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ABSTRACT: Short-term mobile monitoring campaigns are
increasingly used to assess long-term air pollution exposure in
epidemiology. Little is known about how monitoring network
design features, including the number of stops and sampling
temporality, impacts exposure assessment models. We address this
gap by leveraging an extensive mobile monitoring campaign
conducted in the greater Seattle area over the course of a year
during all days of the week and most hours. The campaign
measured total particle number concentration (PNC; sheds light
on ultrafine particulate (UFP) number concentration), black
carbon (BC), nitrogen dioxide (NO2), fine particulate matter
(PM2.5), and carbon dioxide (CO2). In Monte Carlo sampling of
7327 total stops (278 sites × 26 visits each), we restricted the
number of sites and visits used to estimate annual averages. Predictions from the all-data campaign performed well, with cross-
validated R2s of 0.51−0.77. We found similar model performances (85% of the all-data campaign R2) with ∼1000 to 3000 randomly
selected stops for NO2, PNC, and BC, and ∼4000 to 5000 stops for PM2.5 and CO2. Campaigns with additional temporal restrictions
(e.g., business hours, rush hours, weekdays, or fewer seasons) had reduced model performances and different spatial surfaces. Mobile
monitoring campaigns wanting to assess long-term exposure should carefully consider their monitoring designs.
KEYWORDS: mobile monitoring, air pollution, ultrafine particles, environmental monitoring, exposure assessment, prediction models

1. INTRODUCTION
Evidence increasingly indicates that traffic-related air pollutants
(TRAP) like ultrafine particles (UFP, particles with diameters
less than 100 nm often measured as particle number
concentration [PNC]), black carbon (BC), nitrogen dioxide
(NO2), and fine particulate matter (PM2.5, particles with
diameters less than 2.5 μm) may be associated with adverse
health effects, including cardiovascular and pulmonary out-
comes, mortality, and brain health.1−4 Because unregulated
TRAPs are not routinely measured at government monitoring
sites; however, their use as exposures in epidemiologic cohort
studies requires the adoption of special, and often costly,
exposure assessment campaigns. Determining the most
effective, feasible, and cost-effective approaches to improve
exposure assessment for air pollution cohort studies will thus
greatly enhance the quality of possible health effect inferences.
Short-term mobile monitoring campaigns, the collection of

repeated short-term air samples at selected sites, are
increasingly being used as an efficient and cost-effective
approach for estimating multilocation long-term air pollution
averages.5−33 While many strategies have been employed, little
is known about how monitoring network design features,
including the number of stops and sampling temporality,

impact exposure assessment models. Most campaigns, for
example, collect limited data at each site consisting of ∼1 to 5
repeat visits, sample during restricted time periods such as
business hours, and/or have short monitoring durations lasting
under a few months. The resulting exposure prediction models
generally have moderate or poor coefficients of determination
(R2), suggesting limited prediction accuracy and potentially
less value for epidemiologic inference.
Hankey and Marshall, for example, collected repeated

bicycle-based mobile measures of PNC, PM2.5, and BC in
Minneapolis, MN. Measurements were collected over a 2-
month period on 42 occasions during morning and afternoon
rush hours.9,32 Their base land use regression (LUR) models
of spatiotemporal data averaged every 1−300 s produced
adjusted R2 between 0.25 and 0.50. Weichenthal et al. collected
mobile on-road PNC measures in Toronto, Canada, during
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weekday morning and afternoon hours over 2 weeks in the
summer and 1 week in the winter.29 The resulting LUR model
of spatiotemporal road segment data had an out-of-sample R2
value of 0.50. Kerckhoffs et al. measured PNC and BC at 2964
road segments and 161 stationary sites in Amsterdam and
Rotterdam, Netherlands.12 Samples were collected over two
seasons (42 days) during non-rush-hour daytime hours (9 AM
to 4 PM). R2 values from spatiotemporal road segment data
were 0.13 and 0.12 for PNC and BC, respectively.
A few studies have gained valuable insight regarding the

