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Abstract
Ambient air pollution in India accounts for 870 000 deaths per year, including 43 000 from road
transportation. Vehicle electrification could posit a sustainable solution. However, 3/4th of India’s
electric grid is powered by coal, emitting large amounts of PM2.5, SO2, and NOx. This leads to
uncertainty regarding the health benefits and distributional consequences from vehicle
electrification. Our results show that if electric vehicles made up 30% of vehicle kilometers
traveled, there would be 1000–2000 additional deaths each year under present day conditions.
Higher increases in pollution exposure are seen in scheduled castes/tribes, poor, and rural
populations particularly in high coal production states. Switching to net zero-emitting electricity
generation for charging would reduce air pollution attributable deaths by 6000–7000 annually and
PM2.5 exposure across all groups of population.

1. Introduction

Ambient air pollution exposure is one of the lead-
ing environmental contributors to the global bur-
den of disease [1] associated with 4.1 million pre-
mature deaths annually. In India, both short-term
and long-term exposure to air pollution have been
linked to increased disease burden and mortality [2–
6]. The distribution of health damages from ambi-
ent particulate matter is heavily skewed toward the
developing world [7, 8] due to high population dens-
ity, increase in consumptive uses and lack of regu-
lation on emissions of air pollutants such as SO2,
NOx, and PM2.5. SO2 and NOx react with NH3 in

the atmosphere leading to the formation of second-
ary PM2.5, associated with premature mortality from
cardiovascular and respiratory diseases, lung cancer
and other health issues [1]. India alone accounts for a
quarter of total global premature deaths attributed to
ambient PM2.5 [9–11]. Mittal et al [12] looked at air
quality co-benefits of low carbon policies in India’s
transportation sector and determined higher co-
benefits in high-income states like Maharashtra com-
pared to low-income states like Bihar and Jharkhand.
Although, air pollution health impacts are widely
studied [13–18], the understanding of how adop-
tion of new technologies will affect the overall costs
or benefits, while accounting for systems dynamics,
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distributive equity and environmental justice (EJ)
issues, is often lacking especially in developing coun-
tries in Asia and Africa [19].

Vehicle electrification can be a sustainable
strategy, but the net effects on air pollution con-
sequences hinges on factors like the electricity gen-
eration mix, air pollution control technologies used,
and vehicle efficiency. The benefits of reduced air pol-
lution from conventional gasoline or diesel vehicles
will depend on where and when vehicles are used
[20, 21] and the types of vehicles displaced [20, 21].
When it comes to the distributional impacts of char-
ging electric vehicles (EVs), the timing of charging,
location and type of power plants used to meet the
charging demand, and the resulting health impacts
must be considered. Unlike tailpipe emissions from
gasoline and diesel vehicles, emissions from charging
EVs may occur at power plants located far away, with
emissions that can travel long distances. This means
that the group of people exposed to air pollution
consequences may differ from the group exposed to
tailpipe emissions. Studies in the United States (US)
have shown that the reduction in air pollution health
impacts and climate change fromEVs depends greatly
on the electricity generation source and location [13,
14]. Air pollution exposure is also seen to dispropor-
tionately impact certain ethnic and income groups.
In the US, black and Hispanic minorities have higher
levels of PM2.5 exposure compared to whites [22–
27] and in 34 major cities in China, EVs have been
shown to exacerbate environmental injustice, with
most of the emissions being inhaled by low-income
rural communities [28, 29].

India’s reliance on coal [30] for electricity gener-
ation and lack of air pollution control technologies
[31] make it unclear how vehicle electrification will
affect premature mortality and EJ. Some studies
related to the focus of this work include a study by
Gilmore and Patwardhan [15], who find that com-
pressed natural gas vehicles had the lowest private
and societal costs in a benefit–cost analysis of the
ownership cost, environmental and human health
effects of different four-door passenger vehicles in
India. Cropper et al [16] estimated the health dam-
ages associated with PM2.5 from individual coal-fired
power plants in India and found 75% of premature
deaths were associated with fine particles resulting
from SO2 emissions. Peng et al [17] found that fail-
ing to implement air pollution control strategies res-
ulted in 14 200–59 000 more PM2.5-related deaths in
2040 compared to 2015, while failing to implement
energy policies resulted in 5900–8700 more PM2.5-
related deaths. Gao et al [18] found that 11 million
years of life were lost due to power generation emis-
sions in China and India.

In previous work, state-level life-cycle emissions
of criteria air pollutants from various vehicles in India
were estimated and it was found that some categories

would increase PM2.5 emissions if electrified [21].
Specifically, it was found that the Indian grid would
need to decrease its SO2 emissions by 58%–97%
(depending on the state) for widespread vehicle elec-
trification to make sense. While the implications for
emissions are certainly important, premature mor-
tality outcomes from primary and secondary PM2.5

emissions will depend on the resulting PM2.5 con-
centration associated with such emissions, as well as
on the exposure to people. Up until recently, such
assessments would hardly be feasible, since there was
no reduced complexity model for air quality available
for India. Recently, Global InterventionModel for Air
Pollution (InMAP) was developed by Thakrar et al
[32], enabling an assessment of premature mortality
implications of different transportation strategies for
India.

