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H I G H L I G H T S  

• New ML method for downscaling chemical transport model predictions. 
• Provides particle mass concentration, composition, and source contributions. 
• Does not require high-resolution emission inventories. 
• Uses as inputs available land use regression (LUR) variables. 
• Encouraging results in its first application in Pittsburgh, US. 

A B S T R A C T   

Accurate predictions of source resolved atmospheric PM2.5 concentrations at high resolutions using chemical transport models (CTMs) require expensive CTM 
simulations and development of high-resolution emissions inventories. We use multiple machine learning (ML) approaches to downscale coarse-resolution (36 × 36 
km2) CTM predictions to 1 × 1 km2 spatial resolution. ML predictions include concentrations of the major chemical components of PM2.5 and the contributions of its 
major emissions sources. Inputs for the ML models include 36 × 36 km2 source resolved CTM predicted concentrations of all PM2.5 components, meteorological data, 
and several land-use (LU) variables. The output of our ML models is the 1 × 1 km2 source-resolved concentrations of all major PM2.5 components in southwestern 
Pennsylvania (5184 km2 domain) during February and July 2017. Models were trained and validated using 1 × 1 km2 resolution source- and species-resolved CTM 
predictions of PM2.5 from recent complementary studies. The best overall performance was found using a random forest (RF) model, where species and source 
resolved PM2.5 concentrations were reproduced with low normalized mean bias (|NMB| < 0.01). The downscaling model captures the spatial distribution of PM2.5 
both by component and source, with some discrepancies when predicting the plumes of large point sources that have long-range impacts. In a test of generalizability 
to unknown domains, the model differentiates well between areas that are primarily urban, rural, or industrial but faces challenges with the reproduction of the 
effects of large point sources of PM2.5 when entire quadrants are removed from the training data. The results represent a proof of concept for downscaling low- 
resolution CTM predictions using native high-resolution CTM predictions in training.   

1. Introduction 

Particulate matter with aerodynamic diameter less than 2.5 μm 
(PM2.5) is a major contributor to poor air quality throughout the United 
States. PM2.5 directly impacts visibility (Seinfeld and Pandis, 2006) and 
is also a major public health concern. Exposure to PM2.5 has been linked 
to both short- and long-term health effects including premature death 

due to increased risk of cardiovascular disease, increased chance of heart 
attacks and strokes, and hindered lung development and lung function 
in children and people with asthma (Dockery and Pope, 1994). Knowl-
edge of individual source contributions to total PM2.5 concentrations is 
vital for the development of effective emissions control policies. For 
environmental justice applications, it is also desirable to know these 
individual source contributions at high spatial resolution (Banzhaf et al., 

* Corresponding author. Institute of Chemical Engineering Sciences (FORTH/ICE-HT), 26504, Patras, Greece. 
E-mail address: spyros@chemeng.upatras.gr (S.N. Pandis).  

Contents lists available at ScienceDirect 

Atmospheric Environment 

journal homepage: www.elsevier.com/locate/atmosenv 

https://doi.org/10.1016/j.atmosenv.2023.119967 
Received 24 April 2023; Received in revised form 16 July 2023; Accepted 17 July 2023   

mailto:spyros@chemeng.upatras.gr
www.sciencedirect.com/science/journal/13522310
https://www.elsevier.com/locate/atmosenv
https://doi.org/10.1016/j.atmosenv.2023.119967
https://doi.org/10.1016/j.atmosenv.2023.119967
https://doi.org/10.1016/j.atmosenv.2023.119967
http://crossmark.crossref.org/dialog/?doi=10.1016/j.atmosenv.2023.119967&domain=pdf


Atmospheric Environment 310 (2023) 119967

2

2019). Simulations of high spatial resolution (1 × 1 km2 grid cell size), 
source-resolved, speciated atmospheric PM2.5 concentration using a 
state-of-the-art chemical transport model (CTM) are computationally 
expensive even for relatively small simulation domains (Garcia Rivera 
et al., 2022). This predicates an opportunity to apply machine learning 
algorithms, leveraging previous simulation results, to estimate the 
output from a CTM predicting high spatial resolution and 
source-resolved PM2.5 concentrations. 

