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• On-road Black Carbon and Ultrafine 
Particles were measured in Bengaluru, 
India. 

• Major roads are the most polluted, fol
lowed by arterial and residential roads. 

• No seasonal patterns in concentrations 
were observed for on-road air pollution. 

• The spatial pattern is similar for quasi- 
emission factors as for concentrations.  
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A B S T R A C T   

Mobile monitoring can supplement regulatory measurements, particularly in low-income countries where sta
tionary monitoring is sparse. Here, we report results from a ~ year-long mobile monitoring campaign of on-road 
concentrations of black carbon (BC), ultrafine particles (UFP), and carbon dioxide (CO2) in Bengaluru, India. The 
study route included 150 unique kms (average: ~22 repeat measurements per monitored road segment). After 
cleaning the data for known instrument artifacts and sensitivities, we generated 30 m high-resolution stable ‘data 
only’ spatial maps of BC, UFP, and CO2 for the study route. For the urban residential areas, the mean BC levels for 
residential roads, arterials, and highways were ~ 10, 22, and 56 μg m− 3, respectively. A similar pattern 
(highways being characterized by highest pollution levels) was also observed for UFP and CO2. Using the data 
from repeat measurements, we carried out a Monte Carlo subsampling analysis to understand the minimum 
number of repeat measures to generate stable maps of pollution in the city. Leveraging the simultaneous nature 
of the measurements, we also mapped the quasi-emission factors (QEF) of the pollutants under investigation. The 
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current study is the first multi-season mobile monitoring exercise conducted in a low or middle -income country 
(LMIC) urban setting that oversampled the study route and investigated the optimum number of repeat rides 
required to achieve representative pollution spatial patterns characterized with high precision and low bias. 
Finally, the results are discussed in the context of technical aspects of the campaign, limitations, and their policy 
relevance for our study location and for other locations. Given the day-to-day variability in the pollution levels, 
the presence of dynamic and unorganized sources, and active government pollution mitigation policies, multi- 
year mobile measurement campaigns would help test the long-term representativeness of the current results.   

1. Introduction 

Air pollution is one of the leading global risk factors for death and 
disease (HEI, 2020). Exposure to air pollution and the resulting health 
effects depend on the microenvironment and the amount of time spent 
there (Riediker et al., 2004; Jacobs et al., 2010). Traffic-related emis
sions often constitute an important share of ambient concentrations and 
personal exposure (HEI, 2010; Guttikunda et al., 2019). While the near- 
traffic microenvironment has been well characterized in many devel
oped countries (HEI, 2010), on-road air pollution remains understudied 
in low- and middle-income country (LMIC) settings. Given the dynamic 
nature of urban pollutants, in many cases, their spatial variations are not 
well captured by stationary ambient monitors. In that context, mobile 
monitoring, where in-use sensors are transported in a moving platform 
(e.g., bicycle, motor vehicle), can be a useful approach to understand 
and quantify fine-scale spatial variations in pollutant concentrations. 

Mobile monitoring studies have been conducted in Europe and North 
America, with a range of objectives: i) high-resolution mapping of on- 
road air pollution, ii) exposure assessment, iii) estimation of emission 
factors, iv) building land-use regression models, and v) understanding 
the racial and ethnic disparities in pollution level (Birmili et al., 2013; 
Ruths et al., 2014; Peters et al., 2014; Karjalainen et al., 2014; Patton 
et al., 2014; Ghassoun et al., 2015; Ježek et al., 2015; Williams and 
Knibbs, 2016; Apte et al., 2017; Wen et al., 2019; Chambliss et al., 2021; 
Blanco et al., 2022). Mobile monitoring requires many runs of high 
resolution, precise measurements. A few studies have reported some 
best practices for mobile monitoring research in Europe and North 
America (Van Poppel et al., 2013; Van den Bossche et al., 2015; Alas 
et al., 2019). 

