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H I G H L I G H T S  

• The contributions of different air pollution sources vary widely among cities. 
• The contributions of within-city vs. external emission sources to a city’s air pollution also varies widely among cities. 
• The contributions above cannot be accurately predicted without air quality modeling. 
• An opportunity exists to improve global emission inventories in urban areas.  
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A B S T R A C T   

To improve air quality, knowledge of the sources and locations of air pollutant emissions is critical. However, for 
many global cities, no previous estimates exist of how much exposure to fine particulate matter (PM2.5), the 
largest environmental cause of mortality, is caused by emissions within the city vs. outside its boundaries. We use 
the Intervention Model for Air Pollution (InMAP) global-through-urban reduced complexity air quality model 
with a high-resolution, global inventory of pollutant emissions to quantify the contribution of emissions by 
source type and location for 96 global cities. Among these cities, we find that the fraction of PM2.5 exposure 
caused by within-city emissions varies widely (μ = 37%; σ = 22%) and is not well-explained by surrounding 
population density. The list of most-important sources also varies by city. Compared to a more mechanistically 
detailed model, InMAP predicts urban measured concentrations with lower bias and error but also lower cor-
relation. Predictive accuracy in urban areas is not particularly high with either model, suggesting an opportunity 
for improving global urban air emission inventories. We expect the results herein can be useful as a screening tool 
for policy options and, in the absence of available resources for further analysis, to inform policy action to 
improve public health.   

1. Introduction 

Air pollution is the greatest single environmental health risk 
worldwide. According to the World Health Organization, ambient air 
pollution prematurely kills 7 million people per year (World Health 
Organization, 2021), with an estimated economic cost of ~ $3 trillion 
USD, or 3.3% of global GDP (Myllyvirta, 2020). Among air pollutants, 

fine particulate matter (PM2.5) has the largest health impact in mone-
tized terms—more than half of the global population is exposed to 
annual-average ambient concentrations exceeding the first interim 
target from the World Health Organization, 35 μg/m3 (Health Effects 
Institute, 2019). Efforts to reduce PM2.5 concentrations have not been 
uniformly successful (UNEP, 2021). 

Making effective plans for improving air pollution requires 
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prioritization, which in turn requires knowing the emission sources that 
contribute most to poor ambient air quality and to the resulting health 
effects. However, the complexity of the atmospheric system and of the 
human and natural systems that cause emissions make that task chal-
lenging; in many cases it can be difficult for scientists and policymakers 
to determine which sources to target to maximally reduce the popula-
tion exposure. 

Air quality models and other decision support tools that relate 
pollution emissions to the resulting ambient concentrations and health 
impacts can be important for designing effective policies to improve air 
quality. Mechanistically detailed Eulerian chemical transportation 
models (CTMs) are considered well-suited for this purpose (Thunis et al., 
2019), but owing to high requirements for user training, computational 
resources, and input data, are often unavailable for urban-level policy 
analysis. Multiple reduced-complexity air quality models (RCMs) have 
been designed to fill this gap (Levy et al., 2009; Heo et al., 2017; Casey 
et al., 2018; Mikati et al., 2018). Among these RCMs, the Intervention 
Model for Air Pollution (InMAP; Tessum et al., 2017) has proven useful 
in health impact assessment and environmental justice applications 
(Goodkind et al., 2019; Tessum et al. 2019, 2021; Tschofen et al., 2019; 
Hill et al., 2019; Thind et al., 2019; Liu et al., 2019) owing in part to its 
use of a variable spatial resolution computational grid which focuses 
computational effort on areas with high population density. The recent 
creation of a global-through-urban version of the InMAP model (Thakrar 
et al., 2022) now provides the opportunity to estimate the exposure 
consequences of primary and secondary PM2.5 concentrations at high 
spatial resolution in nearly all densely populated areas globally. 