impact of the number of sites and repeat site visits on the
quality of the resulting exposure prediction models. Messier et
al. used weekday daytime nitrogen monoxide (NO) and BC
on-road measurements from a 2-year Google Street View
monitoring campaign conducted in a 30 km2 domain in
Oakland, CA to investigate the impact of drive days (repeat
visits) and road coverage (“sites”) on universal kriging models
of long-term average measurements.34 While their full data
models had cross-validated R2 values of 0.65 for NO and 0.43
for BC, they developed similarly performing models with only
30% of the roads in the modeling domain (∼92 000 road
segments) and 4−8 repeat visits per road segment. Saha et al.
used continuous measurements of PNC at 32 fixed sites in
Pittsburg (150 km2 domain) during the winters of 2017 and
2018 to evaluate the influence of the number of sampling days
(repeat “visits”) and sampling duration on LUR prediction
models.22 While their base models had cross-validated R2
values of 0.72−0.75, they found that at least 10−15 days
with 1 h of sampling per day were required to produce PNC
LUR models with good precision and low error. Hatzopoulou
et al. used PNC and nitrogen dioxide (NO2) measurements
collected along ∼1800 road segments in Montreal, Canada
(470 km2 domain), over 35 sampling days in the winter,
summer, and fall of 2009 to evaluate the impact of repeat visits
and number of road segments on LUR model stability.33 They
found that ∼150 to 200 road segments and 10−12 visits per
segment yielded stable long-term average LUR models. R2
values were 0.60 for PNC and 0.51 for BC when road segments
with at least three visits were included, and these increased to
0.74 for PNC and 0.55 for BC when road segments with at
least 16 visits were included.
While these past investigations have added valuable

knowledge to the field, their findings have been largely focused
on nonstationary on-road measurement campaigns in relatively
smaller geographic areas. Further work is needed to
demonstrate whether exposure data from nonstationary, on-

road campaigns are representative of residential human
exposure levels.12,35 Furthermore, cohort study applications
often span large geographic areas and are interested in long-
term exposures. Little is known about how long-term exposure
prediction models are impacted by short-term, temporally
restricted sampling campaigns.
To address these gaps, we leverage an extensive, multi-

pollutant mobile monitoring campaign in the greater Seattle
area (1200 km2 domain) intended to assess annual average air
pollution exposure levels in an epidemiologic cohort.36 The
campaign consisted of 309 stationary sites, each with ∼29
temporally balanced visits per site, and measurements of PNC,
BC, NO2, PM2.5, and CO2. We use Monte Carlo sampling to
collect subsamples and investigate how the mobile monitoring
design features, including the number of stops (sites × visits)
and sampling temporality (seasons, days, hours), impact the
resulting exposure prediction models. Based on these findings,
we recommend short-term mobile monitoring design ap-
proaches that are expected to improve the precision and
accuracy of exposure prediction models and better support
epidemiologic investigations of long-term air pollution
exposure.

2. METHODS
2.1. Data. We leverage data from an extensive air pollution

mobile monitoring campaign conducted between March 2019
and March 2020 in a 1200 land km2 (463 mi2) area within the
greater Seattle, WA area.36 A hybrid vehicle outfitted with
equipment visited 309 stationary sites off the side of the road
∼29 times throughout the campaign and collected 2-min
measurements (visits) from various instruments, including
PNC (TSI P-TRAK 8525), BC (AethLabs MA200), PM2.5
(Radiance Research M903 nephelometer), NO2 (Aerodyne
Research Inc. CAPS), and CO2 (Li-Cor LI-850). The vehicle
operated by battery with its engine shut off during roadside
measurements. All gas instruments were calibrated in our
laboratory before the campaign and every few weeks thereafter.
Particle instruments were purchased new and arrived with
calibration certifications, or they were compared to like
instruments that had been serviced prior to the study. Table
S2 of the original monitoring campaign publication has
additional instrumentation details, including measurement
frequency.36 Visits were temporally balanced over the course
of 288 drive days such that all sites were visited during all
seasons, days of the week, and most hours of the day (5 AM to
11 PM).

Table 1. Reduced Sampling Designs from an Extensive Mobile Monitoring Campaign (278 Sites × ∼26 Visits Each)

design typea design versions total stops sites
visits per
site

best estimate all data training-validation set 7327 278 26b

spatial and temporal fewer total stopsc fewer sites (25, 50, 100, 150, 200, 250, 278) and visits (4, 8, 12, 16, 20, 24,
26)