Additional challenges exist when performing mobile monitoring 
measurements in India. These include: i) poor road conditions resulting 
in substantial instrument vibration, ii) limited ambient monitors to re
cord background concentrations, and iii) substantial spatiotemporal 
heterogeneity in pollution levels, sources, and composition. A few 
studies have attempted to characterize on-road air pollution in India. 
Apte et al. (2011) reported higher (compared to that of ambient) on- 
road pollution levels based on ~180 h of mobile monitoring measure
ments in New Delhi, India. This data was subsequently used to build a 
land-use regression model for on-road pollution in New Delhi (Saraswat 
et al., 2013). In a study comparing PM2.5 levels for multiple travel modes 
in New Delhi, Goel et al. (2015) reported that concentrations were 
lowest in air-conditioned cars and highest while biking. Both et al. 
(2011) conducted monitoring while walking, to investigate spatial pat
terns in pollution levels near a roadway, in a low-income and a middle- 
income neighborhood in Bengaluru. A bicycle-based mobile monitoring 
campaign of BC and UFP in Bengaluru used spectral noise measurements 
to successfully predict on-road BC and UFP exposures (Dekoninck et al., 
2015). Kolluru et al. (2018) measured commute exposures on 200 km of 
national highway in Telangana and Andhra Pradesh, India. That study 
covered six transport modes and reported that traveling by air- 
conditioned car led to the lowest PM2.5 exposure but highest CO expo
sures. Transport modes explained the highest variability for CO con
centrations, followed by CO2 and PM2.5. In an alternative approach in 
Chennai, researchers used a combination of walking and bus rides along 
with a customized personal air monitor to map particles and gases in 
urban road and background settings (Shiva Nagendra et al., 2018). 

Results from most of the above studies are presented using data from 
limited repeat measurements without investigation of the minimum 
requirement for the number of repeat measurements required for 
establishing stable (representative) pollution maps. 

Here, we present results from a ~ year-long mobile monitoring 
campaign of black carbon (BC), ultrafine particles (UFP), carbon dioxide 
(CO2), and meteorological parameters (ambient temperature and rela
tive humidity). Containing 22 drive passes of each route, we use these 
measurements to: i) generate high-resolution (30 m) on-road air pollu
tion maps at the neighborhood level, ii) investigate the minimum 
number of repeat measurements required to generate stable pollution 
maps, and iii) estimate and characterize quasi-emission factors for on- 
road BC and UFP. 

We sought to explore the feasibility of repeated mobile monitoring 
sampling techniques developed using advanced platforms like Google 
Street View cars for air quality mapping in an urban setting of LMIC. 
Urban centers in India generally experience comparatively high levels of 
pollution, with concentrations often an order of magnitude greater than 
typical levels in the United States or Europe. Indian cities also feature 
dynamic and heterogeneous emission sources like waste burning and 
construction. Flexible air quality mapping using mobile monitoring 
potentially offers a low-cost solution to fill critical data gaps in regula
tory monitoring. 

While a few studies in India have explored the utility of mobile 
monitoring techniques to map on-road air pollution, ours is the first 
study to investigate the optimum number of repeat samples required to 
produce stable pollution maps. Our study considers one urban area 
(Bengaluru, India) and multiple types of urban neighborhoods. To the 
best of our knowledge, our study is the most comprehensive wall-to-wall 
mobile monitoring investigation in any LMIC urban center to date, 
involving a ~ year-long data collection and ~ 150 km of unique roads, 
covering all major road types. Our measurements facilitate character
izing pollution in many possible urban land use settings. 

Our investigation required overcoming some practical challenges 
associated with mobile monitoring in a LMIC urban center, including 
poor road infrastructure, densely populated neighborhoods, and 
frequent gridlocks of traffic. Because we also lacked advanced mobile 
platforms like Google Street View car and automated navigation, we 
establish a protocol of adapting the mobile monitoring technique for a 
similar setting. The results and lessons learned can be used to expand 
mobile monitoring coverage in similar settings and possibly include 
other pollutants. 

2. Methods 

2.1. Study location 

We conducted mobile monitoring of air pollution in four regions in 
Bengaluru, India. The study regions included i) the central business 
district (CBD), ii) an urban residential area (Malleshwaram, MAL), and 
iii) a peri-urban area (Kannuru, KAN), and (iv) peri-urban–to-urban 
transects. Results are given here for the urban residential area (MAL, 
located in north Bengaluru); results from other areas (CBD; KAN, and the 
transects) are in the supplementary information. For visual display 
purposes in this manuscript, the route, data and results for the peri- 
urban–to-urban transects are combined with KAN; the reason is that the 
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road length of KAN is smaller and constitutes only arterial roads, and 
combining with the transects made most sense geographically. 