The EJ literature is growing but limited in the con-
text of India. Garg [33] estimated the health bene-
fits of reducing PM10 concentrations in Delhi based
on income level, finding that percentage reduction in
avoided cases was higher for the poor than the rich.
Kopas et al [34] studied the EJ impacts of air pollution
from coal-fired power plants and found that ethnic
and poor populations were more likely to be exposed
to coal pollution, but this relationship followed an
inverted U-shape. Sabapathy et al [35] assessed com-
muters’ exposure to CO and PM10 in Bangalore using
a survey and found no evidence that lower-income
groups bear higher commuting exposures. Kathuria
and Khan [36] developed household exposure index
using a structured questionnaire and PM data from
seven pollution monitoring stations in Delhi, found
that economically disadvantaged communities were
most affected by exposure to air pollution on average.

Despite the growing attention to air pollution
consequences, to date there is no assessment of state
level health impacts and monetized damages in India
from vehicle electrification, while also accounting for
the EJ aspects across populations under Indian gov-
ernment’s ambitious decarbonization targets. This
study aims to fill this gap by providing a state-level
assessment for four grid scenarios and drawing policy
conclusions for thewidespread adoption of EVs based
on the local electricity mix.

In this work, we start by establishing a baseline
scenario that uses characteristics of the vehicle
stock as detailed in table S1 in the Supplementary
Information (SI).We then consider several illustrative
scenarios, with differing assumptions regarding the
grid emissions. We have named these scenarios EV
current grid, EV coal, EV natural gas and EV net zero
grid. EV current grid assumes that EV charging is asso-
ciated with emissions of SO2, NOx, and PM2.5 match-
ing the state average annual grid emissions intensity.
EV coal represents charging done with uncontrolled
(i.e. with no installation and use of air pollution con-
trol technologies) coal power plants, EV natural gas
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represents 100% charging from natural gas power
plants andEVnet zero grid represents a scenariowhere
electricity generation mix emits nearly no emissions
of pollutants that lead to PM2.5 (such as coal or gas
with post-combustion carbon capture and sequestra-
tion, wind, hydropower, solar, combined with stor-
age, or nuclear).

For each of the four scenarios, we calculate
the total vehicle kilometers traveled by multiplying
total number of registered vehicles in each vehicle
class (two-wheelers, three-wheelers, four-wheelers,
and buses) by their average distance traveled [21,
37]. We then assume that 30% of these vehicle kilo-
meters traveled are attributable to EVs, which is
equivalent to assuming that 30% of the vehicles
in the counterfactual scenarios are electric. This
assumption aligns with India’s 2030 goals for vehicle
transition [38]. We use the latest high-resolution
emissions inventory from Emissions Database for
Global Atmospheric Research version 5.0 (EDGAR
v5.0), Model for Emissions of Gases and Aerosols
from Nature (MEGAN) v2.1, Fire INventory from
NCAR (FINN) v2.5 which includes anthropogenic,
biogenic and fire sources respectively [39–43], and
couple it with a reduced complexity air qualitymodel,
Global InMAP [32], to compute annual average PM2.5

concentration changes in each scenario. We use non-
linear concentration–response functions from 2019
Global Burden of Disease (GBD) study [44, 45] and
compute the health impacts for each scenario. This
dataset provides age- and cause-specific mortality
data for the six endpoints (lung cancer, lower res-
piratory infections (LRIs), chronic obstructive pul-
monary disease (COPD), diabetes mellitus type 2,
stroke, ischemic heart disease (IHD)). The economic
value of the health impacts is determined two-fold (a)
using a range of India-specific values for the statist-
ical life (VSL) varied by the income elasticity, com-
puted using the relationship between value of stat-
istical life for the US and gross national income for
the two countries; (b) using US-specific VSL to ana-
lyze howmonetized damages change if we present the
cost society is willing to pay to reduce the loss of an
additional life in an equitable way [46–52]. We com-
bine this with the modeled estimates for the demo-
graphics based on the 2001 and 2011 census data [53]
and 2015–2016 National Family Health Survey [54]
data to analyze EJ consequences across all regions of
India.

2. Materials andmethods

We estimate ambient PM2.5 attributable health bur-
den from road transportation in India undermultiple
vehicle electrification and grid emissions scenarios.
This study combines a high-resolution emissions
inventory from anthropogenic, biogenic and fire
sources of emissions of air pollutants with a recently

developed global reduced complexity air quality
model (Global InMAP) to compute PM2.5 concentra-
tion in each scenario.We use concentration–response
functions from 2019 GBD and latest estimates on
value of statistical life to provide comprehensive res-
ults of the air pollution consequences from vehicle
electrification in India. Furthermore, we include the
cost of greenhouse gas (GHG) emissions by using the
social cost of carbon (SCC).

2.1. Scenarios
The overall health and climate change damages from
air pollution andGHGs induced or avoided by vehicle
electrificationwill depend on the characteristics of EV
emissions and of the baseline vehicles that they will
be substituting. The emissions from EVs, in turn, will
depend on the emissions intensity of the grid used
for charging. Thus, we establish four counterfactual
scenarios that are used in this study, and compared
with the reference baseline scenario assumed at 0%
EV penetration.