100−7080 25−278 4−26

temporal fewer daysd weekends or weekdays 3336 278 12
temporal fewer hours business, rush, or business and rush hours 3336 278 12
temporal balanced seasonsd,e 1, 2, 3, or 4 seasons 3336 278 12
aThe all-data sampling design has 1 campaign “sample”, while all others have 30 campaigns, where each campaign is defined as one sample from all
of the data. The fewer total stops design has 30 campaigns for each site-visit combination. bSites each have an average of 26 (range: 21−31) visits.
cSeventy-six sites only have between 21 and 25 visits to select from. The realized maximum total stops are thus 7080, lower than 7228 (278 sites ×
26 visits), and 7327 stops in the all-data campaign. Sampling first selects the number of sites and then the number of visits. Table S1 lists the spatial
density of monitors based on the number of monitoring sites included. dSampling with replacement because there are otherwise insufficient
samples for the most restrictive sampling approaches (e.g., one season or weekends only). eSamples are distributed evenly across the randomly
selected seasons (e.g., 12 site visits/4 seasons = 3 site visits/season).
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Since instruments used in this study collected measurements
every 1−10 s, we calculated the median pollutant concen-
tration of each 2-min visit. Concentrations were winsorized at
the site level once (not after each subsample, see Section 2.2)
by setting values below each site’s 5th or above 95th quantile
concentration to that threshold, respectively, to reduce the
influence of a few extreme observations on annual averages.
We previously showed that winsorizing prior to averaging
slightly improved PNC and PM2.5 models due to the reduction
of influential points, while using approaches completely robust
to influential points (i.e., medians), produced worse-perform-
ing models of pollutants with already limited spatial variability
like CO2.

36

For comparability across pollutants, we excluded the ∼10%
of visits that had incomplete measurements (i.e., had fewer
than five pollutants); the resulting dataset had an average of 26
(range: 21−31) visits per site during 251 drive days. We split
sites into training-validation (90%, n = 278 sites, 7327 stops)
and test (10%, n = 31 sites, 810 stops) sets (see Figure S1 for
the spatial distribution of these sites). The training-validation
set was used to select an initial set of modeling covariates
based on variable variability in the region and was afterward
used to perform validation (see below). The test set was a
second out-of-sample set that was completely excluded from all
modeling decisions and solely used to evaluate the perform-
ance of each full training model.
2.2. Samples with Reduced Data. We used all of the

training-validation data to calculate our best estimate (gold
standard) of each site’s annual average and used Monte Carlo
sampling to collect subsamples of these data following various
sampling designs (Table 1). A spatial-temporal design sampled
a fewer number of total stops (sites × visits per site) by
randomly restricting both the number of sites (25−278) and
visits (4−26). Table S1 lists the exact number of sites used and
the respective monitoring densities (monitors per 100 km2).
Since some sites only had 21−25 visits, the maximum number
of stops in the Monte Carlo runs was 7080, lower than 7228
(278 sites × 26 visits), and lower than the 7327 stops in the all-
data campaign, which included 143 sites with 27−31 visits
each. Temporal designs, on the other hand, used all of the
training-validation sites (n = 278) but were restricted to fewer
random sampling seasons (1−4, with seasons randomly
selected so samples were balanced across all included seasons),
fewer days of the week (weekdays or weekends), or fewer
hours (weekday business [9 AM to 5 PM] and/or rush hours
[7−10 AM, 3−6 PM]). In additional analyses, we looked at the
potential impact of specific season selection by sampling 1−2
prespecified seasons. Given the data availability in the most
restrictive sampling approaches (e.g., one season or weekends
only), only 12 site visits were collected following these
temporal designs for a total of 3336 stops. The fewer hours
design used sampling without replacement, while the fewer
seasons and fewer days designs used sampling with
replacement since, for example, sites had fewer than 12
samples on weekends or in one season. We calculated site
annual averages for each reduced sampling campaign and
repeated this process 30 times using the parallel package
(v. 3.6.2) in R (v. 3.6.2; see Note S1 for code details).37

2.3. Prediction Models. We built universal kriging (UK)
with partial least squares (PLS) covariate models for pollutant
concentrations from each campaign using the gstat (v. 2.0-
7),38,39pls (2.7-2),40 and sf (v. 0.9-5)41 R packages. The
dependent variables in these models were the log-transformed

annual average site concentrations (using the data described in
Table 1). The independent variables were the first two PLS
components, which summarized 188 geographic covariate
predictors (e.g., land use, roadway proximity; eq 1). New PLS
components were calculated for each model (five models per
sampling campaign for fivefold cross-validation and one for test
set validation). We selected this subset of covariates from 348
original covariates because these had sufficient variability and a
limited number of outliers in the training-validation set.36 The
models were

