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BACKGROUND: Short-term mobile monitoring campaigns to estimate long-term air pollution levels are becoming increasingly
common. Still, many campaigns have not conducted temporally-balanced sampling, and few have looked at the implications of
such study designs for epidemiologic exposure assessment.
OBJECTIVE: We carried out a simulation study using fixed-site air quality monitors to better understand how different short-term
monitoring designs impact the resulting exposure surfaces.
METHODS: We used Monte Carlo resampling to simulate three archetypal short-term monitoring sampling designs using oxides of
nitrogen (NOx) monitoring data from 69 regulatory sites in California: a year-around Balanced Design that sampled during all
seasons of the year, days of the week, and all or various hours of the day; a temporally reduced Rush Hours Design; and a
temporally reduced Business Hours Design. We evaluated the performance of each design’s land use regression prediction model.
RESULTS: The Balanced Design consistently yielded the most accurate annual averages; while the reduced Rush Hours and
Business Hours Designs generally produced more biased results.
SIGNIFICANCE: A temporally-balanced sampling design is crucial for short-term campaigns such as mobile monitoring aiming to
assess long-term exposure in epidemiologic cohorts.
IMPACT STATEMENT: Short-term monitoring campaigns to assess long-term air pollution trends are increasingly common, though
they rarely conduct temporally balanced sampling. We show that this approach produces biased annual average exposure
estimates that can be improved by collecting temporally-balanced samples.
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INTRODUCTION
An increasing number of studies are using short-term monitoring
campaigns to assess long-term air pollution levels [1–7]. Short-
term mobile monitoring campaigns typically equip a vehicle with
air monitors and collect samples while in motion (non-stationary
sampling) and/or while stopped (stationary sampling). The focus
of this analysis is on the latter mobile monitoring design. A single
monitoring platform can be used to collect samples at many
specified locations within a relatively short period of time, making
it a time and cost-efficient sampling approach. Mobile campaigns
are particularly well-suited for multi-pollutant monitoring of less
frequently monitored traffic-related air pollutants that require
expensive instruments or instruments that need frequent atten-
tion during the sampling period. And while a few studies have
investigated the number of sampling locations and repeat
samples needed to improve the resulting exposure surfaces from
mobile monitoring campaigns [8, 9], to the best of our knowledge,
none have considered the importance of conducting temporally-

balanced sampling when the goal is estimation of an unbiased
long-term average. This is particularly relevant for traffic-related
pollutants since many experience strong diurnal and seasonal
concentration trends [10, 11]. In general, many mobile monitoring
campaigns have been short, lasting from a few weeks to months
and with few repeat visits to each location spanning one to three
seasons [1, 2, 6, 8, 11–34]. Most of these campaigns have
conducted sampling during weekday business or rush hours,
ignoring the surrounding hours, when air pollution concentrations
can be drastically different.
The goal of this paper is to shed light on the temporal design of

a short-term monitoring campaign for application to mobile
monitoring for epidemiologic cohort studies. We carry out a set of
simulation studies to better understand the role of monitoring
design on the prediction of annual average surfaces. We use
existing monitoring data from California to compare the primary,
annual site averages when all the data are included to subsequent
analyses utilizing subsets of the data. These data provide a unique

Received: 8 December 2021 Revised: 12 August 2022 Accepted: 15 August 2022
Published online: 31 August 2022

1Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Hans Rosling Center for Population Health, 3980 15th Ave
NE, Seattle, WA 98195, USA. 2Department of Civil & Environmental Engineering, College of Engineering, University of Washington, 201 More HallBox 352700, Seattle, WA 98195,
USA. 3Department of Biostatistics, School of Public Health, University of Washington, Hans Rosling Center for Population Health, 3980 15th Ave NE, Seattle, WA 98195, USA.
✉email: magali@uw.edu; sheppard@uw.edu

www.nature.com/jesJournal of Exposure Science & Environmental Epidemiology

1
2
3
4
5
6
7
8
9
0
()
;,:

http://crossmark.crossref.org/dialog/?doi=10.1038/s41370-022-00470-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41370-022-00470-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41370-022-00470-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41370-022-00470-5&domain=pdf
http://orcid.org/0000-0002-9998-995X
http://orcid.org/0000-0002-9998-995X
http://orcid.org/0000-0002-9998-995X
http://orcid.org/0000-0002-9998-995X
http://orcid.org/0000-0002-9998-995X
https://doi.org/10.1038/s41370-022-00470-5
mailto:magali@uw.edu
mailto:sheppard@uw.edu
www.nature.com/jes


opportunity to explore how short-term stationary sampling
strategies can influence the resulting estimated annual-average
concentration. Our analysis requires having a long-term, compre-
hensive set of measurement data, which therefore necessitates
using fixed-site measurements rather than mobile measurements,
to shed light on an aspect of study design for short-term
stationary mobile monitoring.

METHODS
Data
We simulate three sampling designs (see below) using hourly observations
for oxides of nitrogen (NOx) collected during 2016 from regulatory Air
Quality System (AQS) sites in California. NOx was selected since it is a
spatially and temporally variable traffic pollutant with a strong diurnal
pattern [2, 35, 36], and it is measured at many regulatory monitoring sites
in California, providing a large enough dataset for this analysis [37]. In
sensitivity analyses we also consider NO and NO2.
We included 69 of 105 California AQS sites that met various criteria (SI

Fig. S3). First, sites needed to have readings at least 66% of the time (5,797/
8,784 hourly samples; 2016 was a leap year). Second, sites needed to have
sampling throughout the year, such that data collection gaps were a
maximum of 45 days long. These two criteria are similar to other air quality
studies [38–40]. Third, sites were required to have sampled for at least 40%
of the time during various two-week periods that were used in two of our
“common” designs (described below). This sample size ensured that we
could sample during these periods without replacement. Fourth, sites were
required to have positive readings (> 0 ppb) at least 60% of the time, thus
ensuring that sites had sufficient variability in their concentrations and
allowing us to model annual averages on the natural log scale. Finally, sites
in rural and industrial settings (as determined by the US EPA) [41] were
excluded since these do not represent where the majority of people reside.
The resulting sites were in both urban and suburban settings, in residential
and commercial areas.

Sampling designs
We conducted simulation studies to characterize the properties of three
sampling designs (Table 1, Supplementary Information [SI] Fig. S1). Each
design has a long- and a short-term sampling approach. Long-term
approaches use all of the data that meet each design’s definition to
estimate site annual averages and are analogous to traditional, fixed-site
sampling approaches where sampling at a given location occurs over an
extended period of time. Short-term approaches only collect 28 samples
per site (distributed evenly during each sampling season) and are
analogous to mobile monitoring campaigns that collect a few repeat
samples per site. (The cut-off of 28 samples reflects our preliminary
analyses showing that 28 hourly NOx samples are sufficient to estimate a
site’s annual average within about 25% error or less [SI Fig. S2].) Each
design has multiple versions where samples are collected at slightly
different times. The various design versions are intended to reflect the bias

produced if only certain times are included in the measurements. We
simulated each short-term sampling approach 30 times (Monte Carlo
resampling), and hereafter refer to each of these simulations as a
“campaign” since each represents a potential mobile monitoring study.
The Year-Around “Balanced” Design represents an “ideal” sampling

scheme: sampling is conducted during all seasons, days of the week, and
all or most hours of the day. Version 1 collects samples during all hours of
the day. Versions 2–3 reduce the sampling hours to reflect the logistical
constraints of executing an extensive campaign: samples occur during
most hours of the day (5 AM–12 AM only; “Version 2”) or during 6–9 AM,
1–5 PM and 8–10 PM (“Version 3”). Estimates from the long-term Balanced
Design Version 1 are analogous to what might be collected from a
traditional, year-around, fixed-site sampling scheme. For simplicity, we
interchangeably refer to these as the “true” estimates or the “gold
standard” hereafter, though we acknowledge that some error exists (e.g.,
due to missing hours or instrument accuracy).
The Two-Season Weekday “Rush Hours” and “Business Hours” Designs

reflect common designs in the literature [2, 3, 11, 23, 33, 34, 42, 43].
Samples are collected either during summer and winter (Versions 4–5) or
spring and fall (Versions 6–7). Sampling for each version occurs on
weekdays during the same two-week period for all sites during each
relevant season (See SI Table S1 for each version’s exact sampling periods).
Sampling is restricted to the hours of 7–10 AM and 3–6 PM (Rush Hours
Design) or 9 AM–5 PM (Business Hours Design). The short-term approach
collects 14 random samples during each season.