We start by characterizing the anthropogenic
emissions of NH3, primary PM2.5, NOx, SOx and
non-methane volatile organic compound (NMVOC),
from seven sectors (agriculture, residential, power,
transport, waste, industry, and others) from EDGAR
version 5.0 [39, 40]. EDGAR uses a 0.1◦ × 0.1◦

(∼11 km × 11 km) spatial resolution for alloc-
ation of emissions and has sectoral and country
level air pollutant emissions data from 1970 to 2015
[39, 40]. EDGAR v5.0 considers three types of road
transport emissions: exhaust, evaporative, and non-
exhaust emissions. Exhaust emissions are tailpipe
emissions with vehicle engine warmed up to its nor-
mal operating temperature [39, 40, 55]. Evaporative
emissions are NMVOCs, originated due to the evap-
oration of fuel especially in gasoline vehicles [39,
40, 55]. Non-exhaust emissions include tire and
brake wear and road abrasion emissions [39, 40, 55].
Biogenic emissions are from MEGAN v2.1 [41, 42].
MEGANv2.1 has a global coverage with 1 km× 1 km
spatial resolution [41, 42]. The wildfire emissions
from open-burning sector were obtained from the
FINN v2.5 [43] which is based on satellite obser-
vations. FINN provides daily, 1 km × 1 km spa-
tial resolution open burning emissions estimates for
use in regional and global chemical transport models
[43]. We then use Global InMAP [32] to estimate
the resulting annual PM2.5 concentration from all
sectors, as shown in figure S1. Our baseline scen-
ario (see figure 1(A)) is the current contribution of
transportation sector to the overall current PM2.5

concentration.
We then consider four scenarios, with varying

assumptions regarding the emissions intensity of the
grid and its electricity generation mix. All scenarios
assume electrification of 30% of stock of vehicles
from four classes (two-wheelers, three-wheelers,
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Figure 1. Road transportation attributable PM2.5 concentration. (A) Contribution of the road transportation sector to estimated
baseline annual ambient PM2.5 concentration. (B) We compare the change in PM2.5 concentration attributed to the use of EVs in
four different scenarios to the current emissions from the road transportation sector.

four-wheelers, and buses), distributed based on the
projected vehicle kilometers traveled by different
vehicle classes in 2019, as shown in table S1. The
number of total registered vehicles by vehicle class
was obtained from road transport yearbook [37]
developed by the Ministry of Road Transport &
Highways, Government of India. The average kilo-
meters driven in a year and the charging requirements
in KWhkm−1 for different vehicle types comes from
Peshin et al [21]. The 30% share for EVs in terms of
vehicle kilometers traveled is hence computed as the
fraction of the product of total registered vehicles and
average kilometers driven by each vehicle class per
year.

The scenarios are called EV current grid, EV coal,
EV natural gas and EV net zero grid. The simu-
lated state-wise electricity consumption and average

emission factors (in kgMWh−1 for PM2.5, NOx, SO2)
for each power plant for 2017–2018 are obtained from
Sengupta et al [56] and discussed in data S1. EV
current grid assumes the 2017–2018 grid mix. EV coal
and EV natural gas scenarios assume 100% of EV
charging is either done with coal or natural gas power
plants. EV net zero grid scenario assumes that EVs are
charged from energy sources that have net-zero emis-
sions. The latter three scenarios represent the mar-
ginal set of plants that may be called upon tomeet the
increasing demand from charging. Sengupta et al [57]
determine that coal plants usually run at the margin
in high emission states in India while hydro and nat-
ural gas plants are called tomeet excess demand in the
low emission states.

The current grid would need to produce ∼4%
more electricity annually to support the charging of
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a transportation fleet that is 30% electric, as shown
in table S1. If all charging is done using coal power
plants (EV coal), this increases to about 7% more
electricity from each plant (table S2). If charging is
done using natural gas plants (EV natural gas), the
increase is∼140% (table S2). This is because coal cur-
rently accounts for about three-fourths of the electri-
city generation mix while natural gas contributes just
5% [30]. The emissions in the four scenarios where
EVs represent 30% of the projected vehicle kilometers
traveled are computed by decreasing the road trans-
portation emissions from EDGAR used for baseline
scenario by 30% and increasing the power sector
emissions based on the electricity needed to charge
the EV fleet. Specifically, we decrease the road trans-
portation attributable exhaust and evaporative emis-
sions by 30% while keeping the non-exhaust emis-
sions the same as the baseline scenario. This is because
non-exhaust emissions from EVs will be equal to or
greater than those associated with internal combus-
tion engine vehicles depending on the vehicle weight
and technology improvements like regenerative brak-
ing systems [58–61]. The reason we did not increase
the non-exhaust emissions in the EV scenarios is
because the kerb weight associated with EV coun-
terparts currently available in India across various
vehicle categories is either similar to or lower than
the internal combustion engine vehicle in the same
category [21]. Secondly, there is a high level of uncer-
tainty associated in the emission factors associated
with these conversions as described in [62] and out
of scope for this study. Thirdly, unique aspect about
India’s road transportation sector is two-wheelers
accounting for∼75% of the fleet [37] which contrib-
ute just 5% to the total non-exhaust emissions [61]
and this is the category seeing the largest uptick in
registered EVs [63]. These are of course simplifying
assumptions, as the removal of conventional vehicles
and their emissions and health consequences differ
from state to state and depend on timing of dispatch.
In figure S2 in SI, we show the simulatedCO2 and SO2

marginal grid emission factors across five intra-day
periods and monsoon/non-monsoon months for the
top ten states in India based onpopulation (∼1 billion
people) developed from Sengupta et al [57] (data S2).
We find that though mid-day (10◦am to 2◦pm) and
afternoon (2 pm to 6 pm) periods for certain states
with higher renewable penetration show decrease in
emissions, marginal emission factors still align closely
with average emission factors because of India’s 3/4th
dependence on coal.

