NTrain) and testing (NTest) for different cases. The R2 and RMSE are calculated using all of
the measured data (fitting and holdout).
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3.5. Robustness and Transferability of LUR Models.
This section rigorously evaluates the predictive power of LUR
models by systematically building many models with different
subsets of the data. The models are then applied to predict
concentrations at the remaining (holdout) locations. The
models are built by incrementally including additional data
from various subgroups. Subgroups are created using different
criteria: geographical location-based groups (rural fixed sties,
urban fixed sites, Pittsburgh, Oakland, and Baltimore), land-
use-based groups (e.g., low, medium, and high restaurant
density locations), etc. In all cases, the performance metrics
(R2 and RMSE) of the subsampled models are calculated by
comparing predictions to all measured concentrations. The
results are compared with the base model, which fits the entire
data set (Figure 3A,B). The results from these analyses are
summarized in Figure 4 and Figure S11.

Figure 4A−C shows that, as expected, a model only fit to the
rural data poorly predicts concentrations in urban holdout
sites. Performance improves with additional training data from
various subgroups: fixed-urban, intra-city data from one or two
cities, etc.

Figure 4D−F shows the predictive performance of various
LUR models developed by incrementally increasing the
amount of mobile monitoring data used to fit the model.
The model performance gradually improves as additional data
are included. However, after including 10−15 data points from
each mobile monitored in the city (about 40−60% of overall
data from the entire data set), the predictive performance of a
model becomes close to the model fit to the whole data set.
Figure S11 shows a similar analysis by incrementally including
data from different land-use variables. The basic trends and

conclusions are similar across analyses using multiple grouping
approaches; a model using a subset of locations covering rural,
intra-, and inter-urban (40−60% of the entire data) data can
reasonably predict concentrations at holdout locations.

The results in Figure 4 also highlight the importance of the
mobile monitoring. For example, a model fit with the mobile
monitoring data from three cities reasonably predicts fixed-site
urban background measurements, but a model based on the
urban background data poorly predicts intra-urban variability
characterized by the mobile monitoring. This is because the
mobile monitoring locations overlap with the land-use and
source-activity covariate space of urban background locations,
but not vice versa (Figure 2).

We also examined the transferability of LUR models through
spatial (city) holdouts. We have conducted these holdout
experiments for different subgroups of the entire data set (e.g.,
holding out all Oakland data points, all Pittsburgh, all
Baltimore, all urban fixed sites, etc.) (see Figure S12). In
most cases, the model predicts spatial variability in a holdout
city with a moderate R2. In one case (HOA prediction in
Oakland when holding out all of the Oakland data), there are
systematic biases with the model predicting intra-urban
variability but not the right absolute level. Oakland had the
highest measured HOA concentrations (Figure 2). Holding
out Oakland data from model fitting yields lower performance
measures and subsequent underpredictions when applying that
model to predict the measured Oakland concentrations
(Figure S12).

The HOA concentrations in Oakland measured were
substantially higher than other cities, but the values of the
available traffic variables (e.g., road length) were across all

Figure 5. LUR-predicted COA concentrations and comparison with CTM. (A) Predictions across the contiguous United States at the census
block. (B) Zoom-in over the Pittsburgh MSA. (C) A concentration profile along a transect across the Pittsburgh MSA that passes through the city
center (downtown Pittsburgh). The 12 km CTM-simulated concentrations along the transect line are also shown in (C). Figure S13 shows the
same plots for HOA.
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cities (Figure 2). This suggests that the nationally available
traffic-related variable data (e.g., road length) may not capture
measured hotspots well. Improved traffic composition and
activity-specific variables are required to better capture the
near-source and intra-city hotspots.

In summary, the predictive performance of the various
models developed using different subsets of the entire data set
(discussed in Figure 4 and Figures S12 and S13) suggests that
our monitoring data set and available land-use and source-
activity variables capture the broad spatial patterns in COA
and HOA across the United States. However, improved
covariates (activity-specific) and additional data from other
cities may further improve the predictions.