Machine learning techniques have been used in the forecasting of 
future PM2.5 concentrations based on past observed values at monitoring 
stations. Support vector machines and artificial neural networks have 
shown promising results for this prediction task (Voukantsis et al., 2011; 
Bai et al., 2016; Prasad et al., 2016; Zhou et al., 2019; Karimian et al., 
2019). However, these applications are not designed for predicting the 
variability of PM2.5 concentrations in space and are limited to predicting 
a value at the precise locations of individual monitoring sites. Shtein 
et al. (2019) implemented a model driven by aerosol optical depth ob-
servations in lieu of CTM data. 

A handful of studies have sought to produce estimates of PM2.5 
concentrations with high temporal and spatial resolution (similar to that 
of CTM output) by incorporating CTM predictions in the modelling 
framework. Xue et al. (2019) combined data from PM2.5 monitors, sat-
ellite aerosol optical depth data, meteorological fields calculated using 
the Weather Research and Forecasting (WRF) model, as well as pre-
dicted PM2.5 concentrations and composition as predicted by the Com-
munity Multiscale Air Quality (CMAQ) model at a resolution of 36 × 36 
km2 into an elastic-net regression (Zou and Hastie, 2005) model to es-
timate PM2.5 concentrations in China from 2000 to 2016. Estimates of 
PM2.5 were found to be in reasonable agreement with measurements at 
large averaging timescales (R2 = 0.77 for annual averaging). Vlasenko 
et al. (2021) implemented a 3-layer artificial neural network to produce 
daily average concentrations of NO2, SO2, and ethane over Europe at a 
resolution of 64 × 64 km2. The predictive model in this study was 
trained on CMAQ simulation results from 1979 to 2012 with WRF 
meteorology and constant emissions calculated for 2012. The goal of 
that study was to develop a streamlined approach for testing future 
emissions scenarios. The authors found that the neural network was able 
to predict concentrations of the pollutants of interest with errors on the 
same order as those between two different CTMs. 

Neural networks have also been used to downscale the spatial reso-
lution of PM2.5 predictions from a CTM. Di et al. (2016) used 
low-resolution (0.500◦ × 0.667◦) GEOS-Chem PM2.5 component con-
centrations, meteorological data, and land-use regression variables 
(population density, road density, etc.) as inputs to a neural network 
that predicts PM2.5 at 1 × 1 km2 grid resolution in the northeast United 
States. The meteorological and land-use terms were used to downscale 
the GEOS-Chem output to a higher resolution, and this model was 
trained using available speciated PM2.5 monitoring data as well as total 
PM2.5 measurements from 2001 to 2010. The high-resolution pre-
dictions were correlated well with monitoring data (R2 = 0.85 for all 
data and R2 = 0.70–0.80 for individual PM2.5 components on an annual 
basis). This model was developed with the goal of assisting epidemio-
logical analysis during the specific study period (2001–2010) and area 
(northeast United States) for which the model was trained. Generaliz-
ability to other time periods and locations was not considered. This 
study also lacked high temporal and spatial resolution in training data. 
EPA measurements for PM2.5 composition are only available every three 
or six days and are quite sparse in space. A similar approach based on 
GEOS-Chem predictions was implemented by Yu et al. (2023). 

Land use regression (LUR) models use various independent variables 
(e.g. population density, restaurant count, road length, etc.) along with 
available pollutant measurements to capture the spatial variation in 
pollutant concentrations away from monitoring sites (Hoek et al., 2008). 
These models have difficulties in predicting the concentrations of major 
PM2.5 components such as elemental carbon and organic aerosol and 
their sources (Wu et al., 2014) due to the high spatial variability of these 

species. In general, the smaller number of speciated PM2.5 measure-
ments is an important limitation. The addition of satellite data can 
improve the ability of a LUR model to predict species and sources 
(Rahman and Thurston, 2022), but performance is still moderate with 
R2 = 0.67 for elemental carbon and R2 = 0.73 for traffic PM2.5 on an 
annual basis. 

