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Abstract
Racial-ethnic minority populations in the US are disproportionately exposed to airborne fine
particulate matter (PM2.5), but few national studies have focused individually on the sources that
contribute to these disparities. We address this gap by conducting a comprehensive analysis of
PM2.5 exposure disparities by race-ethnicity in the US, focusing on three source-categories:
mobile-sources, cooking, and all other sources combined. Our approach is based on
high-resolution, national land-use regression estimates of source-resolved PM2.5 components,
derived from high-resolution aerosol mass spectrometer measurements. We find that each of these
sources contributes approximately one-third of the overall PM2.5 exposure disparities by
race-ethnicity. While the importance of mobile-source tailpipe emissions is well recognized, our
study underscores the significance of cooking emissions in creating PM2.5 exposure disparities.
This finding represents a potentially significant opportunity to reduce these disparities, as cooking
emissions are currently largely unregulated. It has important implications for policymakers and
public health advocates aiming to address the persistent issue of racial-ethnic disparities in air
pollution.

1. Introduction

Fine particulate matter (PM2.5) is a major air pol-
lutant that has been shown to have significant
health effects [1, 2]. PM2.5 consists of particles with
an aerodynamic size less than 2.5 µm. They are
emitted by various sources; comprised of a com-
plex mix of chemical components; and undergo
substantial atmospheric processing [3–5]. Many
studies have shown that PM2.5 exposure in the
United States is higher for racial-ethnic minority
populations (people of color : POC; all people except
non-Hispanic Whites) than for the White population
[6–11]. Despite large decreases in overall PM2.5

concentrations in the last two decades, the relative
difference among racial-ethnic groups remains
persistent [6].

There is growing national interest among US
policymakers in reducing racial-ethnic disparities in
air pollution; one example is the Biden administra-
tion’s Justice40 initiative [12]. A cornerstone of US
air pollution regulation is the National Ambient Air
Quality Standards (NAAQS); however, recent studies
suggest that NAAQS-like regulations (emission con-
trols implemented to meet a concentration stand-
ard) may not be effective in eliminating PM2.5 expos-
ure disparities [13, 14]. For example, cities can com-
ply with NAAQS but still have substantially higher
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exposure levels forminority communities. To develop
more effective policies, it is essential to identify the
underlying factors that drive exposure disparities.

In general, prior research on national dispar-
ities in air pollution exposure has either (1) con-
sidered sources and concentrations, using a reduced-
complexity model [13, 15], or (2) considered con-
centrations only, not sources, using empirical models
[6]. A national-scale analysis of reduced complex-
ity air quality model predictions by Tessum et al
[15] found that many sources contribute to racial-
ethnic exposure disparities of PM2.5, with mobile
source emissions being an important contributor.
Shah et al [16] used high spatial resolution meas-
urements to demonstrate that urban restaurant emis-
sions create significant PM2.5 racial-ethnic expos-
ure disparities in Oakland, CA and Pittsburgh, PA;
thesemeasurement-derived disparities are larger than
those predicted by Tessum et al [15]. The modeling
results of Tessum et al [15] predicted that cooking
is a modest contributor to disparities at the national
scale. While the impact of traffic emissions on racial-
ethnic exposure disparities is well-established [6, 10,
11, 15, 17], the national-scale importance of cook-
ing emissions remains under-explored. Our research
advances the literature and combines strengths across
those two prior methods, by using a source-specific
empirical model. We capture the measurement-
based reliability and the spatial resolution of an
empirical model with the utility of source-specific
prediction.

In this study, we used published empirical models
[18–20] to quantify the contributions of specific
sources of PM2.5 to racial-ethnic exposure dispar-
ities at the census block group level for the con-
tiguous United States [21]. We classified total PM2.5

mass into three source categories: primary PM2.5

from restaurants and household cooking (‘cooking
PM2.5’), primary PM2.5 from mobile source tailpipe
emissions (‘mobile source PM2.5’), and ‘other PM2.5’
(including primary PM2.5 from all other sources,
plus all secondary PM2.5). Primary PM2.5 is directly
emitted from sources; secondary PM2.5 is formed in
the atmosphere from gas-phase precursors. In this
paper, we use the term ‘exposure’ to refer to outdoor
concentrations.