3.6. Predicted National Concentration Surfaces. The
national representativeness of our model-building data (Figure
1C) and extensive sensitivity analysis (Figure 4 and Figures
S11 and S12) suggest that our LUR models can provide
reasonable prediction surfaces at high spatial resolution. Figure
5A shows the base-model predicted COA concentrations at
census-block resolution across the contiguous United States.
The model equation is COA = 0.07 + 0.008 × impervious
surface area (1000 m) + 0.004 × restaurant count (1000 m) +
0.011 × commercial landuse area (3000 m) + 0.06 × restaurant
count (100 m). Figure S13 shows the HOA predictions at the
census block using the base model: HOA = 0.003 + 0.005 ×
commercial landuse area (1500 m) + 0.0003 × a1 (highway)
road length (150 m) + 0.005 × impervious surface area (750
m) + 0.02 × transportation landuse area (3000 m).

Figure S14 compares the predicted concentrations for
different models (1 km grid, 200 m grid, and subset of 200
m grid). The concentration surfaces of these different models
are highly correlated (R2 > 0.8), and the absolute
concentrations agree within ±30%.

To ensure that we are not extrapolating in the covariate
space, Figure 5A only shows the model predictions at locations
whose land-use covariate values fall within the 1st and 99th
percentile range of the data set used for model building. This
yields concentration predictions at 6,026,961 residential
census-block centroids in the contiguous United States with
nonzero population, which covers 97.6% of census blocks and
97.4% of the total population according to the 2010 U.S.
census. The remaining blocks are generally in extreme urban or
rural locations. The white areas in Figure 5A fall outside the
prediction criteria.

The models predict relatively uniform regional background
levels for HOA and COA with hotspots corresponding to
urban areas and along highway corridors (for HOA; see Figure
S13). There is substantial spatial variability between rural and
urban and within and between urban areas. The population-
weighted national averages and interquartile range of predicted
concentrations are 0.39 (0.09−0.44) μg m−3 for COA and 0.23
(0.02−0.26) μg m−3 for HOA. The predicted HOA and COA
concentration surfaces are strongly correlated. R2 between
block-level national surfaces: 0.87; within-MSA R2: mean 0.86,
5th−95th range 0.76−0.96 (n = 363 MSAs). A high correlation
is expected since urban sources drive the concentrations of
both.

Figure 5B,C shows the predictions for the Pittsburgh
Metropolitan Statistical Area (MSA) to illustrate the spatial
patterns for a representative urban region. Within this MSA,
the predicted concentration hotspots are in the city center
(highest in the downtown area) and densely populated areas.
The transect through the center of Pittsburgh shown in Figure

5C illustrates that the predicted concentrations can vary widely
within the city and gradually decrease as one moves away from
the city center. Figure 5C also shows the contributions of the
different model covariates to the predicted concentrations.
There is a near-zero intercept, which represents the back-
ground concentrations. The impervious land surface and
commercial land use likely describe the urban background
levels. Finally, source-specific covariates (e.g., restaurant
density within 100 m and restaurant density within 1000 m
for the COA model) drive the large intra-urban variability in
model predictions.

3.7. Comparison with CTM Simulations. The CTM-
simulated 2016 annual average concentrations of primary
organic aerosols from cooking and mobile sources are shown
in Figures S15 and S16, respectively. We aggregated the LUR
predictions to the 12 km CTM grid to make quantitative
comparisons between the different models. The CTM predicts
lower HOA and COA concentrations than the LUR. The
predicted national population-weighted mean COA from the
LUR and the CTM is 0.39 and 0.22 μg m−3, respectively. For
HOA, it is 0.23 and 0.09 μg m−3, respectively. It should be
noted that the CTM-predicted HOA includes both on-road
and non-road mobile sources. If one only accounts the on-road
mobile source, the CTM-predicted national population-
weighted mean HOA is 0.05 μg m−3 (see Figure S17 for
additional details).

Figure S18 directly compares the CTM predictions against
the monitoring data. There is reasonable linearity (R2: 0.56 for
COA and 0.61 for HOA), but the measured concentrations are
substantially higher than CTM predictions. The slope of the
measured versus CTM is 1.5 for COA and 3.3 for HOA
(Figure S18). The bias in the CTM predictions could be due
to various reasons, including underrepresentation in the
emission inventory, coarse spatial resolution of the CTM,
etc. The spatial allocation below the county level of the
emission inventory used for the CTM simulations is expected
to be very uncertain and is difficult to constrain. Our analysis
suggests that a resolution smaller than 12 km is needed to
capture the spatial patterns of primary PM concentrations over
urban areas (Figure 5C and Figure S13C).