2.2. InMAP
InMAP is a reduced-complexity air quality model
[64] that has been used to study air pollution health
consequences in US [25, 65–68] and has recently
been extended to a global spatial domain [32]. It uses

outputs from chemical transportmodel GEOS-Chem
[69] to parameterize chemistry, physics, and meteor-
ology. The model estimates pollutant concentrations
by approximating the steady-state solution to a set
of differential equations governing pollutant emis-
sions, reaction, advection, diffusion, and removal.
It solves equations by discretizing over space and
time, using a variable resolution grid, and spatially
varying parameterizations that simplify the reaction,
advection, and removal terms in the equations. The
annual-average concentrations of both primary and
secondary fine particulate matter (PM2.5) are estim-
ated using these emissions inventories. The secondary
PM2.5 is tracked by accounting contributions from
particulate ammonium (pNH4), particulate sulfate
(pSO4), particulate nitrate (pNO3), and secondary
organic aerosol, from emissions of PM2.5 precursors
(sulfur oxides (SOx), nitrogen oxides (NOx), ammo-
nia (NH3), and NMVOCs) [64].

Global InMAP uses the 2020 population data [70]
to create a computational grid with∼1.5 million grid
cells. The horizontal resolution at ground-level ranges
from 5◦ × 4◦ (∼500 km length at the equator) in
remote locations to 0.04◦ × 0.03◦ (∼4 km length at
the equator) in urban locations [32].

We ran a simulation in Global InMAP to compute
the baseline ambient PM2.5 concentration (µg m−3)
from all sources. The all-India population-weighted
annual average PM2.5 is estimated to be 45.2 µg m−3.
This in line with estimates by Chowdhury et al [71]
of 55 µg m−3 for 2015 and average estimates by van
Donkelaar et al [72] for India from 1998 to 2020
(53.3 µg m−3). We then calculated the premature
mortality due to road transportation by comparing
the initial simulation with the second run without
road transportation emissions.

The four scenarios with electrified vehicles and
different electricity generation mixes were performed
by changing the emissions from the road transport-
ation and power sector and comparing those with
concentration in each grid cell in the baseline scen-
ario. We assume a uniform 30% decrease in road
transportation emissions at all locations and uniform
increase in power generation (in MWh) based on the
scenario and power plant type.

The stack height for the coal power plants with a
capacity of>500MWare required to be kept at 275m
based on the government guidelines; those between
210 MW and 500 MW are mandated to build a stack
of 220 m. However, there are many old coal power
plants in India having stack height ranged between
150 m and 220 m [73]. For our work, we assume
an average stack height of 200 m for the coal plants
and 100 m for the gas-fired plants as in [74]. For
the other stack characteristics (velocity, diameter, and
temperature), median parameter data provided by
Environmental Protection Agency (EPA) is used since
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we do not have plant level stack parameters data avail-
able for India [75].

2.3. Health impact assessment
Year-2019 age specific mortality data and population
age structures were obtained from the Institute for
HealthMetrics andEvaluation (IHME) for India [44].
This dataset provides age- and cause-specific mor-
tality data for the five endpoints (lung cancer, LRIs,
COPD, diabetes mellitus type 2, stroke, IHD).

We use the calculation approach provided in Apte
et al [8] to estimate mortality impacts of PM2.5 in
each grid cell. We compute premature mortality M
for population age stratum l and disease endpoint j
attributable to ambient PM2.5 for grid cell i located in
region k using the attributable-fraction type relation-
ship in equation (1)

Mi,j =
Ij,k,l
RRj,k,l

∗ Pi,l ∗
(
RRj,l (Ci)− 1

)
(1)

where,
Pi,l is the population in grid cell i and age stratum l.
Grid cells discretized based on state boundaries.
Ij,k,l is the baseline annual mortality rate (deaths per
100 000 people) for disease j in state k for age stratum
p. Age specific functions are only used for stroke and
IHD.
Ci represents the annual-average PM2.5 concentration
in cell i.
RRj,l (Ci) is the relative risk for disease j and age
stratum p at concentration Ci, and
RRj,k,lrepresents the average population-weighted
relative risk for end point j and age group p within
region k.
RRj,k,l used in equation (1) and defined above is com-
puted as follows:

RRj,k,l =

∑N
i=1Pi×RRj,l (Ci)∑N

i=1Pi
. (2)

The parameter grouping introduced in
equation (1),

Ij,k,l
RRj,k,l

, represents the hypothetical

‘underlying incidence’ (i.e. cause specific mortality
rate) that would remain for region k if PM2.5 concen-
trations were reduced to theoretical minimum risk
concentration (theoretical minimum risk exposure
level (TMREL)) throughout that region. To estimate
the change in mortality, ∆Mi,j, in grid cell i under a
scenario where concentrations are changed from Ci

to a counterfactual concentration Ci
∗ without alter-

ing the underlying incidence, we use the following
relationship:

∆Mi,j =
Ij,k,l
RRj,k,l

∗ Pi,l ∗
(
RRj,l (C

∗
i )− RRj,l (Ci)

)
.

(3)

Finally, estimates of year-2019 attributable mor-
talityM (and potential changes in premature mortal-
ity∆M for EV scenarios) are developed by summing
over all j disease endpoints for all age strata within i
grid cells for a specific state k.