PM2.5 prediction downscaling studies in the past have been 
hampered by the lack of high-resolution, source and species resolved 
PM2.5 concentration fields to support the training of effective models. 
Instead, they have relied on monitoring data which are sparse in space 
and time. These models may or may not be able to predict in spatial and 
temporal domains that are not included in the training dataset. This is a 
difficult problem to address, however a generalizable model for high 
resolution PM2.5 concentrations would be a useful tool for streamlined 
studies without requiring the computational resources associated with 
CTMs and the development time required for the appropriate high- 
resolution emission inventories. 

In this study, we use land-use (LU) variables in combination with 
meteorological data and low-resolution CTM predictions (36 × 36 km2) 
to predict source-resolved, speciated PM2.5 concentrations at high- 
resolution (1 × 1 km2). The goal of this work is to develop a predic-
tive modeling framework that can provide high-resolution PM2.5 con-
centrations from low resolution CTM simulations, eliminating the need 
to prepare high resolution emissions inventories and perform compu-
tationally expensive high resolution CTM simulations. The proposed 
modeling framework notably does not include any observations of PM2.5 
concentrations. While the addition of this type of data would likely 
improve the ability of the model to predict total PM2.5 in some cases, this 
would extend beyond the scope of the current work which is to repro-
duce the 1 × 1 km2 CTM source- and species-resolved PM2.5 concen-
trations. Future work can include the addition of measurements to the 
proposed approach. We explore the application of several machine 
learning models for this task and evaluate the predicted speciated and 
source-resolved PM2.5 concentrations by comparing them to the actual 1 
× 1 km2 resolution output of PMCAMx (Garcia Rivera et al., 2022; 
Dinkelacker et al., 2022). This work can be viewed as a first test of the 
feasibility of developing a generalizable downscaling approach using 
high-resolution CTM predictions in selected areas. 

2. Model description 

The information flow of the downscaling model developed in this 
study is illustrated in Fig. 1. Inputs to the downscaling model include 
low-resolution (36 × 36 km2) source and species resolved PM2.5 con-
centration predictions from PMCAMx, meteorological variables simu-
lated using WRF, and LU variables described below. The downscaling 
model is trained and validated using high-resolution (1 × 1 km2) source- 
and species-resolved PM2.5 predictions from PMCAMx. These source- 
and species-resolved high-resolution PM2.5 predictions are the target 
variables for the models described in the following sections. 

2.1. Chemical transport model predictions 

Speciated and source-resolved predictions of PM2.5 in southwestern 
Pennsylvania at 36 × 36 km2 and 1 × 1 km2 grid resolution for February 
and July 2017 are available based on the work of Garcia Rivera et al. 
(2022). The high resolution 1 × 1 km2 domain in southwestern Penn-
sylvania is used as the spatial domain for the following analyses. These 
concentration fields were produced using the Particulate Matter 
Comprehensive Air Quality Model with Extensions (PMCAMx) (Karydis 
et al., 2010; Murphy and Pandis, 2010; Tsimpidi et al., 2010), a 
state-of-the-science CTM that uses the framework of the CAMx model 
(Environ, 2006). Simulated components of PM2.5 include primary 
organic aerosol (POA), secondary organic aerosol (SOA), elemental 
carbon (EC), crustal mass (CRST), nitrate, ammonium, and sulfate. 
Detailed descriptions of PMCAMx can be found in Fountoukis et al. 
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(2011) and Zakoura and Pandis (2019). Seven emissions source cate-
gories are considered: (1) biomass burning, (2) cooking, (3) on-road 
vehicles, (4) power generation, (5) industrial activities, (6) miscella-
neous area sources (solvent utilization, storage/transport of petroleum 
products, dry cleaning, waste disposal/incineration), and (7) “other” 
emissions sources (e.g. agricultural dust, river barges, off-road vehicles 
and equipment, rail activity, and oil-gas activities). Additionally, the 
contribution to PM2.5 concentrations from sources located outside of the 
simulation domain is quantified and referred to as long-range transport 
(LRT) PM2.5. The average contribution to total PM2.5 concentrations in 
February and July 2017 by source are provided in Fig. S1. Daily average 
PMCAMx predictions of PM2.5 concentration from 56 species/source 
combinations (i.e., six chemical components as well as total PM2.5; seven 
source categories as well as LRT) are available for the 5184 km2 simu-
lation domain at 36 × 36 km2 and 1 × 1 km2 grid resolution. The 
simulation area is comprised of a large portion of southwestern Penn-
sylvania (including the urban area of Pittsburgh), as well as parts of 
eastern Ohio and northern West Virginia. The low-resolution PM2.5 
predictions are used as input for the downscaling model. while the 
high-resolution predictions are used to train and validate the down-
scaling model. 