Metropolitan-level policy can play an important role in urban air 
quality (Friedman et al., 2021; Streets et al. 2007; Tonne et al. 2008; 
Slovic and Ribeiro, 2018; Izquierdo et al. 2020), but policymakers in 
many global cities have not previously had detailed information 
regarding where their ambient PM2.5 pollution comes from. Common 
initial questions from policy makers, in considering how to address air 
pollution, include: (1) Source apportionment: which sources (electricity 
generation, transportation, industry, etc.) contribute substantially to 
ambient pollution levels? and (2) Local influence and authority: how 
much pollution is generated within the city versus transported in from 
outside? Previous globally-scoped studies have provided this informa-
tion at national or subcontinental resolution (e.g., Lelieveld et al. 2015; 
Anenberg et al., 2019)—which is of limited use for decision-making at 
the urban level—or have provided information on the sources contrib-
uting to pollution in cities based on a relatively low-resolution emissions 
inventory but no information regarding whether those sources are 
located within or external to the city boundaries (McDuffie et al. 2021). 

Here, we use InMAP to provide scoping-level answers to the two 
questions above for 96 global cities. Specifically, we estimate the 
contribution of 12 emission source sectors, both within and outside of 
the city boundaries, to concentrations of primary (i.e., directly emitted) 
and secondary (i.e., formed in the atmosphere from primary emissions of 
gaseous pollutants) PM2.5. We also evaluate model performance in these 
urban areas and discuss opportunities for future improvements in model 
accuracy. For many of the cities we study, information provided herein 
is the only quantitative information that exists regarding the within-city 
vs. out-of-city contribution to ambient PM2.5. Results reported here 
provide both information for stakeholders and an analysis of opportu-
nities to improve the accuracy of results in future work. 

2. Methods 

Fig. S1 provides an overview of the input data, output data, and 
modeling tools used in this study, which are described in detail below. 

2.1. PM2.5 emission source estimation inventory data 

We study 96 cities that are members of C40, a network of mayors of 
global cities dedicated to delivering action on climate change (C40, 

2021). For each city, we consider anthropogenic, biogenic, mineral dust, 
soil denitrification, and biomass burning emissions. For anthropogenic 
emissions, we use data from the Community Emissions Data System 
(CEDS) for year 2014 with eight sectors (Table 1): non-combustion 
agriculture (AGR); energy transformation and extraction (ENE); indus-
trial combustion and processes (IND); surface transportation (road, rail, 
other) (TRA); residential, commercial, and other (RCO); solvents (SLV); 
waste disposal and handling (WST); and international shipping (SHP) 
(Hoesly et al., 2018). The CEDS emission species used here and their 
mappings to InMAP species are summarized in Table S1. The CEDS 
emissions dataset is available at 0.5 × 0.5◦ spatial resolution, meaning 
that a single emissions grid cell is larger than many of the cities we 
study. Section 2.2 describes our methods for downscaling these emis-
sions data to produce higher-resolution estimates. 

We use biogenic volatile organic chemical (VOC) emissions gener-
ated by the MEGAN model (Guenther et al., 2006), including the indi-
vidual VOC components that are considered secondary organic aerosol 
(SOA) precursors by GEOS-Chem. We use mineral dust emissions 
generated by the “DustDead” GEOS-Chem algorithm (Zender et al., 
2003). The DustDead model simulates emissions of mineral dust that are 
mobilized by wind (excluding road dust). The “EMIS_DST1” and 
“EMIS_DST2” variables were used in this study to represent primary 
PM2.5 emissions. We use soil NOx emissions from the GEOS-Chem soil 
NOx extension (Hudman et al., 2012). These emissions are at 0.25 ×
0.3125◦ spatial resolution and for year 2016, downloaded from the 
GEOS-Chem FTP website (GEOS-Chem authors, 2019). 

We use biomass burning emissions from the fourth generation Global 
Fire Emissions Database (GFED4; Giglio et al., 2013) at 0.25 × 0.25◦

spatial resolution for year 2016. These emissions are separate from do-
mestic biomass burning for residential energy use, which is included in 
the CEDS dataset. 