Our analysis revealed that while primary PM2.5

from cooking and mobile source tailpipe emis-
sions only contribute approximately 12% of national
population-weighted average exposure to total
PM2.5 mass, they disproportionately impact expos-
ure disparities among racial ethnic communities.
Specifically, primary cooking and mobile-source
tailpipe emissions each contribute to approximately
one-third of overall PM2.5 exposure disparities by
race-ethnicity. Urban-rural and intra-urban distribu-
tion of these sources and racial-ethnic demographic
distribution play a significant role in understanding
disparities.

2. Materials andmethods

2.1. National estimates of source-resolved PM2.5

The analysis is based on land-use regression model
predicted annual-average outdoor concentrations of
source-specific PM2.5 components at the centroid of
approximately 6 million census blocks [18, 19]. The
models were derived from a national dataset of high-
resolution aerosol mass spectrometer (HR-AMS)
measurements, encompassing a wide range of relev-
ant source-activity-relevant land-use scenarios. The
HR-AMSdataset consists of (1) fixedmonitoring data
from urban and rural background locations across
the US and (2) highly spatially resolved mobile meas-
urements conducted in three US cities (Pittsburgh,
PA; Oakland, CA; Baltimore, MD). Positive mat-
rix factorization of HR-AMS measured organic mass
spectra was employed to estimate source contribu-
tions, including cooking organic aerosol (COA) and
hydrocarbon-like organic aerosol (HOA).

We provided a comprehensive description of the
underlying dataset, model-building process, and val-
idations in our previous publications. In this paper,
we apply our previously-validated modeling estim-
ates to investigate exposure disparities for source-
specific PM2.5 components. Further details about the
exposure estimates are available elsewhere [18, 19].

Briefly, we applied a land-use regression (LUR)
modeling framework [18, 22] to develop mod-
els using measured concentrations and predictor
land-use covariates. Subsequently, we applied the
cross-validated models to predict concentrations at
unmeasured locations, specifically at the centroids of
census blocks across the continental US. Our COA
and HOA LUR models explain more than 60% of the
spatial variability of the measured data (R2 of 0.63 for
the COA model and 0.62 for the HOA model). The
main predictor variables for the COA model include
restaurant density, urbanicity as measured by the per-
centage of impervious surface, and commercial land
use. The main predictor variables for the HOAmodel
are road density, transportation land use, and urban-
icity. The robustness and transferability of themodels
were evaluated using multiple methods, such as ran-
dom 10-fold cross-validation, systematic spatial hol-
dout, and comparison with simulations from a chem-
ical transport model [18].

In our analysis, we used the sum of HOA and
mobile-source black carbon (BCmobile) as primary
PM2.5 from mobile source tailpipe emissions. The
black carbon (BC) LUR model is described in Saha
et al [19]. The BC model is derived using high-
spatial resolution mobile sampling and fixed site data
from the US EPA PM2.5 speciation monitoring net-
work (CSN and IMPROVE). The BC model explains
about 70% of the spatial variability of measured data
(10-fold CV R2: 0.71), with urbanicity, road density,
transportation, and residential land use as important
predictor variables.
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To apportion the predicted BC concentration into
mobile (BCmobile) and other (BCother) sources, we
utilized elemental carbon (EC) emission data from
mobile and non-traffic sources, obtained from the
National Emission Inventory (NEI, 2017) [23]. The
detailed estimation method is described in Saha et al
[19]. In brief, we calculated BCother as the model
predicted county average BC multiplied by the frac-
tion of county-average EC emissions from non-traffic
sources. NEI emission data are aggregated at the
county level. This calculation was done for each US
county. We then assigned the same value to all census
blocks within each county boundary. This approach
is reasonable because BCother is primarily influenced
by biomass burning, such as wildfires, which tends
to show modest spatial variation within a county. We
estimated census block-level BC frommobile sources
as BCmobile = (BC—BCother).

