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ABSTRACT: Mobile monitoring provides robust measurements
of air pollution. However, resource constraints often limit the
number of measurements so that assessments cannot be obtained
in all locations of interest. In response, surrogate measurement
methodologies, such as videos and images, have been suggested.
Previous studies of air pollution and images have used static images
(e.g., satellite images or Google Street View images). The current
study was designed to develop deep learning methodologies to infer
on-road pollutant concentrations from videos acquired with
dashboard cameras. Fifty hours of on-road measurements of four
pollutants (black carbon, particle number concentration, PM2.5
mass concentration, carbon dioxide) in Bengaluru, India, were
analyzed. The analysis of each video frame involved identifying
objects and determining motion (by segmentation and optical flow). Based on these visual cues, a regression convolutional neural
network (CNN) was used to deduce pollution concentrations. The findings showed that the CNN approach outperformed several
other machine learning (ML) techniques and more conventional analyses (e.g., linear regression). The CO2 prediction model
achieved a normalized root-mean-square error of 10−13.7% for the different train-validation division methods. The results here thus
contribute to the literature by using video and the relative motion of on-screen objects rather than static images and by
implementing a rapid-analysis approach enabling analysis of the video in real time. These methods can be applied to other mobile-
monitoring campaigns since the only additional equipment they require is an inexpensive dashboard camera.
KEYWORDS: traffic-related air pollution, deep learning, computer vision, mobile monitoring

1. INTRODUCTION
The rise in the world’s population and the constant increase in
energy consumption make the degradation of air quality (AQ)
a growing threat to global wellbeing. Air pollution has been
associated with chronic and acute disease, higher mortality,
global warming, and the deterioration of wildlife and
agriculture.1−5 Urban environments typically suffer from
traffic-related air pollution (TRAP).6 Effective AQ monitoring
is the first step toward addressing this issue and considering the
courses of action. Since the installation and maintenance of
reliable monitoring equipment come at a high cost, sensory
arrays are sparsely deployed. Thus, the resulting AQ map has a
spatial resolution at the neighborhood scale at best.7 Pollution
levels between monitored points are usually assessed by land-
use regression, interpolation, and dispersion models,8 but these
methods cannot replace actual measurements. Low-cost
mobile sensors are often implemented to improve spatial
resolution.9 However, such sensors must be calibrated
periodically, especially for outdoor applications, and are
subjected to harsh conditions.10,11 Hence, despite the
impressive progress in the research and development of

miniature, low-cost sensors, their operation still involves an
economic and technical burden, thus underscoring the need to
develop methods and devices for chemical sensing that can
exploit other signals such as visual cues from imagery data to
complement sensory data.
Previous studies have used satellite imagery for AQ

predictions12−14 with promising results for AQ assessment in
large-scale areas with limited accessibility. Etzion et al.15 made
one of the first attempts to evaluate AQ using a ground camera.
The rationale was that light waves are distorted and distant
objects appear blurry in the presence of aerosols; hence, the
relative blurriness of the images was used to estimate the
particulate matter (PM2.5) concentrations. In their study, a
camera was placed to capture a wide landscape. Then, PM2.5
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and blurriness were compared in three regions of interest in
the image. Each region differed from the others in terms of the
distance between the observed objects and the camera. The
findings suggested that a blurriness-based approach failed at
distances under 3.1 km because there was not enough medium
for a clear-cut change in blurriness to estimate typical pollution
states.15

Schroeder et al.16 implemented an object detection
algorithm to estimate traffic density and relate it to AQ
measurements. Their setup consisted of a PM2.5 sensor and a
camera focused on a road. As cars drove by, the motion was
estimated by comparing object locations in consecutive frames.
The underlying assumption was that emissions could be
predicted according to the vehicle type and movement
parameters. While the basic premise is correct,17 a detailed
depiction of air pollution distribution must also account for
topography and meteorological conditions. To incorporate
structural (topographical) parameters into the estimation
problem, Qi and Hankey18,19 used a semantic segmentation
neural network to analyze visual AQ-related data. Their year-
long average pollution measurements were compared against
Google Street View images at specific locations. The images
were used to extract street structure features, such as the
surrounding buildings, that could create a canyoning effect.
However, averaging year-long data does not enable temporal
analysis. In other studies, researchers have utilized deep
convolutional neural networks (CNNs) to predict AQ directly
from images.20−23 These methods all used the black box
approach, where the model extracts features from the raw data
without physical reasoning.
This study advances previous studies, which used cameras