Prediction models
We estimated unweighted site annual averages based on the data
collected during each campaign. We log-transformed these before using
them as the outcome variable in partial least squares (PLS) regression
models, which summarized hundreds of geographic covariate predictors
(e.g., land use, road proximity, and population density; see SI Table S2 for
the covariates considered) into two PLS components (using the plsr
function in the pls package in R). We evaluated the performance of each
campaign using ten-fold cross-validated (CV) predictions on the native
scale, incorporating re-estimation of the PLS components in each fold. The
cross-validation groups were randomly selected and, importantly, fixed
across all campaigns to allow for consistent model performance
comparisons across designs.
To best understand the role of design, we present results for annual

average estimates, predictions, and model performance statistics. In
descriptive analyses, we compare design-specific annual average estimates
and predictions to the gold standard. We compare predicted site
concentrations against predictions from the gold standard since epide-
miologic air pollution studies often rely on predicted exposure, and the
gold standard prediction represents the best possible prediction of annual-
average concentrations that a study could hope to achieve. We
complement this approach with model assessment evaluations of
design-specific site predictions against two different references: an
assessment against the true averages, and a traditional model assessment
evaluation against the respective design-specific annual average estimates.

Table 1. Simulated sampling designs used to estimate site annual averagesa.

Design Sampling Seasons Sampling Days Sampling Hours

Year-Around “Balanced” Design Winter, spring, summer, fall Mon–Sun V1 (All Hours)b

V2 (Most Hours): 5 AM–12 AM
V3 (Truncated Hours): 6–9 AM, 1–5 PM,
8–10 PM

5/7 weekday; 2/7 weekend
samples

Random hours according to V1, V2, or
V3

Two-Season Weekday “Rush
Hours” Design

V4-5: winter & summer (2
wks/ season)
V6-7: spring & fall (2-wks/
season)

Mon–Fri 7–10 AM, 3–6 PM

Random Rush Hours according to V4-5
or V6-7

Two-Season Weekday “Business
Hours” Design

V4-5: winter & summer (2
wks/season)
V6-7: spring & fall (2 wks/
season)

Mon–Fri 9 AM–5 PM

Random Business Hours according to
V4-5 or V6-7

aV= version. See SI Table S1 for the exact sampling periods of the Business Hours and Rush Hours designs.
bThe long-term sampling approach for this version produces gold standard (true) estimates.
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The traditional assessment compares the predicted exposures to the
observed site measurements from which they were derived. This allows us
to document the quantities that would normally be available from
modeling the data measured from any specific campaign. We summarize
the model performance in terms of cross-validated mean squared error
(MSE)-based R2 (R2MSE), regression-based R2 (R2reg), and root mean squared
error (RMSE). R2MSE assesses whether two sets of measurements such as
estimates and predictions are the same (along the 1-1 line), and thus
reflects both bias and variation around the one-to-one line (see SI
Equations 1–3 for definitions). R2reg, on the other hand, assesses whether
observations are linearly associated (based on the best fit line though not
necessarily the 1-1 line) and thus adjusts for bias and slopes different than
one. R2reg is defined as the squared correlation between two sets of
measurements.
In sensitivity analyses, we repeated these simulations for nitrogen

dioxide (NO2) and nitrogen monoxide (NO), adding a two ppb constant to
all of the hourly NO readings before log-transforming to eliminate negative
and zero concentration readings. Furthermore, we conducted NOx
simulations for a subset of sites (N= 17) within the Los Angeles (LA) and
San Diego Counties, refitting PLS models to these sites alone. This region
was meant to represent a potential area of interest for epidemiologic
exposure assessment and one that could be more feasibly covered by a
mobile monitoring campaign, though it had a reduced sample size.
Computing details are in SI Note S1.