We assumed that all cooking-related primary
PM2.5 is organic aerosols (COA), which is suppor-
ted by both source measurements [24] and emission
inventory data for cooking-related primary PM2.5.
For instance, the 2017 NEI [23] reports that approx-
imately 95% of primary PM2.5 emissions from com-
mercial cooking consist of organic carbon, with the
contribution of EC being only 5%.

Other PM2.5 is the difference between total PM2.5

and primary PM2.5 from cooking (COA) and mobile
sources (HOA + BCmobile). The total PM2.5 estim-
ates are from Kim et al [20]. Other PM2.5 is mostly
composed of secondary inorganic and organic species
[19]. It also includes primary PM2.5 from various
other sources such as industrial emissions, biomass
burning, non-tailpipe primary PM2.5 emissions from
mobile sources, such as brake and tire wear, and
resuspended road dust. Since the ‘other’ category was
derived via mass balance with total PM2.5, ‘other’
is comprehensive—it includes PM2.5 contributions
from all sources, other than the two we specifically
studied (i.e. cooking; tailpipemobile). In our analysis,
non-tailpipe primary PM2.5 (e.g. brake and tire wear)
were included in the ‘other’ category.

2.2. National demographic data
We used publicly available race, ethnicity, and
household income data from National Historical
Geographic Information System (NHGIS) [25].
NHGIS provides information on the number of
households in each census block group by eight
racial and two ethnic categories (16 total categories).
For our analysis, we grouped these sixteen racial-
ethnic groups into five categories: (i) not Hispanic
or Latino White (65.4% of the total population), (ii)
not Hispanic or Latino Black (12.1% of total pop-
ulation), (iii) not Hispanic or Latino Asian (4.3%
of total population), (iv) Hispanic or Latino from
any race: Hispanic; 15.5% of total population, and
(v) not Hispanic or Latino other racial minority

including American Indian, Alaska Native, Native
Hawaiian, Other Pacific Islander, Two or more races:
Other POC; 2.7% of total population. In some ana-
lyses, we used two racial-ethnic population bins: (i)
not Hispanic or Latino, White alone (65.4% of the
total population), and (ii) racial-ethnic minority
population (POC; 34.6% of the total population).

NHGIS provides household income data at the
block-group level.We used this block group level data
for separate assessment of exposure disparity by race-
ethnicity or income.

The NHGIS does not report household income
data disaggregated by race ethnicity at the block
group level. It does provide it at the census tract
level. Therefore, for our analysis of race-ethnicity and
income, we used household income data at the census
tract level. For this combined analysis, we used a total
of twenty combined racial-ethnic-income groups:
four income groups (‘<$15 000’: extremely low-
income, ‘$15 000–$50 000’: low-income, ‘$50 000–
$100 000’: medium-income, and ‘>$100 000’: high-
income) and five race-ethnicity groups (as described
above).

We used 2010 census demographic data as our air
pollution concentration estimates [18] were based on
predictor variables computed at the centroids of 2010
census blocks. Our analysis included 210 000 census
block groups, with an average population of 1400, and
70 000 census tracts, with an average population of
4200, across the continental US.