The source- and species-resolved CTM predictions of total PM2.5 mass 
and all major PM2.5 components at both grid resolutions have been 
evaluated using all available regulatory data in the southwestern 
Pennsylvania as well as aerosol mass spectrometer (AMS) data available 
from the Carnegie Mellon University Supersite. Importantly, the CTM 
reproduced urban-rural PM2.5 gradients at 1 × 1 km2 resolution, with 
performance against stationary monitors improving with increasing grid 
resolution. Total PM2.5 mass concentrations were predicted well in the 
winter with low fractional error (0.3) and fractional bias (+0.05). In the 
summer period, total PM2.5 was underpredicted (fractional bias =
−0.39) due to corresponding underpredictions of organic aerosol (OA). 
Improvement of biogenic secondary OA formation mechanisms in 
PMCAMx is in active development to address this issue. Further detailed 

evaluation of this data can be found in Dinkelacker et al. (2022). The 
subsequently developed machine learning models inherit the perfor-
mance of the CTM data used in training, but the methodology described 
in this work is general and can be applied to any other CTM or take 
advantage of future improvements to PMCAMx. 

2.2. Meteorology 

Meteorological fields were first calculated using the Weather 
Research and Forecasting model (WRF-v3.6.1) with horizontal resolu-
tion of 12 × 12 km2. Initial and boundary conditions were obtained from 
the ERA-Interim global climate re-analysis database. Required WRF 
input data including terrain, land-use, and soil type were retrieved from 
the United States Geological Survey database. WRF output was then 
interpolated to 1 × 1 km2 grid resolution. Temperature, wind velocity, 
and wind direction from these meteorological simulations are used at 
inputs for the downscaling models tested in this study. An evaluation of 
the performance of these spatially interpolated meteorological variables 
was performed to accompany the original analysis of CTM results. A 
summary of the evaluation of the high-resolution meteorological vari-
ables can be found in Dinkelacker et al. (2022). In general, the evalua-
tion showed that the errors in magnitude and phasing of the diurnal 
cycles of the interpolated variables are appropriately small for use in 
CTM simulations. 

2.3. Land use variables 

The LU variables used in this study are from a database compiled by 
Kim et al. (2020). For each variable, values are available for every 
census block across the contiguous United States at a range of buffer 
sizes (100 m–15 km2), referring to the radius of aggregation of that 
variable with respect to the census block centroid. In total, we selected 
24 variables for use in this study (as inputs to the downscaling models): 
road length and type, restaurant count, population, elevation, 

Fig. 1. Information flow for resolution downscaling of chemical transport model PM2.5 concentration predictions. All predictors and target variables are of daily 
temporal resolution, with the exception of land-use information which is static. 
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impervious land area, and 14 characterizations of land use (e.g. resi-
dential land, industrial land, urban green space, forested land, etc.). To 
map the data to the 1 × 1 km2 resolution simulation grid, data from the 
nearest census block to each computational cell in the downscaling 
model was used (smallest centroid-to-centroid distance). For each var-
iable, we selected only one radius: when a 1000 m radius was available 
in the dataset, we used that value; a 3000 m radius was used for four 
variables (length of A2 road, industrial area, mixed-urban area, and 
residential area) when 1000 m data was not available. 