and image features, by introducing a cue-based approach. This
approach capitalizes on video features, such as motion and
scenery, to infer air pollution. The method exploits the strong
capabilities of CNNs to extract pollution-related features such
as motion and segmentation from the original image. These
features are used to construct a near-real-time AQ estimation
model based on visual cues in the images acquired by
commercial dashboard cameras. In this configuration, the
scene and background change rapidly, which makes the
problem extremely complex. This method enhances existing
model frameworks, such as land use regression modeling, by
implementing known relationships between land use and air
quality, often from static data, with information from on-road
vehicles. The advantages of this technique include the fact that
it can cover a large area with high resolution and frequency and
can account for the dynamic nature of traffic emissions and
meteorological conditions. In addition, it relies on technology
that will probably become part of autonomous vehicles in the
near future so that the deployment of many data collection
agents is already readily available. This paper describes the
methodology and data processing steps involved in this
technique and presents results based on data collected in
Bengaluru, India. Bengaluru serves as an excellent environment
to explore and deploy such technology due to its dense
population, rapid urbanization, high traffic congestion, and
significant number of vehicles on the road.

2. METHOD
2.1. Data Acquisition�Mobile Monitoring. Data were

recorded using a commercial, off-the-shelf, Red-Blue-Green
(RBG) dashboard camera, GPS, and air pollution instrumen-
tation mounted on a car driving along a predetermined route

in Bengaluru (Bangalore), India.24 For the sake of complete-
ness, a short description is provided here. Table 1 lists the

measurement devices used in the survey to evaluate the fine
particulate matter (PM2.5), black carbon (BC), carbon dioxide
(CO2), and particle concentration, which subsumed particles
measuring less than 0.1 μm.
The monitoring devices were installed in a compressed-

natural-gas-powered hatchback car (Maruti Suzuki Celerio)
with low tailpipe emissions compared to other cars. The
temporal resolution of the air pollution measurements was set
to 1 s (1 Hz). The car had a rear window that was kept open to
allow air to enter the instruments mounted in it. This
procedure was used to minimize self-pollution from the car’s
exhaust. The instruments were also cushioned and strapped
with bungee cords to reduce the impact of road vibration on
their performance. All instruments were portable, battery
operated, and factory calibrated.
The monitoring campaign started in May 2019 and

continued through the first week of March 2020. The surveys
included video footage taken during 43 measurement days over
6 months. A typical measurement day started at around 9−10
am and finished around 12−13 pm. Figure 1 shows a map of
Bengaluru, where the green shading indicates the regions
where the air pollution levels were monitored. The study area
was divided into four daily routes: the central business district
(CBD), Kannuru (KAN), a peri-urban transecting route, and
two routes in Malleshwaram (MAL), a residential neighbor-
hood in Bengaluru. The entire study area was typically covered
once a week.24,25 There were high variations in pollutant
concentrations along the routes, consistent with previous
findings.7,26 The highest pollution levels were found on the
major roads, followed by arterials and residential areas. More
information about the air quality monitoring campaign, device
setup, and data correction have been described by Upadhya et
al.25 The air pollution instrumentation measurements were
used here as the ground truth, whereas the video footage was
used for feature set crafting that was then fed into the CNN
model.

2.2. Data Preprocessing. Figure 2 presents the big picture
of the process introduced here. Features were crafted from the
raw videos in the following way: frames were sampled from the
videos at a constant rate of 1 frame every 5 s (0.2 Hz) to avoid
data redundancy and to smooth out noisy readings. Next, the
pixel motion fields (for technical details, see section 2.2.1) and
the pixel labels (section 2.2.2) were extracted from each frame.
These features were concatenated along with the original frame
to create a multichannel image. Finally, each multichannel
image was associated with its air-pollution measurement: i.e.,
the ground truth, obtained during the same time as the frame.
Figure 2 illustrates this process. Each multichannel image was
composed of a 16-channel matrix consisting of three intensity

Table 1. Devices Used during the Mobile Monitoring
Campaign

parameter instrument and model units

video footage Noise Play 2 action camera
location (latitude, longitude) Garmin GPSMAP64s degrees
black carbon (BC) microAeth-AE51 ng/m3

particulate matter 2.5 (PM2.5) DustTrak-8530 mg/m3

carbon dioxide (CO2) LI-850 ppmv
particle concentration (PC) CPC-3007 #/cm3

Environmental Science & Technology pubs.acs.org/est Article

https://doi.org/10.1021/acs.est.3c04495
Environ. Sci. Technol. 2024, 58, 480−487

481

pubs.acs.org/est?ref=pdf
https://doi.org/10.1021/acs.est.3c04495?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


RGB channels, two pixel-velocity channels (Vx, Vy), and 11
channels constituting the one-hot-vector for the pixel labels.
One-hot encoding is a standard method of representing
categorical variables in numerical form by creating a separate
binary column for each category and assigning a value of “1” to
the column corresponding to the category and “0” to all other

columns. The AQ ground truth measurements here corre-
sponded to the concurrent 5 s average pollution concentration.
2.2.1. Motion Estimation�Horn−Schunk Optical Flow.