= + +
=

Zln(conc )i
m

M

m mi i
1 (1)

where conci is the pollutant concentration at the ith location,
Zm are the first two PLS principal component scores (M = 2),
α and θm are estimated model coefficients, and ε is the residual
term with mean zero and a modeled geostatistical structure.
We selected a kriging variogram model for the geostatistical
structure using the fit.variogram function in gstat,
which chose the best-fitting model from exponential, spherical,
and Matern options. In total, we had 1741 campaigns (1 all-
data campaign; 1470 fewer total stops campaigns: 49 versions
[7 site and 7 visit combinations] × 30 samples each; 60 fewer
days campaigns: 2 versions × 30 samples; 90 fewer hours
campaigns: 3 versions × 30 samples; and 120 balanced seasons
campaigns: 4 versions × 30 samples), each with five models for
cross-validation and one for test set validation for a total of
10 446 models.
2.4. Model Assessment.We evaluated the performance of

each campaign using non-normalized and normalized root-
mean-square error (RMSE) and mean-square error (MSE)-
based R2. MSE-based R2 was used instead of the more
common regression-based R2 because it evaluates whether
predictions and observations are the same (i.e., are near to the
one-to-one line), rather than merely correlated. As such, it
assesses both bias and variation around the one-to-one line. In
contrast, regression-based R2 (which we did not employ),
solely assesses whether pairs of observations are linearly
associated, regardless of whether observations are the same or
not. MSE-based R2 performs similarly or worse than
regression-based R2. To calculate RMSE and MSE-based R2,
model predictions at cross-validation and test sites were
compared to the respective all-data campaign annual average
estimates (our best estimates). For the primary presentation,
these were additionally normalized to (divided by) the RMSE
and MSE-based R2 of the all-data campaign, respectively.
Normalized values of one indicate that the reduced sampling
campaign performance was the same as the all-data campaign,
while values of more than one for RMSE and less than one for
MSE-based R2 indicate worse model performance. Importantly,
all normalized values were divided by the same, all-data
campaign performance, thus facilitating comparisons of
performances across study designs and pollutants. Non-
normalized results are presented in the Supporting Informa-
tion. In secondary analyses resembling traditional model
assessment where a best or gold standard estimate is not
known, we calculated RMSE and MSE-based R2 by comparing
model predictions to the reduced sampling campaign’s
respective annual average site estimates.
For each campaign, we built five models for fivefold cross-

validation and a final model using all of the training data
(described in Table 1) to evaluate against a second out-of-
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sample set�the test set. Fivefold cross-validation performed
similarly to 10-fold cross-validation but was less computation-
ally intensive.

3. RESULTS

The median (and interquartile range [IQR]) 2-min median
mobile monitoring stop concentrations used in this analysis
were 5980 (3800−9324) pt/cm3 for PNC, 409 (250−709) ng/
m3 for BC, 8 (4−13) ppb for NO2, 4 (2.8−5.9) μg/m3 for
PM2.5, and 425 (415−442) ppm for CO2 (Table S2). Looking
at the ratio of the 95th−5th quantile (Q95/Q05), BC and
NO2 had the most overall variability (Q95/Q05: 13.9 and
11.3, respectively), followed by PNC (Q95/Q05: 7.5) and

PM2.5 (Q95/Q05: 5.2), while CO2 had little variability (Q95/
Q05: 1.2).
The distribution of annual average site estimates and model

predictions from the all-data campaign are detailed in Table
S3. PNC, NO2, and BC show the most spatial variability for
both estimates and predictions, with high- and low-
concentration sites having a 1.9- to 2.7-fold difference (Q95/
Q05 ratio). PM2.5 and CO2 show a much lower degree of
spatial variability with high- and low-concentration sites having
a 1.0- to 1.5-fold difference.
Figure S2 shows the annual average prediction error relative

to the all-data campaign estimates for all of the sampling
designs. Prediction errors for the all-data campaign are
centered around zero, suggesting no systematic bias in the

Figure 1. Median normalized MSE-based R2 for the fewer total stops design. R2 is calculated by comparing cross-validated predictions to annual
average estimate references from either the all-data campaign (top) or the reduced sampling campaigns (bottom) and normalized (divided by) the
R2 from the all-data campaign. Normalized R2 values below 1 indicate worse performances than the all-data campaign. Median performance
parameters are each based on 30 campaigns.
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models. This is expected since the all-data campaign
predictions were estimated from the all-data campaign
estimates. Prediction errors from reduced sampling designs,
on the other hand, are generally more variable when fewer total
stops are used. While there is some variability across pollutants,
designs that only sample on weekdays generally overpredict.
The opposite is true for weekend-only sampling. When
samples are only collected during business hours, models
underpredict NO2, PM2.5, and CO2 levels.
Pollutant models from the all-data campaign performed well