2.4. Algorithms used for resolution downscaling 

Four algorithms were tested in this study to determine their suit-
ability as estimators for high-resolution, source- and species-resolved 
PM2.5 predictions. (1) A multiple linear regression (MLR) scheme was 
tested as a zeroth level approach. With the MLR model, an individual 
linear model is fit to describe the relationship between one of the output 
variables and all of the input variables. This type of approach cannot 
capture nonlinear relationships between inputs and outputs. (2) A 3-hid-
den layer artificial neural network (NN) similar to the architecture used 
in previous studies (Di et al., 2016; Vlasenko et al., 2021), where the 
model includes multiple layers of nodes. The output of each node is 
computed by some non-linear function of its inputs. The weights that 
determine these functions are updated during training, resulting in a 
more accurate model. (3) A simple decision tree (DT) framework 
(Breiman et al., 1984) was tested. In this framework, the dataset gets 
divided into smaller and smaller subsets based on subsequent condi-
tional statements. These conditional statements are made by deter-
mining what split can be made on the data that results in the greatest 
decrease in standard deviation of the data after splitting. (4) A random 
forest (RF) model (Breiman, 2001) was tested. This type of model is 
trained to return the average prediction of a large number of decision 
trees that have been trained on random parts of the training dataset. Use 
of these machine learning algorithms is motivated by the need for 
capturing inherent nonlinearities associated with air quality modeling. 
Scikit-Learn (Pedregosa et al., 2011) implementations for linear 
regression, decision tree, and random forest models were used. The 
Keras TensorFlow (Abadi et al., 2015) package was used to formulate the 
neural network model. 

In all cases, a scaling function was applied to all variables (PM2.5 
concentrations, meteorological variables, LUR variables) of the down-
scaling model in order to set the range of these variables to [−1, 1]. This 
is done to prevent training bias towards a variable with a larger range of 
values. For example, the value of population ranges from 0 to 18000 
people, while the value of PM2.5 POA at coarse resolution (36 × 36 km2) 
ranges from 0 to 4 μg m−3 even though both of these inputs are provided 
to the same model. These input variables may be of equal importance for 
making predictions, but the magnitudes of their values differ tremen-
dously. The variable with the higher magnitude will tend to have a 
disproportionate impact on model predictions, so scaling is important 
before training a predictive model. The variables were scaled according 
to: 

Xscaled =
2(X − Xmin)
Xmax − Xmin

− 1 (1)  

where Xscaled is the scaled vector of all values for a single variable, X is 
the vector pre-scaling, Xmin is the minimum value in the vector, and Xmax 
is the maximum value in the vector. After predictions are made, an in-
verse function is applied to calculate the predicted concentrations to 
their original ranges. 

For model training, the high-resolution cells were randomly divided 
into ten 10%–90% splits. Models were trained on the 90% splits and 
tested on the remaining 10% of cells. Training and testing were repeated 
on each set (ten total) and performance metrics were averaged for the 
formal analysis. Cells were randomly split at first, however nonrandom 

splits were used as a tool for model evaluation. Data from both February 
and July 2017 periods are included in the training dataset, with the only 
obvious indicator variable of which month a data point is from being 
temperature. The same model is used for both February and July to 
strive towards temporal generalizability. To visually present the ability 
of the model to reproduce the spatial distribution of source-resolved 
PM2.5 and its components, five unique and random 20%–80% splits 
were used so that the test predictions cover the entire spatial domain. 
This enables map generation while avoiding making predictions on grid 
cells that exist in any of the training sets. 