RESULTS
Hourly readings
Sites (N= 69) had on average (SD) of 8090 (361) hourly readings,
the equivalent of 337 [15] days of full sampling (See SI Table S3;
note that this and many of the subsequent SI figures and tables
also include results for NO and NO2). Average (SD) hourly NOx
concentrations were 16 [21] ppb (See SI Table S4). Sites had
seasonal, daily, and hourly concentration patterns, with trends
being more pronounced at some sites than others (See SI
Figs. S4–S6).

Annual average estimates
Across the 69 monitor locations, gold standard annual average
NOx concentrations had a median (IQR) of 14 [10–21] ppb and
ranged from 3 to 56 ppb. Overall, the long-term and short-term

sampling approach for each design had very similar distributions.
The Balanced Design generally resulted in similar estimates as the
true average; while the Rush Hours Design resulted in slightly
higher annual averages; and the Business Hours Design resulted
lower annual averages. See SI Table S5 and Fig. S7 for details.

Model predictions
The PLS model of the true annual average had a root mean square
error (RMSE) of 7.2 ppb and a mean square error-based coefficient
of determination (R2MSE) of 0.46.
We compared PLS model predictions from each short-term

design to the gold standard model predictions. SI Fig. S9 shows the
relative standard deviations of predictions by design, with 1
indicating that design predictions have the same standard deviation
as the gold standard model predictions. Overall, the Balanced
Design predictions have similar variability to those of the gold
standard (range: 0.87–1.28), the Rush Hours Design predictions are
more variable (range: 0.90-1.74), and the Business Hours Design
predictions are mixed: some less and some more variable (range:
0.73–1.54). Figure 1 displays these comparisons as best fit lines. The
scatterplots show that there are a few sites that have variable
predictions in all designs. From the best fit lines, we observe that the
short-term Balanced Design resulted in the most accurate predic-
tions on average, as indicated by their overlapping general trends
along the one-to-one line. The Rush Hours Design was more likely to
have a positive general trend, while the Business Hours Design was
more likely to have a negative general trend, indicating, for
example, that higher concentrations were more likely to be over- or
under-estimated, respectively. However, there was heterogeneity in
this overall pattern across the various Rush and Business Hours
Design versions. Furthermore, there was additional heterogeneity
across individual campaigns. The SI contains comparable figures
comparing design predictions to the gold standard and additional
figures for NO and NO2 (SI Figs. S10–S13).
Figure 2 shows site-specific comparisons of predictions across

30 short-term campaigns relative to the gold standard predictions
for a stratified random sample of 12 sites in order to characterize
relative bias (see SI Fig. S14 for all sites). Overall, the short-term
Balanced Design predictions had a median (IQR) bias of 0.2 (−1 to

Fig. 1 Best fit lines of cross-validated short-term predictions for 30 campaigns vs the gold standard predictions for NOx. Thin transparent
lines are individual campaigns, colored by design version; thicker lines are the overall version trend.
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1.4) ppb relative to the gold standard predictions (see SI Table S7
for details). All Balanced Design predictions were very similar to
the gold standard predictions, though some sites frequently had
larger biases. The Rush Hours and Business Hours Designs were
more likely to consistently produce biased site predictions, with a
median (IQR) bias of 1.2 (−1.2 to 4) ppb and −3.8 (−6.6 to −1.4)
ppb, respectively. While the Rush Hours Designs generally resulted
in higher predictions across sites (with some inconsistency across
versions and sites), the Business Hours Design generally resulted
in predictions that were lower than the gold standard predictions.
There were also a few sites that tended to have more biased and/
or more variable predictions relative to the gold standard across
all designs. We observed similar patterns when looking at estimate
(rather than prediction) biases (See SI Fig. S8).

Model assessment
Figure 3 shows the out-of-sample prediction performances
relative to the observations from the true averages (left column)
and the specific design (right column), for both the long-term and
short-term approaches. The boxplots quantify the distribution of
performance statistics across all 30 short-term campaigns while
the squares show the performance of the long-term approach of
the same design. When assessed against the true averages, the
Balanced Design generally performs better than either the Rush
Hours or Business Hours Design with higher CV R2MSE and CV
R2reg, and lower CV RMSE estimates. This is particularly apparent
for the long-term approach. Furthermore, within design, the long-
term approach generally performs better than the majority of the
short-term campaigns. There is considerable heterogeneity in