2.2. Spatial surrogates 

We downscale anthropogenic emissions from the native 0.5 × 0.5◦

CEDS spatial resolution to InMAP grid cells—which vary in size with a 

Table 1 
Sectors of anthropogenic emissions from the Community Emissions Data System 
(Hoesly et al., 2018) and concordance with spatial surrogates for downscaling.  

Sector Specification Spatial 
Surrogate 

Non-combustion 
agricultural sector 
(AGR) 

manure management, soil emissions, 
rice cultivation, enteric fermentation, 
and other 

Agricultural 
sector 

Energy transformation 
and extraction (ENE) 

electricity production, heat 
production, other energy 
transformation, related fugitive 
emissions, and fossil fuel fires 

Energy 
generation 

Industrial combustion 
and processes (IND) 

combustion for manufacturing of 
goods and minerals and for 
construction, production of cement, 
lime, and “other minerals”, mining, 
chemical production, paint 
application, wood, pulp, and paper 
products 

Industrial 
sector 

Surface transportation 
(road, rail, other) 
(TRA) 

air, road, rail, and water 
transportation 

Roadways 

Residential, commercial, 
and other (RCO) 

commercial-institutional, residential, 
agriculture-forestry-fishing, and 
other-unspecified emissions 

Population 

Solvents (SLV) used in degreasing and cleaning Industrial 
sector 

Waste disposal and 
handling (WST) 

solid waste disposal, waste 
combustion, wastewater handling, 
and other 

Population 

International shipping 
(SHP) 

VOCs from oil tanker loading/leakage Waterways  
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minimum edge length of 0.039 × 0.03125◦—using surrogate spatial 
data, which allows us to represent the spatial distribution of emissions 
within each CEDS grid cell. We do not apply additional spatial pro-
cessing to non-anthropogenic emissions. To spatially downscale 
anthropogenic emissions, we employ spatial datasets that are global in 
scope and freely available, allowing us to scale our approach to a large 
number of cities. In cases where the datasets provide no information for 
a given surrogate within a given city—for example, some cities do not 
have agricultural areas within their boundaries—we assume emissions 
are evenly distributed throughout the city area. We also assume all 
emission sources except electricity generation occur at ground-level. 
Spatial surrogates used for each CEDS emission sector are as follows: 

For energy transformation and extraction, we use a database of SO2 
emissions from global electricity generating units (EGUs) (Tong et al., 
2018). We use the spatial distribution of SO2 emissions (rather than 
another pollutant) because SO2 emissions are responsible for the vast 
majority of overall health impacts from EGUs (Fann et al., 2012). EGUs 
typically have tall emissions stacks, and their emissions plumes often 
continue to rise after release, owing to their upward velocity exiting the 
stack and their higher temperature relative to surrounding air. To 
incorporate stack height and plume rise, we assume that EGUs have 
stack parameters equal to mean values for EGUs in the year-2014 US 
EPA National Emissions Inventory (US EPA, 2016) as processed by 
Tessum et al. (2019): 63.5 m stack height, 4.1 m stack diameter, 519.2 K 
emission temperature and 24.7 m/s emission velocity. (There is no 
global database of EGU stack properties.) 

For surface transportation, we create a spatial surrogate using a 
weighted average of roadway lengths of OpenStreetMap (OSM) road-
ways in each CEDS grid cell. We use the following weighted average of 
OSM roadway types: 36% motorways, 21% trunk roads, 18% primary 
roads, 9% secondary roads, 1% tertiary, unclassified, and service roads, 
and 14% residential roads. This weighting is derived from U.S. data on 
urban road uses (US DOT FHA, 2017); the taxonomy of roadway types is 
described in Table S2 (OpenStreetMap contributors, 2019). 