4. IMPLICATION
In this paper, we demonstrate the feasibility of developing
national empirical models for sparsely measured air pollutants.
We show that the nationally representative data can be
generated through a careful and targeted sampling design. The
key constraint is that the monitoring data used to fit the model
must span the range of variability across the national domain.
We show that this can be efficiently achieved using a hybrid
approach of combining high-spatial-resolution mobile sampling
to capture intra-urban variability with fixed monitoring at
rural/urban background locations to capture inter-urban and
urban−rural patterns. While additional monitoring data would
likely improve the model performance, the measurement
locations need to be carefully selected to better span the entire
range of national spatial variability. For example, our models
are based on a limited number of rural observations; additional
rural data are likely needed to predict spatial patterns in rural
areas. Data from additional cities might help the model better
predict intra- and inter-urban patterns.

A strength of this study was the focus on source-specific
components of primary PM2.5. This means that the covariates
selected by the supervised linear regression are physically
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interpretable. For example, traffic source-specific variables
included different types of road length, intersections, and
distance from roads. This likely helps with robustness and
transferability.

We used 1 km and 200 m grid averaged mobile data to
develop models, which average out some hyperlocal spatial
variability. A higher spatial resolution (100 m or less) is needed
to capture the near-source spatial variability, specifically for
traffic. Our analysis was limited by the source-specific
covariates that are available on a national scale. Improved
source and activity-specific variables are likely needed to better
predict the measured hyperlocal variability; for example,
covariates such as traffic volume, composition of vehicle
fleet, vehicle-specific power, cooking data by restaurant type,
volume of food cooked, etc. However, development of these
types of improved variables is especially challenging for
national-scale models. Recently, land-use features extracted
from Google Street View (GSV) imagery have been used for
street-level air pollution modeling.57,58 GSV features can better
characterize the near-source microenvironment. These are
nationally available and may improve the model performance.
Finally, different model formulations (e.g., kriging, spatial semi-
parametric models, random forest, etc.6,52,57) might also
improve model’s performance.

The results of this paper provide new insights into emerging
urban PM2.5 sources in the United States. The measured data,
LUR predictions, and CTM predictions all indicate that the
contribution of cooking organic PM2.5 is higher than organic
traffic primary PM2.5. Traffic emissions have reduced
dramatically over the past years due to technology and
regulations.59,60 Currently, cooking emissions are largely
unregulated. This suggests that increased regulatory focus on
cooking emissions may be a way to reduce exposure hotspots.
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Grazǔlevicǐene,̇ R.; Heinrich, J.; Hoffmann, B.; Jerrett, M.; Keidel, D.;
Korek, M.; Lanki, T.; Lindley, S.; Madsen, C.; Mölter, A.; Nádor, G.;
Nieuwenhuijsen, M.; Nonnemacher, M.; Pedeli, X.; Raaschou-
Nielsen, O.; Patelarou, E.; Quass, U.; Ranzi, A.; Schindler, C.;
Stempfelet, M.; Stephanou, E.; Sugiri, D.; Tsai, M.-Y.; Yli-Tuomi, T.;
Varró, M. J.; Vienneau, D.; von Klot, S.; Wolf, K.; Brunekreef, B.;
Hoek, G. Development of Land Use Regression Models for PM2.5,
PM2.5 Absorbance, PM10 and PMcoarse in 20 European Study
Areas; Results of the ESCAPE Project. Environ. Sci. Technol. 2012, 46,
11195−11205.
(54) Beelen, R.; Hoek, G.; Vienneau, D.; Eeftens, M.;

Dimakopoulou, K.; Pedeli, X.; Tsai, M. Y.; Künzli, N.; Schikowski,
T.; Marcon, A.; Eriksen, K. T.; Raaschou-Nielsen, O.; Stephanou, E.;
Patelarou, E.; Lanki, T.; Yli-Tuomi, T.; Declercq, C.; Falq, G.;
Stempfelet, M.; Birk, M.; Cyrys, J.; von Klot, S.; Nádor, G.; Varró, M.
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