Fig. 2 Site-specific NOx prediction errors for short-term designs (N= 30 campaigns) as compared to the gold standard predictions (long-
term Balanced Design Version 1). Showing a stratified random sample of 12 sites, stratified by whether true concentrations were in the low
(Conc < 0.25), middle (0.25 ≤ Conc ≤ 0.75) or high (Conc > 0.75) concentration quantile and arranged within each stratum with lower
concentration sites closer to the bottom.
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performance across the Rush Hours and Business Hours Design
versions. In contrast, when assessed against observations from
the same design, as would typically be done in practice, the role
of sampling design on prediction performance is not as evident.
The superior performance of the Balanced Design is not as
apparent, and some of the Rush Hours and Business Hours Design
versions appear to perform better. There are also a few
campaigns that show poor performance, even under the
Balanced Design. SI Fig. S15, S16 show similar results for NO2

and NO, with NO showing more variability and some lower
performing statistics. Stratifying by whether sites were consid-
ered to have high or low variability (based on hourly standard
deviation estimates) showed similar R2 and RMSE patterns (data
not shown).

Sensitivity analyses
Findings were similar for sensitivity analyses for two other
pollutants (see the SI for NO and NO2 results presented alongside

Fig. 3 Model performances. Performances (MSE-based R2, regression-based R2, and RMSE) are determined by each campaign’s cross-
validated predictions relative to: a the true averages (long-term Balanced Version 1), and b Its respective campaign averages. Boxplots are for
short-term approaches (30 campaigns), while squares are for long-term approaches (1 campaign).
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the NOx results) as well as within the smaller Los Angeles-San
Diego region (see SI Fig. S20 and Table S8).

DISCUSSION
In this paper we have used existing regulatory monitoring data to
deepen our understanding of the importance of short-term
monitoring study design for application to stationary mobile
monitoring for epidemiologic cohort studies. Others have shown
that short-term data can be used to estimate long-term averages
[2, 3]. What has been missing from the literature until now,
however, is the impact of short-term monitoring study design on
the accuracy and precision of long-term exposure estimates and
model predictions. Our results indicate that for designs with a
sufficient number of short-term samples at each location (about
28 or more), the design rather than the sampling approach (i.e.,
long- vs short- term) has the largest impact on the estimated
annual averages. We focus the rest of this discussion on the short-
term approaches for each design, which resemble mobile
monitoring, though the long-term approaches produced similar
results.
In terms of specific design, we found that the Balanced Design

resulted in similar annual average predictions as those from the
gold standard campaign. The similarity in annual averages and
predictions across all of the Balanced Design versions suggests
that campaigns with slightly reduced sampling hours (for
example, due to logistical constraints) should to a large degree
still produce unbiased annual averages at most sites. On the other
hand, the Rush Hours Design was more likely to overpredict, while
the Business Hours Design was more likely to underpredict site
averages. These differences in results were likely because the
Balanced Design captured much of NOx’s temporal variability by
allowing for samples to be collected during each season, day of
the week, and all or most times of the day, all periods during
which meteorology and traffic activity patterns impact air
pollution concentrations (SI Figs. S4–S6). On the other hand, the
Rush Hours Design was more likely to sample during high
concentration times, while the Business Hours Design was more
likely to sample during low concentration times (i.e., miss the rush
hour times). Furthermore, we observed some prediction variability
across the Rush Hours and Business Hours version, suggesting that
the degree and direction of error is heavily impacted by the
sampling window that happens to be selected. These conclusions
were the same in the Los Angeles-San Diego sensitivity analysis, a
geographic area that could more realistically be sampled by a
mobile campaign.
At the site level, we saw that while any individual study

campaign had the potential to produce biased estimates and
predictions, the Rush Hours and Business Hours Designs were
more likely to do so than the Balanced Design. The direction and
magnitude of bias for each sampling design varied by site. This
suggests a simple correction factor to adjust short-term measure-
ments based on long-term observations at a small number of
reference sites (for example using regulatory fixed sites), is unlikely
to fully adjust for bias at the site level [44]. While many past
campaigns have taken this approach to account for the fact that
short-term stationary mobile sampling inherently misses some
observations, this approach makes a strong assumption that all
sites have the same temporal trends. SI Figs. S17–S19 illustrate the
temporal trends for sites included in the Los Angeles-San Diego
analysis and clearly shows how lower concentration “background”
sites are also more likely to have less temporal variation when
compared to other sites. Using these “background” sites (or any
other site for that matter) to adjust readings at other sites would
not substantially reduce the bias from an unbalanced sampling
design. This may be especially pertinent for mobile monitoring
campaigns since their increased spatial coverage is more likely to