in fivefold cross-validation and at test set locations (see Figure
S3 for details). The cross-validated MSE-based R2 estimates
were 0.76 for PNC, 0.60 for BC, 0.77 for NO2, 0.66 for PM2.5,
and 0.51 for CO2. Test set locations performed slightly better,
presumably due to the lack of high-concentration sites in the
randomly chosen test set, which were generally underpredicted
by the models. The lower cross-validation performance of BC,
for example, seems to be driven by a few sites with large
observations that do not have comparable sites in the test set.
Figure 1 shows the median normalized MSE-based R2 for

the fewer total stops design from 30 campaigns. Prediction
performance parameters are calculated against reference
estimates from the all-data campaign (Figures S6 and S7
show these results not normalized) and reduced sampling
campaigns. Using the all-data campaign estimates to assess
model performance (Figure 1, top), performance generally
increases for all pollutants as the number of total stops
increases. For a given number of total stops, R2 is minimally
impacted by whether those stops come from maximizing the

number of sites (randomly distributed throughout the study
area) or visits. The differences that are observed are small and
can be explained by the variation in R2 estimates across
campaigns (Figure S4). There are diminishing returns on
performance (normalized MSE-based R2 > 0.85) at around
1000 stops for NO2, 2000 stops for PNC, 3000 stops for BC,
and 4000−5000 stops for PM2.5 and CO2. Table S4 details the
site-visit combinations used to reach these total counts. While
the increased performance of NO2, PNC, and BC begins to
flatten after this number, PM2.5 and CO2 continue to steadily
increase, suggesting that only the latter two pollutants continue
to substantially benefit from an increased number of total stops
relative to the all-data campaign. Nonetheless, Figure S4 shows
that R2 and RMSE estimates become more precise (lower IQR
values across the 30 campaigns) as the number of total stops
increases. Thus, while campaigns with more total stops have
diminishing returns on average, their resulting exposure
models continue to become more stable and reproducible
across campaigns.
Interestingly, when R2 is evaluated using the reduced

sampling campaign estimates rather than the all-data campaign
estimates (Figure 1, bottom), the results are noisier and the
number of stops to achieve the same performance benefit is
larger. These performances are calculated based on noisier
campaign annual average estimates, and they indicate that for
all pollutants, increasing the number of visits is more important
than the number of sites. For a given x-axis value, icons that are
lighter in color (fewer sites, more visits per site) have better
model performance than icons that are darker in color (more

Figure 2. Median model performances (30 campaigns) calculated by comparing cross-validated predictions to annual average estimate references
from the all-data campaign (best estimates; solid lines) and the reduced sampling campaigns (traditional model assessment; dashed lines). A value
of 1 means that the design performs the same as the all-data campaign, while a value less than 1 for R2 and more than 1 for RMSE means that the
design performs worse. Horizontal lines show the median performance of the nontemporally restricted fewer total stops design with 278 sites and
12 random, which can serve as a reference.
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Figure 3. Comparison of the exposure surface from the all-data campaign with over 7000 stops (top) and the median prediction difference from
some example reduced sampling campaigns with ∼3000 stops (rounded). The ∼3000 temporally balanced stops are from the fewer total stops
design that randomly selects from the all-data campaign with no time restrictions and can serve as a reference for the other reduced sampling
campaigns.
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sites, fewer visits per site). Figure S5 shows similar findings for
RMSE.
Figure 2 shows the median normalized MSE-based R2 and

RMSE for each temporal sampling design (Figures S6 and S7
show these results not normalized). The horizontal lines on
each panel show the performances of the nontemporally
restricted fewer total stops design with 278 sites and 12
random visits, which can serve as a reference. Overall, there is
decreasing model performance for all pollutants as sampling is
restricted to fewer days of the week, hours, or seasons.
Weekday-only and weekend-only sampling exhibits poorer
performance than sampling during all days of the week
(horizontal lines). Restricting sampling to weekday rush hours
(alone or with business hours) performs slightly worse, while
restricting sampling to weekday business hours alone typically
produces the worst model performances. Model performances
clearly improve when 12 site visits are evenly distributed across
more than one season, with limited improvements beyond two
seasons for all pollutants other than PM2.5. Additional analyses
showed slightly improved performances for single-season
sampling campaigns during the winter for PNC, BC, and
NO2 (Figure S8). There was no clear indication that sampling
during two opposing seasons (winter and summer, or spring
and fall) consistently improved model performances, although
spring and summer sampling produced good PNC, NO2, and
BC performance. Plots showing the median performance seem
to indicate that models perform slightly better when 12 site
visits are collected randomly throughout the year than when
they are forced to be evenly distributed across four seasons
(balanced seasons design), although this is not meaningful
based on overlapping campaign performance ranges (data not
shown in Figure 2). Compared to PM2.5 and CO2, PNC, NO2,
and BC model performances are generally higher, and they
appear to be less sensitive to restricted sampling times. When
reduced sampling designs are evaluated against references from
each respective campaign’s estimates, the fewer days and fewer
hours designs show different trends. The weekend- and
business-hours-only sampling, for example, seemingly perform
better than less restrictive versions. The performances of all
temporally restricted sampling designs are typically lower than
the nontemporally restricted fewer total stops design with 278
sites and 12 random.
Figure S9 shows the Pearson correlations (R) between cross-