2.3. Exposure disparities analyses
We calculated exposure disparities in PM2.5 and its
components, specifically cooking emitted primary
PM2.5, mobile source tailpipe primary PM2.5, and
other PM2.5, by race-ethnicity and income by
combining air pollution and demographic data.
Previously we have applied a similar approach for
investigating national-scale exposure disparities for
ultrafine particles [17]. We matched air pollution
concentration data at the block-level with demo-
graphic data at the block-group or tract level. To
do so, we computed population-weighted means
of census block level concentration within each
block-group or tract spatial boundaries. Our ana-
lysis included comparisons of concentrations in all
census block groups nationwide, binned into deciles
by the proportion of POC in each block group,
as well as comparisons of urban and rural census
block groups as defined in census. We also com-
puted population-weighted mean concentrations for
various race-ethnicity and income groups to com-
pare state, county, and national average exposure
disparities. Finally, we performed a similar analysis
using directly measured air pollution concentra-
tion data from 100 to 350 locations across the US,
which were used to develop the empirical models
[18, 19].
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Figure 1. Spatial distribution of cooking and mobile source primary PM2.5 and racial-ethnic demographic data. (A) National data
across the contiguous US and (B) Pittsburgh Metropolitan Statistical Area (MSA), a representative urban area. (C) Concentration
profile of cooking, mobile source primary PM2.5 and other PM2.5 along transect line 1–6, as marked on panel B. (D) Distribution
of racial-ethnic minority population (people of color; POC) across the Pittsburgh MSA. (E) Profile of racial-ethnic minority
population along transect line 1–6, as marked on panel D. Transect lines pass through the city center (downtown Pittsburgh). The
color scale in panel A is a log scale, while in other panels, the color scale is linear. The spatial resolution of PM2.5 concentrations
(panels (A)–(C)) is at the census block. The spatial resolution of the demographic data (panels (D), (E)) is at the census
block-group. In panel A, ‘no prediction’ locations refer to the census blocks where our model was not used to predict
concentrations. We made predictions only for census blocks with a non-zero population and for those with predictor variable
values falling within the 1st and 99th percentile range of the measurement dataset used for model development. This approach
resulted in the exclusion of approximately 3% of census blocks nationwide, primarily those in extremely urban or rural areas
where the predictor land-use features were outside our model’s training dataset.

3. Results and discussion

Figure 1(A) shows predicted cooking and mobile-
source tailpipe PM2.5 concentrations across the con-
tinental US with census block resolution. There are
hotspots in cities and along interstate highways.
Figures 1(B)–(E) shows the spatial patterns within
a typical urban area—the Pittsburgh Metropolitan
Statistical Area (MSA). The concentrations of cook-
ing and mobile source primary PM2.5 are highest in
the central business district. The distribution of POC

follows a similar pattern. Other MSAs show similar
trends (figure S1).

In general, primary PM2.5 from cooking and
mobile source tailpipe emissions is more pronounced
in densely populated MSAs. There is a moderate pos-
itive association between primary PM2.5 from these
sources and MSA population density, as indicated
by R2 values of 0.22 for cooking primary PM2.5 and
0.36 for mobile-source tailpipe PM2.5 when regressed
against log MSA population. This association is likely
attributed to the greater prevalence of these sources in
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Figure 2. Concentration of total PM2.5, cooking primary PM2.5, mobile source primary PM2.5, and other PM2.5 in census
block-groups rank-ordered by increasing percentage of people of color (POC). Left: Panels (A) and (B) show data grouped 100
equal population bins. (A) Average concentrations for each bin. The right axis shows the total PM2.5 concentration relative to the
all population-weighted national mean of PM2.5 (red dashed line). (B) Population of White, Black, Asian, Hispanic, and other
POC in each bin. Panels (C) through (F) show data grouped into deciles. Right: Box whisker plots of concentrations of (C)
cooking, (D) mobile, (E) other PM2.5, and (F) total PM2.5. Boxes show 25th and 75th percentile, whiskers show 5th and 95th
percentile, and the thick colored lines show the mean. The right axis in each panel shows concentrations relative to the all
population-weighted mean concentrations. The red dashed line serves as a visual guide, indicating the all population-weighted
mean concentrations.

densely populated metro areas with higher restaurant
and traffic densities. Furthermore, these sources are
disproportionately located near communities with a
higher fraction of POC.