For international shipping, we create a spatial surrogate from the 
combined length of OSM features tagged as river, riverbank, pier, ferry, 
ferry terminal, boat, and mooring. For non-combustion agriculture, we 
create a spatial surrogate from the combined length of OSM features 
tagged as farm, farmland, or vineyard (OpenStreetMap contributors, 
2017). For industrial combustion and processes and solvents, we create a 
spatial surrogate from the combined area of OSM features tagged as 
industrial buildings or “industrial” or “quarry” land use. For the 
remaining categories (residential, commercial, and other, and waste 
disposal and handling), we assume a spatial distribution similar to pop-
ulation density, which we represent using the year-2020 projected 
population from the WorldPop database (TatemWorldPop, 2017). 

2.3. InMAP air quality modeling 

Air quality model description: The Intervention Model for Air 
Pollution (InMAP) is a mechanistic reduced-complexity air quality 
model (RCM) that estimates annual-average changes in primary and 
secondary PM2.5 concentrations attributable to annual changes in 
emissions of PM2.5 and its precursors. InMAP leverages pre-processed 
physical and chemical information from the output of a comprehen-
sive CTM (in this case, GEOS-Chem) and uses a variable spatial- 
resolution computational grid to perform simulations that are several 
orders of magnitude less computationally intensive than conventional 
CTMs, yet with spatial resolution that is higher than is typically possible 
using a conventional CTM for a given domain. Conventional CTMs 
create a three-dimensional Eulerian grid and simulate changes in 
pollutant concentration in each cell at a high temporal resolution (<1 h) 
based on physical transport via wind flow and plume rise, emissions, 
physical removal (e.g., deposition), and interdependent non-linear 
physico-chemical transformation pathways. In contrast, InMAP uses 
time-averaged transport and reaction rates in its algorithms for 

emission, plume rise, transport, transformation, and removal of atmo-
spheric pollution. To reduce computational intensity, the algorithms are 
in some cases simplified relative to similar algorithms in a conventional 
CTM; these simplified representations are calibrated using output from a 
conventional CTM (GEOS-Chem). 

In addition to the emissions and population data described in Section 
2.1, InMAP requires information on meteorological characteristics and 
on chemical transport and reaction rates. We use meteorological and 
background chemistry inputs generated from the outputs of the GEOS- 
Chem global atmospheric chemical transport model (CTM) simulation 
for the year 2016, with a base spatial resolution of 2 × 2.5◦ and regional 
nests over Asia, Europe, and North America at 0.5 × 0.625◦ spatial 
resolution. The GEOS-Chem simulation uses the SOA_SVPOA chemical 
mechanism with standard emissions inputs as processed by the HEMCO 
emissions processor. Further details regarding the GEOS-Chem config-
uration are described by Thakrar et al. (2021). 

This is the first detailed application of InMAP to global cities, but it 
has previously been used to study PM2.5 air pollution in the US, 
including racial-ethnic disparities in exposure (Tessum et al., 2019, 
2021), and exposure to air pollution from agriculture (Hill et al., 2019), 
electricity (Thind et al., 2019), and freight (Liu et al., 2019). Further 
details regarding the InMAP model, including model formulation and 
performance evaluation, for the US and globally, are described in detail 
elsewhere (Tessum et al., 2017; Thakrar et al., 2022). 

Air quality model application: First, we estimate, for each city, the 
annual average total PM2.5 concentrations and the contributions from 
each of the 12 source sectors. Here, our spatial domain is global, so we 
refer to these as the “global” simulations. We configure InMAP (version 
1.9.6) to use a variable-resolution grid with 2 × 2.5◦ resolution for the 
largest cells, each of which are allowed to split into 4 smaller cells up to 
6 times recursively, for a minimum grid cell size of 0.031 × 0.039◦

(about 3 × 4 km2 at the equator). The resulting grid (Fig. S2) was created 
by recursively splitting any grid cell containing more than 100,000 
people or containing more than 55 million people per square degree in 
any part of the cell. These 12 simulations (one per source sector), each 
require ~20 h on a circa-2022 computer with 16 CPU cores. 