2.5. Predictive performance metrics 

All predictions made on testing data inputs are evaluated by 
comparing predictions of species- and source-resolved PM2.5 with the 
daily high-resolution PMCAMx simulation results. Evaluation metrics 
considered are the normalized root mean squared error (NRMSE), 
normalized mean error (NME), and normalized mean bias (NMB): 

NRMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

k=1
(Pk − Ok)2

N

√√√√√
/

Omean (2)  

NMB=
∑N

k=1
(Pk −Ok)

/
∑N

k=1
Ok (3)  

NME=
∑N

k=1
|Pk −Ok|

/
∑N

k=1
Ok (4)  

where Pk is the kth predicted daily value of the output PM2.5 concen-
tration (aggregated by species or source), Ok is the kth “true” daily value 
of the PM2.5 concentration, N is the total number of data points, and 
Omean is the mean value of the “true” PM2.5 concentration. In the context 
of this methodology, the “true” value refers to the PM2.5 concentration 
that was calculated by the CTM at 1 × 1 km2 resolution. The evaluation 
metrics are calculated after performing the necessary inverse variable 
scaling. We evaluate here the ability of each algorithm to downscale 
predictions of each PM2.5 component as well as total PM2.5 from each 
source category. 

3. Results and discussion 

3.1. Algorithm screening 

Fig. 2 illustrates the NRMSE of test set predictions of PM2.5 compo-
nents and total PM2.5 mass. As expected, the MLR model has overall the 
weakest performance in terms of NRMSE. The linear model does exhibit 
better performance with NRMSE <0.1 for SOA predictions (NRMSE 
<0.1) because this component has much less variation in space 
compared to other PM2.5 components. The NN and DT algorithms offer 
significant improvements compared to the linear model. NN and DT 
produce similar results in terms of NRMSE by species, with the neural 
network predicting some species (POA, EC, CRST) with slightly lower 
error and the decision tree performing better with the rest (SOA, 
ammonium, nitrate, sulfate). The RF algorithm predicts all species with 
the lowest error, although in most cases the difference is small compared 
to NN and DT. For total PM2.5 predictions, the NRMSE achieved with the 
random forest algorithm is around 0.01 less than that of the neural 
network and decision tree algorithms. 

The performance (NRMSE) of the various algorithms for source- 
resolved PM2.5 predictions is summarized in Fig. 3. NME and NMB 
values are available in Table S2 in the supplementary material. The 
linear model again has the worst performance, while the NN and RF 
algorithms have the best. The NRMSE of predictions made using RF is 
lower than NN for power generation (0.2 lower), but higher for cooking 
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(0.2 higher) and industrial sources (0.13 higher). The rest of the pre-
dictions are similar or show slightly better performance using the RF. 
Scatter plots depicting the performance of each algorithm with regards 
to total PM2.5 concentration are shown in Fig. 4. Total PM2.5 is predicted 
very well by the NN, DT, and RF models (NME <0.05; |NMB| < 0.01). 
For cooking PM2.5, the NN and RF algorithms predictions have little 
absolute normalized bias (less than 0.012). With industrial PM2.5 we see 
enormous improvements from the linear model, especially at high 
concentrations. Here, the lowest bias (|NMB| = 0.002–0.003) is ach-
ieved using any of the NN, DT, or RF algorithms. 

Our analysis up to this point supports the use of the random forest 
algorithm due to consistently low error and bias in predictions, 
regardless of PM2.5 species or source category. Additional scatter plots 
for all other PM2.5 species and source categories are included in the 
supplementary material (Figs. S2–S12). In the remaining sections we 
will focus on the results of the RF algorithm. 

3.2. Spatial distribution of monthly averaged predictions 

In general, the downscaling model reproduces the spatial distribu-
tion of PM2.5 in southwestern Pennsylvania well for both February and 
July 2017. The downscaling model captures both the peak PM2.5 con-
centrations in downtown Pittsburgh and those near the industrial fa-
cilities in the northwestern part of the domain (Fig. 5). The urban to 
rural transition outside of the city of Pittsburgh is also captured. Some 
inconsistencies on the order of 0.1 μg m−3 are seen with PM2.5 species 
with considerable emissions from large point sources. An example of this 
is PM2.5 sulfate which has large emissions from power generation in the 
upper left and lower left corners of the domain (Fig. 6). 