validated predictions from the all-data campaign and other
sampling campaigns. Lower correlations are due to changes in
the rank order of each campaign’s predictions and are
indicative of different predicted exposure surfaces. Overall,
the PNC, BC, and NO2 exposure surfaces are less impacted by
reduced sampling campaigns compared to PM2.5 and CO2.
Correlations are generally lower and more variable as the
number of total stops diminishes, due to prediction surfaces
that are increasingly unstable and different from the all-data
campaign. The correlations for weekend-only sampling are
lower than weekday-only sampling, most strikingly for PM2.5
and CO2. Campaigns with only 12 visits divided among fewer
seasons produce increasingly different exposure surfaces,
primarily for PM2.5 and CO2. Figure 3 illustrates the resulting
exposure surfaces for some example sampling designs. Sites
with the highest PNC levels are found near the region’s largest
airport, the Seattle-Tacoma International Airport. This area is
consistently underpredicted using more restricted sampling
designs. The Rush and Business hours designs show large-scale
differences in spatial patterns for most pollutants. Figure S10

further shows that restricted sampling designs result in more
variable predictions at higher concentration sites. This results
in different predictions at these locations across campaigns.

4. DISCUSSION
In this study, we show the impact of short-term mobile
monitoring network design on the resulting air pollution
exposure assessment results. Though there is some variability
across pollutants, more robust exposure prediction results are
generally produced with a greater number of total stops and
increased temporal coverage. These findings are clearest when
predictions are evaluated against a single set of best estimate
observations (the all-data campaign), although this is not
typically realistic in practice.
As expected, we obtained higher model performances as the

number of monitoring sites and repeat site visits increased
closer to that of the all-data campaign, with diminishing returns
at higher stop counts. In fact, compared to the all-data
campaign with ∼7300 total stops (278 sites × 26 visits),
reduced campaigns with about 1000−4000 stops (100−278
sites × 8−26 visits) for NO2, PNC, and BC, and 4000−5000
stops (150−278 sites × 16−24 visits) for PM2.5 and CO2
produced similar model performances (82−88% of the all-data
campaign R2; see Table S4 for details). Less expected was the
finding that increasing sites versus visits did not have a
meaningful impact on the model performances for any of the
pollutants so long as the total stop count was met (e.g., 2400
total stops from 200 sites × 12 visits each or from 100 sites ×
24 visits each). It’s notable that we randomly selected sites in
these campaigns, and that these were distributed throughout
the monitoring region. Particularly at the higher total stop
count, campaigns thus did not necessarily capture less spatial
variability.
We further showed that additional model improvements can

be made by collecting temporally balanced samples, as seen in
the sampling designs with more expansive sampling periods
over more seasons, days of the week, and hours (Figure 2).
And while collecting samples on all days of the week produces
less biased predictions for all pollutant models, collecting
samples beyond typical business hours is most critical for the
more temporally variable pollutants like NO2, PM2.5, and CO2
(e.g., Figures 3 and S10). While sampling during business
hours is logistically practical and common in the literature,
these and our previous results suggest that this can be
problematic for predicting unbiased annual averages, for some
pollutants more than others.42 Collecting samples over a
period of more than about two seasons appears to have a
relatively smaller impact on the PNC, NO2, and BC model
performances, suggesting that sampling campaigns lasting two
to four seasons may still produce good prediction models for
these pollutants as long as other design features such as the
number of stops and temporally balanced samples are satisfied.
In this study, seasons were randomly selected to allow for all
season combinations that a campaign might choose to sample.
Season-specific analyses indicated that single-season winter-
time campaigns and two-season spring and fall campaigns
could result in the best annual average PNC, NO2, and BC
model performances. Interpretation of these results should
recognize that they are location-specific, as other work has
suggested that combinations of opposing seasons might
perform slightly better or worse than others,5,10,43 which
could be particularly true in locations with more extreme
seasonal patterns. Further evaluation of season-specific local
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source emission and dispersion patterns will be valuable for
studies that wish to restrict their sampling to specific time
periods.
Interestingly, PM2.5 and CO2 had worse all-data campaign