Next, we estimate, for each city, the same two parameters as in the 
first step (total PM2.5 and contributions from each sector) but in this case 
only considering within-city emissions (i.e. emissions originating within 
a city boundary provided by city officials for each of the 96 cities). For 
the resulting 1152 city simulations, we use the same InMAP configura-
tion as above. 

2.4. Data analysis 

For each source sector, we estimate exposure impacts from emissions 
originating outside of each city by subtracting population-weighted 
concentrations caused by emissions within the city from total 
population-weighted concentrations. In this manner we obtain the 
fraction of total PM2.5 concentrations caused by within-city emissions as 
well as the fraction of total PM2.5 concentrations caused by different 
emission sources located either within or outside of the city. 

Because the air quality model simulations we perform here require a 
substantial amount of expertise, time and computational resources, we 
investigate whether patterns exist in the underlying results that could 
potentially allow extrapolation beyond the 96 cities we studied. To do 
so, we analyze the relationship between the fraction of PM2.5 originating 
from within city sources and various city characteristics such as city 
population, gross domestic product (GDP), city area, and “population 
buffer fraction”. We define population buffer fraction as the city popu-
lation divided by the total population within a radius of 200-km from the 
city centroid. The goal of this supplementary analysis is to explore 
whether there might exist a straightforward method to reproduce the 
results shown here without extensive air quality modeling. 
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2.5. Model evaluation 

We evaluate InMAP model prediction accuracy of total PM2.5 con-
centration by comparing InMAP population-weighted predictions for 
cities against measurements from the WHO ambient (outdoor) air 
pollution database (World Health Organization, 2016), which provides 
PM2.5 measurements for 53 of the 96 cities studied here. (The WHO data 
we use provides the average of all monitors in a city rather than values 
from individual monitors and combines measurements collected in 
different years.) We assess InMAP model performance using metrics 
including mean bias (MB), mean error (ME), mean fractional bias (MFB), 
mean fractional error (MFE), and coefficient of determination (r2). 
Definitions of these metrics are in Table S3. We also use the same metrics 
to evaluate the global GEOS-Chem model predictions as configured and 
run by Thakrar et al. (2021) against the same PM2.5 measurements in the 
same cities. In addition, we compare InMAP model predictions of total 
PM2.5 concentrations against satellite-based predictions of PM2.5 con-
centrations in 91 global cities (Southerland et al., 2021), and predictions 
by McDuffie et al. (2021) in 43 global cities. 

Although there do not exist city-specific estimates of PM2.5 source 
apportionment for all of the cities studied here, we compare our esti-
mates for fractional contributions of six similar emission sources with 
those reported by McDuffie et al. (2021) among 43 global cities. We also 
compare our estimates for fractions of total PM2.5 and fractions caused 
by eight emission sources generated by within-city emissions with those 
reported by Thunis et al. (2021) among 17 European cities estimated by 
the European Commission. 

3. Results 

3.1. InMAP PM2.5 concentration and source analysis 

InMAP model results provide estimates (population-weighted con-
centrations) for each city of primary and secondary PM2.5, chemically- 
speciated by source type for within-city versus outside-city emissions. 
Results are summarized next, with full results for each city in supporting 
dataset S1. 

The median (interquartile range [IQR]) predicted concentration 
among the 96 cities is 17 (8–40) μg/m3, of which we estimate 44% 
(25%–62%) is primary (the rest is secondary), and 33% (21%–52%) 
comes from within-city emissions (the rest comes from sources outside 
the urban boundary; Table S4). 

Concentration estimates for each city (Fig. 1) demonstrate substan-
tial variability among urban areas, in terms of concentrations as well as 
the proportion that is primary vs secondary particulate matter. The 
highest levels of total PM2.5 as predicted here are mainly in Asian cities. 
As described in Section 3.3, InMAP and other mechanistic model pre-
dictions of total PM2.5 concentrations in global cities are often sub-
stantially different from measured concentrations. Some studies (for 
example McDuffie et al. (2021)) calibrate their mechanistic model pre-
dictions to measurement and remote sensing data, but we do not do that 
here to provide a more accurate sense of the level of uncertainty sur-
rounding our predictions. 