The relative risk curves fromGBD 2019 are scaled
to incorporate the TMREL estimate using the meth-
odology provided in IHME GBD 2019 modeling
description [45]. The updated RR curves at different
concentrations are developed using equation (4)

RR(C)

{
= 1, C⩽ CO

= RR(C)
RR(CO)

, C> CO
. (4)

For each endpoint, CO represents a theoretical
minimum-risk concentration above which there is
evidence indicating health benefits of PM2.5 exposure
reductions (range fromGBD 2019: 2.4−5.9 µg m−3).
We perform this for lower, mean, and central estim-
ates of relative risks for each disease endpoint.

2.4. Economic valuation
To estimate themonetary value of health damages, we
apply India-specific estimates for the VSL developed
using the relationship outlined in Hammitt and
Robinson [45] shown in equation (5)

VSLIndia = VSLUSA.(GNIIndia/GNIUSA)
ε (5)

where:
VSLUSA is the value of statistical life for the US.
GNIIndia and GNIUSA are the gross national income
in India and USA.
ε is the income elasticity for India.

The base VSL for USA of $11.3 million is taken
as the average of estimates from EPA ($11 mil-
lion), Department of Transportation ($11.6 million)
and Department of Health and Human Services
($11.4 million) in USD $2020 [46–49]. This base
VSL estimate is then adjusted for other countries by
multiplying it by the ratio of average gross national
income in India to income in the US, measured using
Atlas method developed by World Bank on gross
national income (GNI) per capita [50]. The average
GNI per capita in the US was $65 910 and India was
$1900 (2019 US$). We conducted sensitivity analysis
on the income elasticity for India, calculated using
a methodology applied by the World Bank [51]. We
assume a central value of 1.2 for India, lower estimate
of 1.0 and a higher estimate of 1.4 (applied for low and
middle-income countries). We multiply these coun-
try specific VSL values obtained by national estimates
of transportation attributable deaths to yield estim-
ates of monetized health damages.

2.5. Demographic information
We projected the demographics data for 2021 using
census data from 2001 and 2011 [53]. Subsequently,
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by combining the estimated 2021 census data with
the PM2.5 concentration trajectories across the grid
cells in India, we find the EJ consequences of
electrifying vehicles based on eight socioeconomic
parameters (literacy rates, urban households, sched-
uled castes, scheduled tribes, households with four-
wheelers, households with two-wheelers, multidi-
mensional poverty index (MPI), minority rates). To
project literacy rates in each grid cell within a state,
we used state-specific projections from 2010 to 2100
[76]. We assumed linear changes for minority rates,
urban households, scheduled castes, and scheduled
tribes between 2001 and 2011 and used these trends
to project these variables for 2021. We found that the
number of households with two and four-wheelers
nearly doubled between 2001 and 2011, in line with
data from the socio-economic and caste census [77].
We also used the MPI [78] developed from the 2015–
2016 National Family Health Survey [54] to exam-
ine the relationship between grid cell level depriva-
tion scores and change in PM2.5 concentration across
the two scenarios. MPI is calculated as the product
of headcount ratio (H) and intensity (A) as define
below:

Headcount ratio (H) = proportion of individu-
als identified as multidimensionally poor in the
population.

Intensity (A)= average share of weighted indicat-
ors in which multidimensionally poor individuals are
deprived i.e. add the deprivation scores of the poor
and divide it by the total number of poor individuals.

The dimensionsMPI looks at include health, edu-
cation, and standard of living with different weights
assigned to each of the indicators within a dimension
[78]. The higher the MPI score, the more deprived a
community is.

Since India’s census data does not provide income
information, we use net state domestic product
(NSDP) [79] (data S3) as a proxy to understand
the relationship between state-specific incomes and
change in premature mortality under different elec-
trification scenarios. In figure S3, we show the NSDP
in $ per capita for the Indian states and union
territories.

3. Results

3.1. Baseline PM2.5-related deaths from all
emissions sources and sectors in India
First, we estimate that the total annual PM2.5-related
mortality from all emissions sources and sectors
is 0.88 million (confidence interval due to uncer-
tainty in the relative risk functions: 0.67−1.07 mil-
lion) as shown in figure S4 in SI. The three leading
causes of death are IHD, COPD, and stroke. These
three contribute ∼80%–85% of total deaths from
PM2.5 in our scenarios. These estimates are in line
with prior studies [9–11, 17, 18, 80]. The state of

Uttar Pradesh in the Indo-Gangetic plains has the
largest health damages (99 000–164 000 deaths) from
all sources. This region is a hotspot for PM2.5 pol-
lution due to high emissions of air pollutants as
well as reduced air circulation caused by obstruc-
tion from the Tibetan Plateau [18]. This is also the
most populated state in India with the total popula-
tion of ∼240 million. Other states with high number
of deaths attributed to total ambient PM2.5 include
West Bengal (78 000–110 000), Tamil Nadu (72 000–
104 000), Maharashtra (67 000–107 000), Bihar
(44 000–72 000) and Karnataka (39 000–64 000). The
state-specific premature mortality numbers com-
puted for total ambient air pollution are within the
bounds provided by GBD 2019 study [44].