capture localized pollution hotspots that may have even more
temporal variation. Sampling design should be prioritized, while
temporal adjustment factors should be deemphasized or at least
further investigated to establish their true value given their strong
assumptions.
Furthermore, non-balanced designs may misrepresent some

sites more than others and lead to differential exposure
misclassification in epidemiologic studies since higher concentra-
tion sites were more likely to have greater degrees of bias and
variation (Figs. 1, 2). While non-balanced designs may be
appropriate for non-epidemiologic purposes including character-
izing the spatial impact of traffic-related air pollutants during peak
hours for urban planning and policy purposes, these could be
misleading in epidemiologic applications.
In this study we were able to evaluate prediction model

performance against the true annual average NOx exposure as
well as against the observations typically available for model
performance assessment. Performance assessment against the
true averages indicates that the Balanced Design is clearly the
best, and that there is little degradation in performance across
versions of this design. This means it is possible to design high
quality short-term stationary mobile monitoring studies that
accommodate some measure of logistical feasibility, for example,
by not requiring sampling in the middle of the night. In contrast,
the performance of the Rush Hours and Business Hours Designs is
comparatively worse, indicating that logistically appealing tem-
porally limited sampling campaigns are inadequate for providing
high quality annual averages. Further, the performance of these
designs varies considerably and unpredictably depending upon
the specific pair of two-week periods that are selected for
sampling. Additionally, comparison of the two R2 estimates (R2MSE

and R2reg) indicates that not all of their poor performance is due to
the inability to predict the same value as the truth (R2MSE), but due
to systematic bias in the design. As noted earlier, R2MSE assesses
whether two measurements are the same - along the 1-1 line,
whereas R2reg simply assesses whether they are linearly associated.
Further, it is notable that the standard approach to model

assessment, comparing model predictions to observations col-
lected during the sampling campaign, doesn’t clearly reveal the
superior performance of the Balanced Design or the inherent flaws
of the Rush Hours and Business Hours Designs. In fact, the Rush
Hours and Business Hours Designs sometimes perform better than
the Balanced Design when evaluated against the campaign’s
observations. This is because the evaluation doesn’t take into
account that the observations are biased because of the sampling
design.
It is notable that occasionally there was an “unlucky” short-term

campaign with meaningfully poorer performance than the other
campaigns of the same design. This was more likely in the non-
balanced designs. It may be possible that this result is driven by a
few high-leverage outlier sites that impact the prediction model
performance.
Our study focused on short-term stationary campaigns with 28

repeat samples per site. We did not consider campaigns with
fewer or more visits. As evident in SI Fig. S2, the percent error in
estimating the annual average from fewer than 25 visits is much
higher, suggesting that site estimates will be considerably noisier
in mobile campaigns with few repeat visits, regardless of the study
design. Prediction model performance is thus likely to decrease as
the number of visits per site decrease. Logistically, it is also difficult
to achieve temporally balanced sampling with fewer than 28 site
visits. Furthermore, we note that this study focused on a few
generalizable, common designs in the literature, though other
approaches have been taken.
In putting these results in context, it is important to recognize

that in this simulation study we are using NOx hourly averages to
approximate potentially shorter-term sampling durations that
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could be collected, for example, during a mobile monitoring
campaign (e.g., a few minutes or less). Shorter duration sampling
will affect the noise in the data. For comparison, however, our
additional evaluations of minute-level data suggest that the
decrease in percent error in going from two-minute to hour-long
samples is at most a few percent because of serial correlation in
the data. This thus gives us confidence that the findings from this
work are still generalizable to more common, shorter-term
stationary monitoring campaigns with sampling periods closer
to a few minutes.
Further, our study took place throughout California, a large,