The largest contributors to both total PM2.5 concentrations (Fig. 2) 
and PM2.5 concentrations caused by within-city emissions are most 
commonly industry, energy transformation and extraction, and resi-
dential and commercial activities. For example, 46% and 35% of cities 
have industry ranked the largest for total PM2.5 and PM2.5 concentra-
tions caused by within-city emissions, respectively; 27% and 23% of 
cities have energy transformation and extraction ranked the largest for 
total PM2.5 and for PM2.5 concentrations caused by within-city emis-
sions, respectively; and 10% and 24% of cities have residential and 
commercial activities ranked the largest for total PM2.5 and for PM2.5 
concentrations caused by within-city emissions, respectively. The two 
largest sources of PM2.5 caused by out-of-city emissions are industry and 
energy. 43% of cities have industry ranked the largest source, and 30% 

of cities have energy ranked the largest source; however, the third 
largest source of PM2.5 caused by out-of-city emissions is dust, which is 
the largest out-of-city source in 15% of cities. Only 13% of cities have 
surface transportation ranked as the largest PM2.5 source caused by 
within-city emissions. Although industrial combustion/processing and 
energy transformation/extraction are the top PM2.5 sources in many 
cities, there is substantial variability in which emission sources 
contribute the most across the 96 cities. Thus, an important implication 
of these findings is that one-size-fits-all approaches to air quality man-
agement are unlikely to work across urban areas. Instead, management 
practice should consider local context including which sources dominate 
for that city. 

3.2. Fraction of within-city emitted PM2.5 and city characteristics 

As described in Section 2.4, we tested correlations between the 
fraction of PM2.5 caused by within-city emissions and city characteristics 
such as city size and urban GDP (Fig. S3). The results suggest low cor-
relation between fraction of within-city emitted PM2.5 and city popu-
lation, GDP and city area for total, primary and secondary PM2.5. 
However, there are positive correlations between the fraction of within- 
city emitted PM2.5 and population buffer fraction for total and secondary 
PM2.5. 

There is no statistically significant difference in total PM2.5 concen-
tration, city population, population buffer fraction or area among cities 
that have different top ranking emission sources (ANOVA p = 0.28, 0.71, 
0.13, and 0.68, respectively). However, there is a statistical difference in 
the fraction of within-city generated PM2.5 among cities that have 
different top sources (p = 0.00), where cities with high fraction of 
within-city generated PM2.5 have top PM2.5 sources as residential and 
commercial, industrial, and energy, indicating these sources are likely 
generated locally. Additionally, there is a statistical difference in GDP 
among cities having different top sources (p = 0.045), consistent with 
the intuition that qualitatively different types of activities often occur in 
cities with different GDP levels. Along with the results shown in Fig. S3, 
our findings suggest if a city does not have other densely-populated 
areas nearby, it tends to have the most locally-generated PM2.5, 
whereas if a city has other densely populated areas nearby, it tends to 
have a smaller proportion of PM2.5 generated locally. The level of pop-
ulation buffer fraction is strongly associated with certain sources, as well 
as with total and secondary PM2.5 concentration. None of the urban 
parameters we investigated are well-correlated with the top PM2.5 
source for a city. This finding suggests that atmospheric modeling holds 
value for understanding the local context of which sources contribute 
the most to local pollution. 