model performances than other pollutants, as quantified with
non-normalized R2. Performance also decayed quicker when
sampling was reduced from the all-data campaign. These
pollutants have relatively lower variability in their long-term
average estimates and thus lower non-normalized R2 (Figure
S3), which scales the normalized R2 of other designs.
Performance is further reduced by designs with limited spatial
or temporal sampling schemes, which at times produce R2
estimates at or near 0 (Figures 1 and 2). Slight differences in
patterns across pollutants when comparing R2 with RMSE may
be because ratio measures (i.e., R2) are less stable, particularly
for pollutants with low variability such as PM2.5 and CO2 in
this campaign. Still, it’s notable that PM2.5 is not typically
considered for mobile monitoring since widespread fixed site
monitoring may already exist, and it is less spatially variable
than other pollutants.
Campaigns with more total stops produced more consistent,

less variable model performances, indicating that they create
more stable prediction surfaces (see Table S4). Reduced
sampling designs, on the other hand, produced very different
predictions across campaigns. In line with these findings,
correlations between predictions from the all-data campaign
and those from reduced sampling campaigns were generally
lower and more variable as the number of total stops
diminished, further suggesting that exposure prediction
surfaces become increasingly unstable and deviate from the
all-data campaign. Importantly, differences in the exposure
surfaces differed by location, with some high-concentration
sites, for example, being less consistently predicted. These
results may have implications for epidemiologic investigations,
suggesting for instance that it is important to do sufficient
sampling with an appropriate design so that the resulting
predictions capture the richness of the underlying exposure
surface. It may also be worth further research to determine
what kinds of sites merit a larger number of visits to support
better quality prediction surfaces.
Past studies have also reported more robust prediction

models with an increased number of sites and visits, with some
discrepancies. Hatzopoulou et al. reported that ∼150 to 200
road segments (sites in a mobile sampling setting), each with
10−12 visits (1500−2400 total road samples), produced stable
PNC and NO2 models. We show, however, that these numbers
can vary by pollutant (Figure S6 shows non-normalized
results). Saha et al. found that 10−15 h-long visits at 32 sites
produced robust PNC models with R2 values near 0.7. Our
PNC results were lower when using 320−480 total stops (32
sites × 10−15 visits) with median MSE-based R2 closer to 0.5
for anything under 1000 stops. In addition to the longer visit
duration, a notable difference between their study and ours was
their focus on wintertime models. This restricted sampling
period may not capture potentially important seasonal effects
that impact annual averages such as nucleation events that
form new particles during warmer seasons.44 Still, Saha et al.
argue that spatial patterns are expected to remain the same
across seasons because such changes occur on the regional
scale. Our temporal sampling designs suggest that limited
seasonal, time of day, or day of week sampling affects both
model performances and prediction surfaces (Figures 2 and
S6−S10). Furthermore, while our measurements lasted only 2

min rather than 1 h, our past work has shown that both
sampling durations produce similar long-term average
estimates, where the shorter sampling duration has slightly
more error.42 There were some discrepancies between the
findings from this study and those from a 30 km2 domain in
Oakland reported by Messier et al. They reported that only 4−
8 repeat visits per road segment (∼92 000 segments) produced
robust NO and BC models with R2 values above ∼0.50.34
Using 1000−2000 total stop sites (278 sites × 4−8 visits), our
median results were higher and closer to 0.6. Potential
explanations for this discrepancy may be due to our collection
of stationary measurements off the side of the road rather than
nonstationary, on-road measurements; our expanded monitor-
ing hours, which included rush hours, evenings, and weekends;
and our larger modeling domain (1200 km2, or about 40 times
larger than for the Messier et al. study), which covered areas
outside the Seattle city limits and is characterized by more
geographic and seasonal variability. Another important
distinction between our study and most others is our use of
study design to capture temporal variability at the site level
rather than using a reference site to afterward attempt to adjust
temporally unbalanced samples. Furthermore, while the
designs we described in this study were fairly balanced in
terms of the number of visits we allowed each site to have, this
is not true for many field campaigns, and this could possibly
result in somewhat different conclusions.
One of this study’s strengths is that we used different out-of-