To determine whether the concentrations were related to
motion in the image,17,28 the frames’ motion fields were
estimated by the Horn−Schunk optical flow algorithm29,30 to
obtain the entire image velocity field. Figure 3 illustrates the

Figure 1. Map of the study area: Bengaluru (Bangalore), India.25,27

Figure 2.Model flowchart. The video was broken down into frames. Computer vision algorithms were applied to craft the features, which were fed
into a regression model. The risk function compares the prediction to the ground truth. Minimizing the risk function improves the model
performance over the training set.
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frame velocity vector field, where the pixel hue represents the
vector direction (red to blue for right to left) and its magnitude
is determined by the color intensity. The car on the left is
moving to the right (in blue), and the motorbikes on the right
are moving to the left (in red).
2.2.2. Pixel Labeling�Image Semantic Segmentation.

Image semantic segmentation was used to label each pixel in
the video frame. Semantic segmentation provides information
about sources of pollution, such as cars and trucks, and enables
street structure analysis. For example, if tall buildings are on
either side of a road, a canyoning effect may occur where
particles get trapped and pollution levels rise. Alternatively, the
unimpeded airflow may allow particles to disperse faster.
To label each pixel, a ″DeepLabv3+″ pretrained model,3132

was used. The model contained a dictionary of 11 labels in
total. The model was trained over the ″Cam-Vid data set″ from
Cambridge University,33 which contains street-level images
obtained while driving that were suitable for the needs of this
study. Figure 4 depicts the 11 pixel labels by color detected by
this pretrained model; namely, ″Sky″, ″Building″, ″Pole″,
″Road″, ″Pavement″, ″Tree″, ″Sign-Symbol″, ″Fence″, ″Car″,
″Pedestrian″, and ″Bicyclist″.

2.3. Data Train-Validation-Split Strategies. Several
strategies were implemented to divide the data into training
and validation sets.
(1) The measurement data set was divided such that every

“n” consecutive samples were assigned to the training set
and the following “m” samples to the validation set. In
this study, the n and m values were 100 and 20,
respectively, for a 1000/200 temporal split.

(2) The data set was also split geographically, such that two
routes were considered as the training set and the other
two were the validation set. These divisions neutralized

the temporal and spatial dependences between the train
and validation sets.

Since the database was obtained in the same region and for
consecutive times, many samples could have almost identical
features. Therefore, these different splitting strategies were
implemented to estimate the model’s capability to generalize
beyond the training set domain.

2.4. Deep-Convolutional Neural Network (Deep-CNN)
Model Architecture and Training Process. A Deep-CNN
is a neural network typically used for image input, which
exploits its geometric structure. This model creates feature
maps that represent complex scenarios capturing traffic
behavior and street structure. The model here was based on
the “Resnet-50” CNN34 where the input size was modified to
fit a 224-by-224 16-channel image, and the output layer was
changed from a classification layer to a regression layer. The
remainder of the network was initialized with the pretrained
weights from a pretrained Resnet-50,32 such that the network
was trained using transfer learning (fine-tune). This
architecture was chosen for its ability to parse simple and
complex feature structures while maintaining a reasonable
computational load.
One of the hurdles that needs to be addressed when

applying ML methodologies is the computational complexity
and execution time of the method (training and application).
The training process was applied to several training sets, as
described above. Each model learned to predict one air
pollution target. The loss function for training was the mean
square error function (MSE). The training was conducted in a
MATLAB environment with a Nvidia Quadro-8000 GPU. The
“Adam” optimizer35 was used as an optimization algorithm,
with a batch size set to 64 and an epoch number set to 10.
With these computational resources, a typical training runtime

Figure 3. Dense optical flow: the video frame appears on the left, and the motion field is illustrated on the right. Hue represents the direction of
movement, and intensity represents the magnitude.

Figure 4. Semantic segmentation: the original frame appears on the left, and the pixel labeling by category on the right.
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was under ten hours. The MATLAB code is publicly available
at https://fishbain.net.technion.ac.il/home-page/projects-
software.