3.2. Contribution of road transportation to PM2.5

concentration
We find that road transportation in India in the
baseline scenario accounts for PM2.5 concentration
that ranges from 0 to 13 µg m−3 across the coun-
try (figure 1(A)). Our EV current grid and EV
coal scenarios show an increase in PM2.5 concentra-
tion in the Northern, Central, as well as in some
of the Southern states (figure 1(B)). The largest
increases are seen in coal heavy states of Maharashtra,
Gujarat, Chhattisgarh, Odisha, and Tamil Nadu. A
grid powered by zero-emission sources results in
decreased PM2.5 concentration everywhere.

3.3. Change in premature mortality for each
scenario
We estimate that road transportation air pollution
related deaths are estimated in the range of 27 000
to 37 000 year−1 (∼4% of the deaths from all
sources) under present day conditions (figure S5).
Electrification of vehicles under the current electri-
city grid would increase deaths by 1000–2000 year−1

(3.7%–5.4% increase). Assuming coal would provide
all the electricity used to charge the vehicles, increase
in deaths per year would range +7000 to +9000);
and fewer deaths if electricity is from natural gas
(−4000 to −6000) or net-zero emission sources
(−6000 to −7000). The large increase in premature
mortality associated with EV coal scenario is attrib-
uted to increase in electricity requirements (∼7%
from coal power plants compared to 4% in EV cur-
rent grid). This results in large increases in pre-
mature mortality in the heavily populated states of
Uttar Pradesh, Bihar, Maharashtra, West Bengal, and
Madhya Pradesh (figure 2).

3.4. Monetized damages from air pollution and
climate change
Wecompute the total annualmonetized external costs
from health damages and GHG emissions for our
baseline and four EV scenarios. VSL represents the
marginal rate of substitution between mortality risk
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Figure 2. Annual total PM2.5-related estimated deaths by state: (A) Baseline—road transportation (0% electric vehicle
penetration). Central estimates of road-transportation attributable PM2.5 deaths along with uncertainty range for the states are
shown in table S3 in the SI. (B) Changes in each scenario relative to baseline (30% EV penetration).

andmoney that society is willing to pay for risk reduc-
tion. Given the many issues associated with repres-
enting the monetized damages and the underlying
irreducible uncertainties and assumptions that come
with that, we use a range of values to understand
if our results are robust across a wide set of VSL
assumptions. We assume a VSL for India of $161 000
computed from income elasticity of 1.2 (and using a
low and high figure of $79 000 from income elasti-
city of 1.4 and $327 000 with income elasticity of
1.0, respectively). We multiply VSL by our estimated
attributable deaths to find that current damages from
road transportation range between $2.6 and $10.6 bil-
lion per year. Electrifying road transportation under
the current grid or charging the vehicles with coal
electricity generation scenarios lead to higher dam-
ages than the baseline scenario ($2.7–$11.1 and $3.2–
$13.2 billion per year, respectively). Charging vehicles
with natural gas-based electricity or with net-zero
emitting sources reduces damages compared to the
baseline ($2.2–$8.9 and $2.0–$8.4 billion, respect-
ively) (figure S6). A VSL in the range of values used by

the US agencies highlights the stark difference society
is willing to incur given premature mortality in India
is valued at one-seventieth to that of additional life
saved in the US. Though the values for the US repres-
ent theUSmarket, we include this comparison to rep-
resent the value of reduced mortality in an equitable
way. In figure S7 in SI, we show that EV current grid
and EV coal have much higher damages with VSL for
US (+$19 billion and +$91 billion per year respect-
ively compared to baseline). Improvements in annual
health damages are seen for EV natural gas and EV net
zero grid scenarios (−$57 billion and−$76 billion per
year respectively compared to baseline).

The avoided GHG emissions from road trans-
portation sector and increased emissions from power
sector when charging with coal or natural gas power
plants are detailed in table S4 in the SI. We find that
GHG emissions avoided with 30% uniform EV pen-
etration are∼55 Mt per annum from the road trans-
portation sector. The power sector emission increases
vary based on the scenarios. For the power sector,
we use CO2 emissions intensity (in ton year−1) from
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Figure 3. Estimated annual climate and health damages (billion$2020) for baseline and EV scenarios for road transportation in
India. Central estimate (cyan-colored bars for climate changes damages and fuchsia-colored bars for air pollution damages) are
with VSL taken as $161 000 (income elasticity: 1.2) and SCC as $50 tCO2

−1. Lower estimate (shown with black star) refers to VSL
$79 000 (income elasticity: 1.4) and SCC of $35 tCO2

−1. Higher estimate (shown with blue star) refers to VSL $327 000 (income
elasticity: 1.0) and SCC of $100 tCO2

−1.

Sengupta et al [56] (data S1) for different power plant
types. Compared to the baseline, we find for the EV
current grid, EV natural gas and EV net zero grid scen-
arios, the overall net avoided GHG emissions are pos-
itive (∼21Mt,∼29Mt and∼55Mt respectively). For
the EV coal scenario, the overall net avoided GHG
emissions are negative (∼−4 Mt) indicating char-
ging vehicles entirely with coal generation has higher
damages from both climate change and air pollu-
tion perspectives. We estimate the annual external
damages associated with climate using the average of
the damages from use-phase emissions for each of
the vehicle type (two-wheelers, three-wheelers, four-
wheelers, and buses), in cents km−1, from Peshin et al
[21] multiplied by the distance traveled. For the elec-
trification scenarios, we use CO2 emissions intensity
(in ton year−1) from Sengupta et al [56]. We assume
a SCC of $50 per ton of CO2 (tCO2). We also para-
metrically test the effect of assuming $35 tCO2