To quantify the exposure disparities across the
continental US, we rank ordered all census-block
groups in continental US by proportion of POC
and then divided the data into decile bins. The res-
ults from this analysis are shown in figure 2, which
demonstrates that census block groups with higher
fractions of POC have significantly higher concentra-
tions of cooking and mobile source primary PM2.5

compared to the national population-weighted aver-
age. For example, the exposure disparity between the
highest and lowest decile bins of POC is 1.7 µg m−3

for total PM2.5 mass (figure 2(F)), with 0.48 µg m−3

attributed to cooking primary PM2.5 (figure 2(C))
and 0.57 µgm−3 attributed tomobile source primary
PM2.5 (figure 2(D)). Therefore, each of these sources
contribute roughly one-third of the total PM2.5 mass
exposure disparities.

While primary PM2.5 from cooking and mobile
source tailpipe emissions account for about two-
thirds of PM2.5 exposure disparities, figure 2(E) shows
that they make relatively minor contributions to the
total PM2.5 mass concentrations. The majority (88%)
of this PM2.5 mass concentrations come from other
PM2.5, which are mainly secondary species, such as
sulfate, nitrate, ammonium, and secondary organic
aerosols that are relatively uniformly distributed in
space.

Urban-rural differences are an important
contributor to exposure disparities (figure S2).

Nationally, a greater proportion of POC reside in
urban compared to rural areas (POC: 82% urban,
18% rural; non-Hispanic White: 60% urban, 40%
rural) (figure S3). In addition, concentrations of
primary PM2.5 from cooking and mobile source
tailpipe emissions are significantly higher in urban
areas, as demonstrated in figure 1. For example,
urban background concentrations of cooking and
mobile primary PM2.5 are 5–10 times higher than
those in rural areas, which highlights the importance
of cooking and mobile sources. The combination
of these factors creates higher population-weighted
exposures of these pollutants among POC compared
to Whites. PM2.5 in rural areas is mainly secondary,
which does not contribute to significant disparit-
ies. Industrial and wildfire sources can be important
primary PM2.5 sources in certain regions [26], but
these sources are not as widespread or frequently as
close to population centers as traffic and cooking
sources.

In the United States, air pollution regulations are
frequently implemented at the state level. Figure 3
presents state-average PM2.5 exposure disparities.
There is considerable state-to-state variability in
racial-ethnic exposure disparities, but 42 states have
higher total PM2.5 exposures for POC group than
White population group (figure 3(A)). The largest
disparities are in the northeastern and midwestern
regions of the United States. For instance, the ten
states with the highest PM2.5 exposure disparities are
Illinois, California, New York, Missouri, Kentucky,
Wisconsin, Michigan, New Jersey, Arkansas, and
Pennsylvania.
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Figure 3. State-level analysis of PM2.5 exposure disparities among different racial-ethnic groups. (A) Population-weighted
concentration differences between POC and non-Hispanic White population groups, with states ranked by total PM2.5 exposure
disparities. Contributions of cooking, mobile, and other PM2.5 to total PM2.5 exposure disparities are shown for each state. Inset
maps show the state-level average spatial distribution of cooking and mobile, and other PM2.5 exposure disparities between POC
and non-Hispanic White groups across the continental US. (B) Scatter plot of exposure disparities between POC and
non-Hispanic White population groups from cooking and mobile source primary PM2.5 versus total PM2.5. (C) Scatter plot of
exposure disparities between POC and non-Hispanic White population groups from cooking primary PM2.5 versus mobile source
primary PM2.5.

We investigated the contribution of cooking and
mobile-source tailpipe emissions to state-level dispar-
ities. Figure 3(B) shows a linear regression of the state-
average total PM2.5 exposure disparities between POC
and White groups versus the disparities from cook-
ing plus traffic PM2.5. The slope of this regression is
0.65 (figure 3(B)), which indicates that, on average,
approximately two-thirds of the state-average total
PM2.5 exposure disparities are a result of cooking and
mobile primary PM2.5 emissions.However, variations
in traffic and cooking-related source activity can help
explain these state-to-state differences. Road density,
restaurants, and commercial activities in proximity
to locations with a higher fraction of racial-ethnic
minority population are higher in states with higher
disparities than in other states (figure S5). The slope

of the state-average cooking versus traffic PM2.5 dis-
parities is 0.78 (figure 3(C)), indicating nearly similar
contributions of mobile-source and cooking emis-
sions to total PM2.5 disparities. County-level data
show similar trends (figure S6).