3.3. Comparison of InMAP results with measurements and other studies 

We evaluate the InMAP predicted total population-weighted PM2.5 
concentrations against measured total PM2.5 concentrations. There are 
53 global cities that have both InMAP predictions and measured data 
collected by WHO (World Health Organization, 2016); results are shown 
in the first panel of Fig. 3. The r2 is 0.41 and bias and error are listed in 
Table S5. For the same cities, the model-measurement correlation is 
better for GEOS-Chem than for InMAP (r2 = 0.57 vs. 0.41 respectively; 
Fig. 3) but GEOS-Chem has larger error and bias (mean error: 
GEOS-Chem 15.0 µg/m3 vs. InMAP 14.3 µg/m3, and mean bias: 
GEOS-Chem − 14.4 µg/m3 vs. InMAP 0.84 µg/m3) (Table S5). These 
results suggest that while GEOS-Chem provides a better mechanistic 
representation of the atmosphere overall, InMAP’s higher resolution in 
urban areas helps it avoid underpredicting the increase in urban con-
centrations above the regional background. 

We additionally compare the InMAP predicted total PM2.5 concen-
trations using satellite derived PM2.5 concentrations (Southerland et al., 
2021) among 91 cities in Fig. S4 (r2 = 0.15), as well as using modeled 
total PM2.5 concentrations reported by McDuffie et al. (2021) in the first 
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Fig. 1. Fractions of PM2.5 originating from within city sources for A) total PM2.5, B) primary PM2.5 and C) secondary PM2.5 among 96 global cities. Color scales 
represent population-weighted PM2.5 concentration (μg/m3). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web 
version of this article.) 
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panel of Fig. S5 (r2 = 0.23). (Note that total PM2.5 concentrations re-
ported by McDuffie et al. (2021) are calibrated to measurement and 
remote sensing data, which explains their good agreement with mea-
surement data.) We compare our estimates for fractions of total PM2.5 
caused by six common emission sources with those reported by McDuffie 
et al. (2021) in Fig. 4. Most fractions of these emission sources show 
relatively good agreement (r2: 0.24–0.53) between the two studies 
except the fraction of PM2.5 from residential, commercial and other (r2 

= 0.01). We also compare InMAP fractions of total PM2.5 concentrations 
caused by within-city emissions with these fractions from 17 European 
cities (Thunis et al., 2021) as shown in Fig. S6 (r2 = 0.18). Additionally, 
we compare the fractions of total PM2.5 caused by eight common 
emission sources, as well as the fractions of total PM2.5 concentrations 
caused by these eight emission sources generated by within-city emis-
sions to that study in Figs. S7 and S8. There are no correlations between 
InMAP predictions and predictions by Thunis et al. (2021), except the 

fractions of total PM2.5 caused by agricultural and residential sources 
(the differences in emission source categories are listed in Table S6). We 
also evaluate the InMAP within-city fractions for total PM2.5 against 
zero-out simulations with GEOS-Chem conducted in five cities and find 
good agreement (r2 = 0.67) when InMAP is run at the coarser resolution 
used by GEOS-Chem (Fig. S9). Model comparison is described in more 
detail in the supporting information. 

4. Discussion 

In this study, we have produced estimates of PM2.5 concentration, its 
source composition, and contribution of in-city vs. out-of-city sour-
ces—the latter of which was not previously available in many global 
cities. This information can be useful as a screening tool and in many 
cases may be robust enough to inform policy action to enact more 
effective strategies for improving public health. We find that although 

Fig. 2. Proportions of total PM2.5 from 12 sources among 96 global cities, grouped by the largest sources: A) Industrial combustion and processing, B) Energy 
transformation and extraction, C) Residential, commercial, and other, and D) Other sectors. 
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industrial- and energy-related sources are the largest contributors to 
PM2.5 in a plurality of cities, there is considerable diversity among cities 
in which source types are most important (Fig. 2). Because there is 
considerable uncertainty inherent in the results presented here, in some 
cases it may be advisable to leverage these results to obtain more precise 
estimates using a more mechanistically-detailed air quality model and 
locally-produced emission inventories before taking policy action, to the 
extent that resources are available to support the additional analysis. 

Beyond the specific results for individual cities presented in the 
supporting information and summarized above, we would like to call the 
reader’s attention to several salient points that emerge from this 
analysis. 