−1

and $100 tCO2
−1 [81, 82]. The road transportation

associated costs are taken as shown in table S5 [21].
We find that electrifying vehicles using the current
electricity grid reduced climate change damages (by
−$0.6 to −$1.9 billion) (table S6). While it increases
air pollution damages (+$0.1 to+$0.5 billion) given
the large share of coal in the current electricity gen-
eration mix (figure 3). Improvements in both climate
and health damages are found in vehicle electrifica-
tion scenarios when the charging is done with natural
gas power generation or when the grid is powered by
non-emitting sources. In figure S8 in the SI, we show
contour plots showing the total estimated damages
from both climate change and air pollution at differ-
ent levels of SCC and VSL. When considering both

climate change and air pollution, and under our base
case set of assumptions we find that total damages
are US$ 14.1 billion (lower estimate: US$ 8.8 billion,
higher estimate: US$ 28.4 billion) (figure 3).

3.5. Socio-economic parameters and disparity
regarding the change in PM2.5 concentration
In figure 4(A), we show the change in PM2.5 con-
centration for the EV current grid scenario with ref-
erence to eight socio-economic variables. From the
air pollution modeling simulations, the entire region
of India is divided into ∼27 220 grid cells with vary-
ing population sizes. We discretized the district level
census data to match the size of these grid cells and
determined the socio-economic characteristics asso-
ciated with each grid cell. The four lines represent the
proportion of population that lie within the groups
binned by percentage of a specific characteristic in a
grid cell (‘0%–25%’, ‘25%–50%’, ‘50%–75%’, ‘75%–
100%’).We find that under the current grid, electrify-
ing 30% of the vehicle stock leads to 27% of the pop-
ulation experiencing a decrease in PM2.5 concentra-
tion (obtained by computing the number of people
that lie to the left of the vertical 0 µg m−3 line)
while the remaining 73% see an increase. People with
high literacy rate that live in urban areas are gener-
ally less exposed to the negative consequences of elec-
trification, while grid cells with majority of sched-
uled castes/tribes, poor and rural populations see an
increase in PM2.5 exposure. Kerala, Karnataka, and
Tamil Nadu are the states withmajority of their popu-
lations having a decrease in PM2.5 concentration from
transportation as vehicles electrify under the cur-
rent electricity grid mix. Madhya Pradesh, Rajasthan,
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Figure 4. The proportion of population with a specific socio-economic characteristic as a function of the change in PM2.5

concentration. (A) EV current grid scenario; (B) EV net zero grid scenario. MPI refers to multidimensional poverty index
explained in detail in the section 2.

Uttar Pradesh, and West Bengal have a larger pro-
portion of their population exposed to an increase in
PM2.5 concentration than those that see a decrease.
In figure 4(B), we show that, while there is still a dis-
tribution for the range of changes in PM2.5 exposure
across the population, everyone enjoys a reduction in
exposure to PM2.5 exposure. In figure S9 in the SI, we
show the state-specific net domestic product (NSDP)
along with change in air pollution attributable road
transportation deaths (per 100 000 people) associated
with the two vehicle electrification scenarios.

3.6. Electrifying the ten most populated Indian
cities
We analyze the impact of electrifying 30% of
road transportation vehicle kilometers traveled in
the ten most populous cities in India (Mumbai,
Delhi, Bengaluru, Hyderabad, Ahmedabad, Chennai,

Kolkata, Surat, Pune, and Jaipur) [83] on premature
mortality. We use a similar methodology as described
in the section 2 where we first run a baseline scen-
ario using emissions inventory from EDGAR v5.0,
MEGAN v2.1, NCAR (FINN) v2.5 which includes
anthropogenic, biogenic and fire sources respectively
[39–43] and then for the EV current grid and EV net
zero grid scenarios for cities, we decrease the road
transportation emissions by 30% specifically in the
grid cells associated with the ten most populous cit-
ies and increase the power sector emissions based on
the grid characterization scenario. The current grid
would need to produce about 0.83% more electricity
annually tomeet the charging needs, as shown in table
S7. Under the current grid electricity generation mix,
eight of the ten cities (excluding Kolkata and Chennai
due to high-emitting thermal power plants in these
areas) showed a decline in PM2.5 concentration as
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road transportation is electrified (figure S10 in the
SI). This means reduction in air pollution due to
vehicle electrification provides a net benefit to urban
populations compared to populations living closer
to power plants which see an increase in pollution
exposure. Under a future grid with no emissions,
all cities see a reduction in PM2.5 concentration. In
terms of premature mortality, the states of Delhi,
Maharashtra, and Karnataka (which include the three
most populous cities in India: Delhi, Mumbai, and
Bengaluru, respectively) showed the most improve-
ments in health impacts in both scenarios as shown
in figure S11.

3.7. Estimating premature mortality based on
India’s 2030 goals
At 26th United Nations Climate Change Conference
(COP26), India announced highly ambitious goals
of having 500 GW of non-fossil capacity and meet-
ing 50% of energy requirements from renewables
[84–88]. We reviewed the recent studies that estim-
ate India’s national average grid emission factors in
2030 [84–88] as shown in table S8. We find the aver-
age grid emission factor to be ∼473 kgCO2 MWh−1

across the four studies. To determine state-level emis-
sion factors, we assume that they decrease by the same
ratio as the current national grid average used in the
EV current grid scenario. We find that if India does
achieve its targets set for 2030, there are still 17 states
which see an increase in premature mortality if we
are to electrify 30% of the road transportation vehicle
kilometers traveled. Overall, we find an increase of
600–1000 premature deaths in India based on the
2030 grid as shown in figure S12 in the SI.