The ability of the downscaling model to differentiate between two 

distinct time periods is shown in the monthly average maps for biomass 
burning PM2.5 (Fig. 7). This source shows the greatest variability be-
tween months. In February the domain-average, minimum, and 
maximum concentration of biomass burning PM2.5 as predicted by 
PMCAMx are 0.8 μg m−3, 0.02 μg m−3, and 3.31 μg m−3 respectively. In 
July, the corresponding values are 0.007 μg m−3, 0.0005 μg m−3, and 
0.036 μg m−3. In February, the downscaling model reproduces both the 
large peak values as well as the large sections of the domain where the 
concentration is low. In July, it is encouraging that the downscaling 
model does not predict any large concentrations of biomass burning 
PM2.5 anywhere throughout the simulation domain. With power gen-
eration PM2.5, small inconsistencies in predictions follow those seen 
with PM2.5 sulfate (Fig. 8). This occurs because the emissions from 
sources like power generation originate from just a few large localized 
sources, but travel large distances across the entire domain. The LUR 
variables provide the downscaling model with high-resolution infor-
mation about emissions sources (restaurants, population, industrial 
land-use area, etc.) within a radius of 1 km. This means that far away 
from a large point source, the machine learning algorithm has no direct 
knowledge of an emissions source like a power plant that could be 
impacting PM2.5 concentrations at the location of interest far beyond the 
1 km radius. Despite this lack of information, the RF model reproduces 
well the major plumes of PM2.5 from power generation sources, however 
with the small inconsistencies present throughout the domain. This is 
due to the random nature of the training and testing data splits. 
Increasing the radius of LUR variables such as industrial land use may 
improve performance for these sources. Maps of monthly average PM2.5 
concentrations for all other major species and sources are included in the 
supplementary material (Figs. S13–S23). 

Fig. 2. Normalized root mean squared error (NRMSE) of testing set PM2.5 predictions by species for various algorithms when compared to daily high-resolution 
PMCAMx predictions. 
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3.3. Additional model testing for “new” areas 

As a preliminary test of the generalizability of this downscaling 
approach, we trained the model by holding out entire quadrants of the 
domain as testing data, rather than a randomly selected subset of 25% of 
the 1 × 1 km2 cells. The training of the model did not include any in-
formation for this held-out area. The quadrant-based approach was 
chosen to challenge the model in terms of predicting PM2.5 concentra-
tions in unknown, relatively large, contiguous domains while also 
aligning with the grid cells in the low-resolution CTM predictions. This 
procedure was followed for each quadrant, and the results of this test are 
shown in Fig. 9 (February) and Fig. 10 (July). In the northwest and 
southwest quadrants, we see the expected effects from long range 
sources of PM2.5. The downscaling model has difficulties in reproducing 
large emissions plumes due to the relatively small radius associated with 
the land-use information (1–3 km) compared to the range of the visible 
plumes (up to 40 km). In the northeast quadrant, the downscaling model 
tends to spread the effects of the downtown Pittsburgh area to a wider 
area. The downtown area is a unique feature in this domain, so it is not 
surprising that the downscaling model has difficulty reproducing the 
spatial distribution of PM2.5 in this area without an additional urban 
center in the training data. The downscaling model reproduces the 
spatial distribution of PM2.5 in the southeast quadrant, which has both 
significant population and industrial activity. With its obvious chal-
lenges to reproduce certain large emissions features (large emissions 
stacks, discrete urban centers, etc.), the model clearly differentiates 
between areas that are primarily urban, rural, or industrial when faced 
with the challenge of predicting over contiguous subdomains that 
contain valuable information for training a machine learning model. 
This result is encouraging ahead of the application of this downscaling 

model to other locations in the United States. The improvement of the 
treatment of the effects of large point emission sources will be a topic of 
future study. 