The first point is that we did not find any strong patterns among cities 
that could predict which emission sources contribute most to a city’s 
PM2.5 concentrations, or how much of a city’s ambient PM2.5 concen-
tration originates from emissions within the city boundary (Fig. S3). To 
some extent, this contradicts previous findings by Apte et al. (2012); this 
discrepancy may be explained by the more detailed model of the at-
mosphere used here. The implication of this point is that it is necessary 
to perform atmospheric modeling in a given city to get a realistic esti-
mate of the sources of that city’s pollution—there do not seem to be any 
shortcuts. Since it may not be practical to carry out urban-level air 
quality simulations in a large number of cities using a comprehensive 
model like GEOS-Chem, this underscores the utility of reduced- 
complexity models such as InMAP. 

The second point is that urban air quality analyses require urban 
emissions inventories. As described above, we use spatial 

surrogates—mainly based on OpenStreetMap data—to allocate 0.5 ×
0.5◦ CEDS emissions to much smaller InMAP grid cells. This spatial 
downscaling is important: in an analysis comparing InMAP and GEOS- 
Chem predicted contributions of within-city emissions for a subset of 
five of the 96 cities studied here (i.e. Johannesburg, Buenos Aires, Addis 
Ababa, Chengdu, and Guadalajara), we found that the r2 value between 
GEOS-Chem and InMAP predictions when InMAP used emissions at their 
native resolution was 0.67, but when InMAP used the same emissions 
downscaled with the spatial surrogates described above, the r2 value 
decreased to 0.2 (Fig. S9, methods in supporting text). This implies that 
the use of high-resolution emissions provides information that couldn’t 
be reproduced by—for example—applying a correction factor to simu-
lation results based on low-resolution emissions. 

Building on the second point, the third point is that in this analysis 
the emission inventory appears to be a larger source of potential error 
than the choice of air quality model. For example, the r2 value for total 
concentration predictions in five cities between GEOS-Chem and InMAP 
when using the same emission inventory is 0.98 (Fig. S9), but the r2 

value between GEOS-Chem and InMAP for the fractional contribution of 
Residential, Commercial, and Other emissions in 43 cities when using 
different versions of the CEDS inventory (Hoesly et al., 2018 vs. 
McDuffie et al., 2021) at different spatial resolutions is 0.01 (Fig. 4). 

As described above, high-resolution emissions estimates are impor-
tant for urban-scale analysis. The fourth point is that downscaling 
existing global inventories using spatial surrogates can only yield im-
provements up to a certain point. The global CEDS inventory used here is 
mainly based on national emissions estimates that are themselves 

Fig. 3. Comparison of InMAP predicted 
total population-weighted PM2.5 concentra-
tions and measured total ambient PM2.5 
concentrations (World Health Organization, 
2016; left) and GEOS-Chem predicted total 
PM2.5 concentrations and measured total 
ambient PM2.5 concentrations (right) among 
53 global cities. The blue line is a 
least-squares model fit and blue shaded 
areas indicate the 95% confidence interval 
of a least squares fit. The black line repre-
sents a 1:1 relationship. Error metric acro-
nyms are defined in Table S3. (For 
interpretation of the references to colour in 
this figure legend, the reader is referred to 
the Web version of this article.)   

Fig. 4. Comparison of fractions of total PM2.5 caused by different emission sources between InMAP (this study) and McDuffie et al. (2021) among 43 global cities.  
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downscaled to a 0.5 × 0.5◦ grid using mainly population density esti-
mates. This can lead to spatial misallocations that cannot be fixed by 
further downscaling. For example, using the national-population-based 
spatial allocation method above in a country with substantial residen-
tial coal emissions could allocate a plurality of those emissions to the 
cosmopolitan capital city, where in reality there are relatively few res-
idential coal emissions owing to the capital’s relatively high level of 
affluence. The next generation of global emissions inventories may 
benefit from the emergence of new streams of local data—for example 
from smart phones and satellites—in combination with local expertise 
facilitated by networks of cities like C40. 
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