2.5. Machine Learning (ML) Models for AQ Inference.
The method above was based on reconstruction of the image
by adding several features to the RGB light intensity. The
underlying assumption was that the distribution of these
features in the scene would indicate the air pollution level. This
assumption was verified by rearranging the features so that
spatial information was omitted. The input dimension was
reduced to a semantic segmentation pixel-label histogram, and
the mean and standard deviations over the entire frame were
obtained for the velocity. Various ML models were trained to
predict the AQ measurements. Linear regression models,
regression trees, boosted trees, bagged trees, the Support
Vector Machine (SVM) and Gaussian Process Regression
(GPR), both with different kernel functions, and fully
connected neural networks were all applied. All of these
models were trained and evaluated using the first temporal
train-validation split of 100 training points to 20 validation
points.

3. RESULTS AND DISCUSSION
The initial attempts to predict air quality measurements using
simpler models, such as linear regression models, regression
trees, boosted trees, bagged trees, Support Vector Machine
(SVM) with different kernel functions, Gaussian Process
Regression (GPR) with different kernel functions, and fully
connected neural networks, did not yield satisfactory results.
The validation R2 values obtained for all of the pollutants and
models were consistently below 0.1, indicating a poor fit
between the predicted values and the actual measurements.
Detailed information on these subpar results can be found in
the Supporting Information.
Given the limitations of the simpler models and their

inability to effectively capture the complexity of the problem, a
more advanced approach was deemed necessary, and CNN
was selected as the next step. This decision was motivated by
CNN’s capability to leverage spatial information by taking the
specific locations and patterns within the scene into account
for AQ estimation.
Table 2 shows the performance of the trained Deep-CNN

models using different training-validation divisions and
pollution targets. In the first row, the n and m values were
100 and 20, respectively, and 1000/200 in the second row. The
first and second rows depict the results obtained using the
train/test split strategies presented in paragraph 1 of section
2.3. The third row shows the results for the spatial split
strategy presented in paragraph 2 of section 2.3. The other
rows present other target labels: namely, PC, BC, and PM2.5.

For example, PM2.5-Temporal [100 20] refers to a model
predicting PM2.5 concentrations. The columns show the RMSE
and MAE loss values calculated over the validation set. The
standard deviation (SD) of the validation set is also provided
for comparison as well as the normalized root-mean-square
error (NRMSE), which is the RMSE divided by the mean
concentration. The last column lists the Pearson coefficients
comparing the actual pollution to the model predictions in the
validation set.
As shown in Table 2, the Deep-CNN model was the most

effective in finding CO2-related features. This was unexpected
because the literature on TRAP typically concentrates on BC
and PM2.5. These variations in results are presumably due to
different sensor response functions and pollutant properties,
including the extent to which the variability in concentrations
for a given pollutant was related to attributes discernible from
the videos. As can be seen in Table 2, the CO2 levels were
predicted with a network trained on two different config-
urations. In the CO2-Temporal model, the training/test split
strategy was such that samples were drawn for each set from
the same geographic area but at different times. In the CO2-
Spatial model, the samples were divided by their geographic
regions. In this configuration, the network inferred the CO2
levels from the routes where training was conducted on
samples from other survey routes. In addition, the accuracy
decreased as the distance between the train and validation data
sets became larger. This decrease was expected because air
pollution levels are also associated with geographic and
climatic conditions that were not considered in the current
CNN model. A more elaborate model analysis including a
confusion matrix suitable for a regression task is provided in
the Supporting Information.
To evaluate the significance of the motion feature, a separate

model was trained without incorporating any motion
information, since most previous studies have ignored this
feature. The results showed that the model without motion
had a 20% lower correlation with the ground truth than did the
model with motion, which confirms our hypothesis that
motion is an important feature for this task.
One frequently used method for comparing the accuracy of

different sensors is the Bland−Altman analysis.36 The Bland−
Altman plot is a graphical tool used to assess the level of
agreement between two measurement methods. In this case, it
compares the image-based model against a reference sensor.
The plot displays the difference between the two measure-
ments on the y-axis and the mean of the two measurements on
the x-axis. The black lines on the graph represent the limits of
agreement, which are calculated as the mean difference ± 1.96
times the standard deviation of the differences. These limits
indicate the range within which most of the differences