Figure 4 summarizes the national population-
weighted average exposure disparities among four
different racial-ethnic groups: non-Hispanic white,
black, Asian, and Hispanic. The data indicates that
for POC, cooking emissions contribute ∼30% of the
national-average PM2.5 exposure disparities, mobile
source primary tailpipe emission contribute 33%, and
the remaining from other PM2.5 sources. Although
figure 4(A) indicates there is modest variability
among different POC subgroups, all subgroups have
higher exposures than the national average.
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Figure 4. National population weighted average source-resolved PM2.5 exposure disparities for different racial-ethnic population
and income groups. (A) National population-weighted average concentrations for each combined race-income group. The total
height of the bar represents the total PM2.5 concentration for each race-income class. The contributions of cooking, mobile, and
other PM2.5 to the total PM2.5 mass concentrations are shown by filled colors. The red dashed line represents the all
population-weighted mean total PM2.5. (B) Concentration differences for each race-ethnic groups relative to the
population-weighted national mean. The total height of the bar represents PM2.5 exposure differences. The colors show the
contributions of cooking, mobile, and other PM2.5 to the total PM2.5 exposure difference.

Wealso examined exposure disparities by income.
Figure 4(A) shows that exposure disparities by
race-ethnicity are much larger than those based
on income. Across all income classes, exposures are
higher for POC than Whites. For example, extremely
low-income (<15 000 USD per year) Whites have
substantially lower exposures than high-income
(>100 000 USD per year) POC. However, within
a specific demographic group, exposures are only
slightly higher for the low-income than for high-
income populations. The proportion of POC and
Whites living in urban versus rural areas does not
vary substantially across income classes (approxim-
ately POC: 82% urban and 18% rural; White: 60%
urban and 40% rural) (figure S3), which helps explain
why variations in household income do not play a sig-
nificant role in explaining exposure disparities.

The results in figures 2–4 are based on census
block-level model estimates for source-specific PM2.5

components. The models reasonably captured spatial
variabilities of pollutants, as indicated by the cross-
validation R2, which ranged between 0.62 and 0.71.
To investigate whether the observed patterns are arti-
facts of model predictions, we repeated the analyses
using directly measured air pollution concentration
data fromapproximately 100–350 locations across the
United States (figure S7). The measured data shows
similar results to the empirical models. For example,
the measured mobile and cooking primary PM2.5

concentrations are 80%higher in census block groups
with the highest decile of POC fraction, compared to
the lowest decile bin. This provides confidence in the
conclusions drawn frommodel predictions.However,
as is inherent in anymodeling exercise, there is always
some degree of uncertainty in model estimates, and
future research should consider improvements, such
as the incorporation of more observational data and
enhanced predictors.

We compared our results to those of Tessum et al
[15] who used a reduced-complexity chemical trans-
port model to predict source-resolved exposure dis-
parities using emissions data. This is a fundament-
ally different approach than the land-use regression
model estimates shown in figures 2 and 3. It is based
on emission inventories and predicted pollutant dis-
persion versus our land-use regression model that is
derived from field measurements.

The two models estimate similar contributions of
mobile source emissions. For example, Tessum et al
[15] estimated that mobile sources contribute about
40% of the national-average exposure disparity for
total PM2.5, which is similar to our empirical model
estimates of 33%. In addition, our analysis is a lower-
bound estimate for disparities caused by primary
emissions from mobile sources because it does not
account non-tailpipe emissions such as brake and tire
wear and resuspended road dust [27, 28]. The reason-
able agreement between our predictions for mobile
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source emissions and those presented by Tessum
et al enhances our confidence in the validity of our
approach.