geographically diverse area with varying climate profiles [45].
While such a large sampling domain would be challenging for a
real-world monitoring campaign, the overall conclusions of this
study – the importance of temporally-balanced sampling, are also
supported in the Los Angeles-San Diego sensitivity analysis. In
terms of the siting criteria for the regulatory monitoring sites
where the data came from, locations are generally meant to
capture representative population exposures, including near
roadway, at various spatial scales ranging from microscales
(< 100 m range) to regional scales in order to inform regulatory
compliance [46, 47]. This should thus have provided us with
decent spatial coverage and concentration variability. Many air
pollution exposure studies intended for application to epidemio-
logic cohorts, in fact, rely on this network of regulatory monitors
[48]. Still, when compared to most short-term monitoring
campaigns, this study’s larger domain and reduced exposure
variability may have produced lower prediction model perfor-
mances than would otherwise be expected.
Another distinction is that while we sampled measurements

within sites at random, campaigns typically sample from sites
along a fixed route or in a designated area. The actual sampling
scheme will thus depend on the exact route developed and the
number of platforms deployed, both of which are beyond the
scope of this paper. In general, sampling along a route also
induces some spatial correlation in the mobile monitoring data.
This dependence is often overlooked in short-term monitoring
campaigns and was not addressed in this study. Furthermore, we
did not consider the importance of the distribution of sampling
locations in this study, which is particularly relevant when the
exposure assessment goal is an epidemiologic application.
Selecting sites that are representative of the target cohort’s
residence locations will ensure the spatial compatibility assump-
tion is met, which is an important way to reduce the role of
exposure measurement error in epidemiologic inference [49].
Our evaluation focused on NOx, NO, and NO2, which are

quickly and moderately decaying air pollutants [35]. Campaigns
that measure these pollutants may be more susceptible to
sampling design than campaigns that measure less spatially-
and/or temporally- variable pollutants such as PM2.5. We
selected NOx, NO, and NO2 because these traffic-related
pollutants are often measured in short-term campaigns, and
data for these pollutants are more widely available. Non-criteria
pollutants, for example ultrafine particles (UFP), however, have
also received increasing attention in recent years given their
emerging link to adverse health effects [50–53]. Still, high-
quality information about their spatial distribution is essentially
absent, and most studies have implemented short-term mobile
sampling approaches that may not be temporally [54] balanced
and potentially be misleading for application to epidemiologic
inference.
An important next step in this work is to understand whether

the differences in exposure estimates that we observed across
study designs have a meaningful impact on epidemiologic
inferences. This is of particular interest considering that year-
around, balanced designs are resource-intensive and rare, while
shorter and more convenient designs are more common in the
literature.

CONCLUSIONS AND RECOMMENDATIONS FOR MOBILE
MONITORING CAMPAIGNS
Short-term monitoring study design should be an important
consideration for campaigns aiming to assess long-term exposure
in an epidemiologic cohort. Given the temporal trends in air
pollution, campaigns should implement balanced designs that
sample during all seasons of the year, days of the week, and hours of
the day in order to produce unbiased annual averages. Nonetheless,
restricting the sampling hours in balanced designs will still generally
produce unbiased estimates at most sites. On the other hand,
unbalanced sampling designs like those often seen in the literature
are more likely to produce biased annual averages, with some sites
being more biased than others. And while predictions from these
restricted designs may at times perform similarly to balanced
designs (or, more problematically, may erroneously appear to
perform similarly when evaluated against measurements which are
themselves biased samples), this performancemay strongly depend
on the exact sampling period chosen and may thus be difficult or
impossible to anticipate prior to conducting a new sampling
campaign. Furthermore, the differential exposure misclassification
that may result from these designs may be problematic in
epidemiologic investigations. Finally, studies that implement
unbalanced sampling designs are likely to have hidden exposure
misclassification given that both the observations and model
predictions may be systematically incorrect. By implementing a
balanced sampling design, campaigns can increase their likelihood
of capturing accurate annual averages.

DATA AVAILABILITY
Air pollution data are available through the EPA (https://www.epa.gov/outdoor-air-
quality-data). The covariates used in this analysis for regulatory sites are freely
available through various online sources and may be available from the authors upon
request.
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