4. Limitations

This study makes use of a reduced-complexity air
quality model, which is generally less accurate than a
chemical transport model. Prior Global InMAP sim-
ulations of total PM2.5 concentrations have predicted
concentrations in the Indo-Gangetic Plain that are
lower than measurement data [89, 90] as shown in
figures S1 and S13. This likely results from a com-
bination of the model inputs (such as low emission
in inventories from certain sectors) [91, 92] or epis-
odic events such as biomass burning that may not
be well captured in annual averaged concentrations
[32]. When evaluated against other models in South
Asia for estimating changes in PM2.5 concentrations,
Global InMAP performs relatively well (population-
weighted normalized mean error of 44.4%–59.4%)
across a range of emission scenarios [32], highlight-
ing its potential to estimate air quality health impacts
for policy decisions in the region. Despite these mod-
eling limitations, our estimate of premature mortal-
ity for the baseline scenario from all sources (figure

S5) is in the range estimated by other recent studies
[9, 11]. Exposure levels are high enough in these
heavily polluted areas of Indo-Gangetic plains that
even underestimates of 20–30 µg m−3 do not sig-
nificantly affect the relative risk of diseases due to
non-linear concentration–response functions. In our
EV counterfactual scenarios, we also take simplify-
ing assumptions of uniform 30% penetration of EVs
across all regions although the uptake of EVs will vary
across locations, populations and vehicle classes. For
example: electric two-wheelers and three-wheelers
have shown a higher adoption contributing to∼95%
of new registered EVs in India compared to electric
four-wheelers and buses [63]. The location and popu-
lation specific adoption implications we have tried to
address through our ten most populous city-specific
adoption scenarios which show majority of the cit-
ies showing a decline in PM2.5 concentration and
health impacts compared to populations living closer
to power plants which see an increase in exposure.

5. Discussion and conclusions

Our results underscore the requirement of moving
toward a sustainable electricity grid that emits less
GHGs and air pollutants as to make a widespread
transportation electrification case for India. These
results are in alignment with studies that have looked
at China (similar population size [93], EV targets
[94], current electricity grid mix [30] and ambient
air pollution attributable deaths [45]) where authors
found the need for continued emission reductions in
the power generation sector to have greater human
health and economic benefits [95–97]. India relies
heavily on coal, which constitutes ∼53% of India’s
installed capacity [98] and 74% of total electri-
city generation [99]. Most plants operate with min-
imal pollution control strategies. The process of coal
phaseout will likely take decades given the costs of
changing the infrastructure and need for affordable
electricity services to ensure the livelihood and quality
of life of a large population. However, there are mul-
tiple strategies Government of India can take today
at a relatively low cost: in December 2015, the gov-
ernment required all power plants to install pollution
control equipment (flue gas desulfurization units) by
the end of 2017. The deadline has since been extended
twice, first to end of 2022 for all utilities to comply and
now up to 2025 for utilities in less populous and pol-
luting regions. It is anticipated that 70% of the plants
may fail tomeet the set standards in 2022 [100]. Given
three-fourth of the coal power plants [101] in India
are using inefficient sub-critical coal technology and
are highly polluting, meeting set standards would be a
first step toward responding to the air pollution crisis
affecting the country. Power producers will have to
invest 65 000–130 000 dollars perMW in air pollution
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control technologies [102]. This comes to ∼$20 bil-
lion based on current installed coal capacity [103] in
India (taking central estimate of ∼$97 500MW−1).
Sengupta et al [56] show that if plants establish min-
imal sulfur controls to meet Indian emissions norms,
we could see a decrease in 79% of sulfur emissions
with only ∼1% increase in annual variable costs.
They also compute variable costs of control (₹20–
₹100 MWh−1) to be less than the ₹50–₹200 MWh−1

penalties proposed by the Government of India for
noncompliant plants, which suggests that plants are
better off adopting control technology to avoid penal-
ties in the dispatch order with the larger societal bene-
fit of reducing current premature mortality levels.
From our results, we determined that with 30% EV
penetration and net zero grid used for charging, we
could reduce annual health damages by $1.2–$4.8 bil-
lion per year compared to EV coal scenario (∼7% of
total electricity required from coal plants).

From the economics perspective, recent studies
have shown that ∼25%–50% of India’s coal fleet has
higher variable costs than the levelized costs of solar
plants [104, 105]. This means the Indian government
can save money at least in some locations by decreas-
ing its reliance on relatively expensive coal power
plants running at the margin with low-cost renew-
able energy. Displacing comparatively inexpensive
coal plants will however also require investments into
storage technology or other fast ramping generation
to deal with the temporal-variability issues that come
with renewables.

The transition to cleaner energy sources may
have important implications that may disproportion-
ately impact the low-income communities, notably in
the states of Jharkhand, Odisha, Chhattisgarh, Bihar,
and West Bengal where majority of the coal produc-
tion is concentrated. Scholars have highlighted the
need for policies and programs that could include
skill training programs, income support, and invest-
ments in schools and universities in communities in
and around plants and mines which are planned for
closure [106, 107].

Finally, reducing India’s air pollution related
health issues will also contribute to emissions reduc-
tions from GHGs, and thus with climate change
mitigation.
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