sample sets of sites to characterize model performance,
leveraging both cross-validation and pure out-of-sample
validation with a test set that was not used at all in the
model development stage. Model performances slightly varied
when using these different out-of-sample sets. This is expected,
since model performances are determined by how well site
concentrations can be predicted, and better- or worse-
performing sites may end up in different out-of-sample sets.
Reassuringly, different out-of-sample test sets also produce
similar trends and conclusions (results not shown).
In secondary analyses comparable to a situation where best

or “gold standard” estimates are not known, we used estimates
from the reduced sampling campaigns themselves as the
reference concentrations to evaluate model performances
(Figures 1 and 2). These produced slightly worse model
performances. Others have similarly reported worse model
performances when predictions are compared to short-term
observations rather than longer-term averages.12,34,42 Short-
term observations are noisy representations of long-term
averages. Furthermore, this approach to model assessment
incorrectly implied that, for any given number of total stops,
having fewer sites and more temporal coverage improved
model performances for all pollutants. It also gave misleading
performance results for the temporally unbalanced designs.
Overall, these findings underscore the less documented point
that traditional model assessment where a gold standard is not
known (the default in the literature) can be misleading,
particularly when assessing data collected from systematically
biased designs such as the business hours design.
It is notable that our best estimate annual averages from the

all-data campaign are themselves noisy and do not necessarily
capture “true,” year-around annual averages. Stated differently,
there is some level of error implicit in using only about 60 min
of data from a fairly but not completely temporally balanced
design to estimate annual averages. These data, for example, do
not include overnight sampling between 12 AM and 4 AM,
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which is a limitation. The primary performance comparisons
use these best estimates, and thus we are implicitly treating
them as an appropriate representation of “true”, year-around
annual averages in this paper. Based on our past work,
however, we expect that this extensive all-data campaign with
over 25 repeat samples collected in a temporally balanced way
year-around achieved stable annual average estimates with low
error despite not sampling during overnight hours.42 That
work included the use of year-around measurements from fixed
monitoring sites where a true long-term average can be
assumed to be known.
We do not address monitor placement in this analysis,

although past work has indicated that if the goal is out-of-
sample prediction, monitors should be placed near the desired
prediction locations to achieve spatial coverage (spatial
compatibility) and in locations with similar covariate makeups
to capture the covariate variability (covariate compatibil-
ity).22,33,45−47 Furthermore, if using model predictions from
mobile-monitoring campaigns in epidemiological applications,
ensuring both spatial and covariate compatibility in their
sampling design is critical for minimizing exposure measure-
ment error.47 Spatial coverage may be especially important if
the available modeling covariates do not capture the pollutant
variability well and geostatistical approaches that take
advantage of spatial correlation (e.g., kriging) are used. Some
pollutant models may be more resilient to spatial extrapolation.
The spatial variability of some pollutants, for example, NO2,
may be better captured by the model covariates (e.g., roadway
proximity) compared to more regional pollutants like PM2.5 or
more spatially heterogeneous pollutants like PNC, as indicated
by its higher model performances. That said, while the goal of
this campaign was to develop exposure prediction models for
epidemiological cohort applications, there are many other
valuable spatial analyses that can be conducted using mobile
monitoring data that do not involve modeling or epidemiologic
application. This is beyond the scope of this paper.
Numerous short-term mobile monitoring designs have been

used to assess long-term air pollution exposure in epidemio-
logic cohorts. Most, however, collect little data over limited
time periods and produce moderately or poorly performing
models. We leverage an extensive, multipollutant mobile
monitoring campaign to better understand how a fine-tuned
study design can improve model performances. In line with
past work, we show that prediction model performances
improve as the total number of stops increases. We add to the
existing literature by further demonstrating how model
performances can be improved when samples are temporally
balanced, and how some pollutants may be more resilient to
restrictive sampling designs, for example, NO2 and BC. The
measured pollutants are thus an important design consid-
eration.
While this study used data from a stationary mobile

monitoring campaign conducted in the greater Seattle area,
findings from this study were in line with those from
nonstationary monitoring campaigns in other regions regarding
the importance of the number of sampling sites and visits for
model performances.33,35 We thus expect that the overall
conclusions from this study will hold for other monitoring
regions, for both stationary and nonstationary sampling. Of
course, the exact results will vary based on regional sources, air
pollution levels, sampling durations, proximity to major
tailpipe emissions, modeling approaches, and other design
features.
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