4. Conclusions 

Four algorithms were tested to downscale the resolution of CTM 
(PMCAMx) predictions of source-resolved speciated PM2.5 concentration 
from a coarse resolution of 36 × 36 km2 grid cell size to 1 × 1 km2 in 
southwestern Pennsylvania during the months of February and July 
2017. Additional inputs to the downscaling model include high- 
resolution meteorological variables and LU variables to capture high- 
resolution spatial variability in emissions sources. The RF approach re-
produces the high-resolution CTM output for all PM2.5 species except 
crustal PM2.5 with low NRMSE (<0.11), with the most obvious in-
consistencies present with species associated with large point sources 
such as PM2.5 sulfate, a major component of power generation emis-
sions. The RF model does especially well at predicting total PM2.5 
(NRMSE <0.1, NMB <0.001). The RF model also does well at capturing 
the major emissions features in the source-resolved predictions. In 
particular, the ability of the model to accurately reproduce PM2.5 from 
sources that are significantly different in contribution between the two 
months is encouraging. The RF algorithm was chosen to further test the 
ability of a predictive model to reproduce high-resolution predictions of 
speciated and source-resolved PM2.5 as predicted by PMCAMx. Minor 
inconsistencies in model predictions are only seen for PM2.5 from 
sources that have long-range effects far from the point of emission. With 
these sources (power generation, industrial), the 1–3 km radius for land- 
use information may not be far enough for the model to learn well the 
long-range effects. To improve performance with these sources, larger 

Fig. 3. Normalized root mean squared error (NRMSE) of testing set PM2.5 predictions by source category for various algorithms when compared to daily high- 
resolution PMCAMx predictions. 
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Fig. 4. Prediction performance of (a) linear regression, (b) neural network, (c) decision tree, and (d) random forest algorithms on test set total PM2.5 concentrations 
compared to the “true” daily concentrations predicted by PMCAMx. n = 26950. 

Fig. 5. Maps of monthly average ground level total PM2.5 for February and July 2017 as predicted by PMCAMx and the random forest model.  
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radii on the order of the range of these sources (~10 km) will be tested in 
future work. While the performance of the downscaling model is 
encouraging, it is important that the model be viable in other locales 
provided sufficient input information. Preliminary tests of model 

generalizability were explored within the southwestern Pennsylvania 
domain by training downscaling models using entire domain quadrants 
as testing data. The downscaling model struggles to reproduce large 
emissions plumes in the northwest and southwest quadrants, again 

Fig. 6. Maps of monthly average ground level PM2.5 sulfate for February and July 2017 as predicted by PMCAMx and the random forest model.  

Fig. 7. Maps of monthly average ground level total PM2.5 from biomass burning sources for February and July 2017 as predicted by PMCAMx and the random 
forest model. 
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Fig. 8. Maps of monthly average ground level total PM2.5 from power generation sources for February and July 2017 as predicted by PMCAMx and the random 
forest model. 

Fig. 9. Maps of monthly average ground level total PM2.5 in southwestern Pennsylvania for February 2017 as predicted by (a) PMCAMx high-res, (b) RF model with 
entire quadrant testing sets, and (c) PMCAMx low-res. 

Fig. 10. Maps of monthly average ground level total PM2.5 in southwestern Pennsylvania for July 2017 as predicted by (a) PMCAMx high-res, (b) RF model with 
entire quadrant testing sets, and (c) PMCAMx low-res. 
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suggesting the need for longer range land-use information for power 
generation and industrial sources. The downscaling model also tends to 
spread out the urban PM2.5 in the northeast quadrant. The ability of the 
downscaling model to differentiate between largely urban, rural, and 
industrial areas is encouraging, understanding that important features 
had to be removed from training datasets to carry out these tests. Future 
work will also involve compiling the requisite input data for application 
of this model to other cities in the United States, where the predictions 
will be evaluated against available PM2.5 measurements. 
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