However, our empiricalmodels predict that cook-
ing is a more important source of exposure dispar-
ities than the reduced complexity model predictions
of Tessum et al [15]. We estimate that cooking con-
tributes∼30% of the PM2.5 exposure disparity, which
is more than three times that estimated by Tessum
et al [15].We believe that this difference is attributable
to uncertainty in the county-level National Emissions
Inventory (NEI) cooking data; the NEI was used by
Tessum et al as part of their modeling [15]. We hypo-
thesize that cooking emissions are not widely recog-
nized as a major contributor to air pollution, so they
have not received as much attention when develop-
ing emission inventories such as the NEI (especially
compared to mobile sources) [29, 30].

4. Implications

The important new finding of this study is that
nationally, the three emission sources we studied
(cooking; tailpipe mobile; all other sources) each
are major sources of PM2.5 exposure disparities,
with the three contributions being similar in mag-
nitude to each other. That means that contribu-
tions of cooking emissions are almost comparable
to tailpipe emissions from mobile sources in terms
of total PM2.5 exposure disparities by race-ethnicity.
However, cooking as a source is far less recog-
nized compared to mobile source tailpipe emis-
sions. Targeted reductions in cooking emissions may
be effective in reducing exposure disparities (figure
S8). Some effective PM2.5 emission control techno-
logies exist for cooking [31], such as high-efficiency
stoves, enhanced filtration systems, and improved
usage and maintenance. However, cooking emis-
sions are only regulated in a few locations in the
US [32, 33].

While our study underscores the significance of
cooking emissions, mobile sources continue to play a
substantial role in driving exposure disparities. Our
primary analysis focused on tailpipe emissions from
mobile sources (HOA and BC). The impact of mobile
sources could be even greater than our estimations
when considering the non-tailpipe contribution (e.g.
tire and brake wear). Nevertheless, mobile source
tailpipe emissions have been subjected to stringent
controls over decades; it may be that further reduc-
tions are more challenging and costly compared to
reducing cooking emissions.

Eliminating exposure disparities may require
altering the spatial patterns of emissions. Mobile-
source regulations often focus on reducing tailpipe
emissions, in order to reduce overall average expos-
ure. However, implementing increasingly strict
tailpipe emission standards may reduce average

exposures but not eliminate disparities, because high-
traffic roads are disproportionately located in and
near minority communities. Even a dramatic shift
towards electric vehicles, which produce no tailpipe
emissions,might not eliminate the disparities because
electric vehicles still generate non-tailpipe PM2.5 (e.g.
brake and tire wear; resuspended road dust) [34].
Eliminating disparities may require ambition, ‘out-
side the box’ solutions such as selectively relocat-
ing urban freeways, redesigning urban centers and
transportation infrastructure [35], and creating low-
emission zones [36, 37]. Those types of interven-
tionsmay bemore challenging than reducing cooking
emissions.

The exposure disparities in the US are structured
and systematic. Underlying past policies (e.g. red-
lining, eminent domain for freeway/industrial siting,
etc) created the foundation for many of these sys-
temic disparities [38, 39]. Since the problem is sys-
tematic and structured [13, 40], solving these aspects
will require systematic and targeted intervention. For
instance, emission sources are often located in close
proximity to neighborhoods with a higher percentage
of POC. Therefore, to effectively address this problem
in a city or metropolitan area, interventions should
focus on emissions in these specific neighborhoods,
rather than imposing policies uniformly for all [13],
unless it is possible to ensure a zero-exposure scen-
ario for everyone. However, many of these interven-
tions could be challenging depending on the social
perspective and acceptability, and cost for absolute
elimination of the disparity. Strong political lead-
ership, community engagement, technological inter-
ventional, targeted legislation and regulation, and
many other actions may be required in coming dec-
ades to eliminate disparities in exposure to air pollu-
tion in the United States.
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