Table 2. Model Performance over the Different Targets and Train-Validation Division Strategies

pollutant-division method RMSE MAE Validation SD NRMSE (%) Pearson coefficient

CO2-Temporal [100 20] 51 37 59 10 0.49
CO2-Temporal [1000 200] 66 44 72 13 0.40
CO2-Spatial 48 39 51 10 0.37
PC-Temporal [100 20] 66960 52089 70930 81 0.34
PC-Temporal [1000 200] 71905 53584 72333 83 0.26
PM2.5-Temporal [100 20] 189 93 198 100 0.32
PM2.5-Temporal [1000 200] 171 88 167 101 0.17
BC - Temporal [100 20] 115 54 117 190 0.20
BC - Temporal [1000 200] 121 51 122 197 0.11
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between the two measurements would fall if the methods
agree. Figure 5 shows that the majority of the data (95.12%)
fell within these limits, indicating good agreement between the
model and the ground-truth sensor.
To further validate the reliability of our methodology, we

compared the distribution of the data in our study to that of

Diez et al.37 Their paper compared air pollution measurement

errors in low- and high-end sensors. The similarity between the

distribution patterns observed in Figure 5 and those presented

in the study further confirms the robustness and accuracy of

our approach.

Figure 5. Bland−Altman plot comparing the difference between our image-based air pollution estimator and a reference sensor against their means.
The black lines indicate that the agreement was within acceptable limits.

Figure 6. Most polluted (left) and least polluted scenes (right) identified by the model.

Figure 7. Ground truth CO2 map (a), computed CO2 map (b), and absolute error map (c).

Environmental Science & Technology pubs.acs.org/est Article

https://doi.org/10.1021/acs.est.3c04495
Environ. Sci. Technol. 2024, 58, 480−487

485

https://pubs.acs.org/doi/10.1021/acs.est.3c04495?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.3c04495?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.3c04495?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.3c04495?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.3c04495?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.3c04495?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.3c04495?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.3c04495?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.3c04495?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.3c04495?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.3c04495?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.3c04495?fig=fig7&ref=pdf
pubs.acs.org/est?ref=pdf
https://doi.org/10.1021/acs.est.3c04495?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Aside from formal mathematical evaluations of the method’s
performance, some images were subjected to human visual
inspection. While such inspections cannot be used for a
systematic study, they do provide insights into the nature of
the method.
Figure 6 presents images of scenes classified by the CNN

method as high and low CO2 levels. The images taken in highly
polluted scenes (left side of Figure 6) are characterized by
dense traffic, wide roads with more than one lane, and
surrounding buildings. On the other hand, the images taken in
scenes with low pollution levels (right side of Figure 6) are
characterized by fewer buildings, vegetation, and an open
environment. Hence, the model can use indirect, albeit
explainable, cues to predict pollution levels.
Figure 7 presents a map indicating CO2 levels where (a)

presents the ground truth measurement, (b) is the model
estimations (using a Temporal 100/20 split), and (c) is the
absolute value of their difference. Even though maps (a) and
(b) are not identical, they evidence the method’s potential to
provide an estimation of CO2 levels in high spatial/temporal
resolution in large areas without dedicated air pollution
instrumentation. The fine spatial resolution of the model
estimations can also be useful in improving Land Use
Regression methods, which rely on spatial predictors to
estimate air pollution levels in areas where monitoring data
are unavailable.
Thus overall, this paper explored the prediction of air quality

measurements using a range of models based on visual
features. The performance evaluation demonstrated the
effectiveness of the Deep-CNN model in predicting CO2-
related features, thus showcasing its potential for indirect air
pollution estimation. While limitations and challenges remain,
this study lays the foundation for future research directions and
advances in image-based air pollution estimation. The model
presented here can distinguish between polluted and non-
polluted scenes based on these visual features. Future work
should examine why some scenes may have high pollution
levels but do not show obvious signs of pollution in the images
or why some scenes have low pollution levels but show
misleading signs of pollution. These cases may require
additional information or modalities to improve the accuracy
of the method. This paper focused on TRAP, whose sources
are typically found on the road. Future research could expand
the analysis to off-road pollution sources. Further, a model
trained in one environment will not achieve the same accuracy
in an entirely different environment, because the relationship
across variables may change.
One direction would be to optimize the model architecture

and performance and perhaps consider applying this method to
a setting where external conditions are controlled (such as
airflow, climate, and self-motion). To enhance performance,
models could be built to incorporate additional information
such as weather conditions, nearby direct measurements, and
Lidar signals (which are likely to be standard in autonomous
vehicles) or to use short videos as input (where more
information about the scene can be extracted as opposed to a
single frame). Another enhancement would be to include a
wider range of pixel labeling options: for example, categories
such as types of vehicles, vegetation, and roads. Incorporating
these specific label categories could provide more detailed
insights into the air pollution levels associated with each
element in the scene. Future model architectures could
consider cutting-edge advances in computer vision such as

3D reconstruction, visual transformers, and other image
processing methodologies. These should be considered
carefully before being applied to this task to ensure that
enough data and computational resources are available before
heavier models are trained.
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