The total road length covered in MAL was ~64 km (out of ~150 km 
of total road length monitored), comprised of highways (28 %), arterial 
roads (24 %), and residential roads (48 %). Road classification was 
obtained from OpenStreetMap (OSM). For the ~10 % of study roads 
tagged as “unclassified” in OSM, we used visual observations to assign a 
road type. 

Mobile monitoring was conducted from July 10, 2019 until March 
12, 2020, covering most of the seasons. Because of the Corona Virus 
Disease (COVID19) related nationwide lockdown, we were not able to 
cover the pre-monsoon (March, April, and May) season extensively. 
Monitoring rides were carried out on (non-rainy) weekdays between 9 
am and 1 pm local time (LT). The four-hour window was chosen based 
on i) endurance of the instruments' batteries, and ii) coverage of 
morning rush hour peak and afternoon trough in the pollution levels. 
The MAL study area was divided into two parts (MAL1 and MAL2; 
Fig. S1), which were covered on different days. The total study route of 
150 km (divided into four parts: MAL1, MAL2, CBD, and KAN) as shown 
in Fig. S2 was covered in the first four weekdays. A few rides (~5) were 
conducted on Fridays. No daily route was repeated in any week. We 
made 22 repeat measurements of the total study route (Fig. S3). 

2.2. Instrumentation 

2.2.1. Mobile platform 
During the campaign, we measured on-road BC, UFP, CO2, ambient 

temperature, and relative humidity (RH), along with the Global Posi
tioning System (GPS) location. All air pollution monitoring instruments 
were mounted on a mobile platform, which is a compressed natural gas 
(CNG)-powered hatchback passenger car (Maruti Suzuki Celerio). A 
CNG car was preferred due to its low tailpipe emissions (to reduce self- 
pollution) compared to petrol and diesel cars. Instruments were placed 
near the rear window with the inlets of the instruments near to the open 
window. To reduce road vibration, instruments were cushioned and 
strapped with bungee cords. All instruments used on the mobile plat
form were portable, battery-operated, factory-calibrated, and set to 
measure and data-log at one-second (1 Hz) temporal resolution. (As 
described below, one instrument, the rack-mounted aethalometer, was 
fixed-site rather than mobile.) 

2.2.2. Location 
A GPS receiver (Garmin GPSMAP 64 s) and a smartphone-based 

application were used to collect the latitude and longitude informa
tion of the mobile vehicle. All instruments' times were synchronized to 
the GPS time daily prior to monitoring. 

2.2.3. Black carbon (BC) 
A microAeth (AE51, AethLabs, San Francisco, USA) was used to 

measure the real-time on-road black carbon mass concentration. AE51 is 
a filter-based pocket-size instrument that works on the aethalometer 
optical absorption principle (Hansen et al., 1984). In AE51, the change 
in the rate of optical absorption (at 880 nm) by the particle sample is 
converted into BC using a factory-supplied mass absorption efficiency 
value. The measurement range of AE51 is 0 to 1 mg m− 3. During the 
measurement campaign, AE51 was operated at a flow rate of 100 mL 
min− 1. For each ride, a new filter ticket was used. 

2.2.4. Ultrafine particle number concentration (UFP) 
A handheld Condensation Particle Counter (Model 3007, TSI Incor

porated, Minnesota, USA) was used to measure the on-road particle 
number concentration. The detection size range of the instrument is 10 
nm to >1 μm. Because the particle number size distribution is dominated 
by particles smaller than 100 nm, we use this measurement of particle 
number count as a measure of the ultrafine particle (UFP) number 
concentration. The instrument uses isopropanol as its working fluid 

(condensate), which condenses on the aerosol particles and increases the 
particle size such that they can be detected and counted optically. The 
flow rate is 0.7 L min− 1. Before each ride, zero-check was performed to 
detect contamination of the optics. The manufacturer-defined instru
ment measurement range is 0 to 100,000 particles cm− 3. (For concen
trations above the manufacturer-defined maximum, the instrument 
operates and reports concentrations, but readings are increasingly 
under-counts owing to coincident counting.) As the on-road particle 
concentration in Bengaluru exceeded the manufacturer-defined mea
surement range, we operated the CPC3007 along with a diluter (with a 
dilution ratio ~ 5.5). The dilution ratio was validated by operating the 
CPC3007 sequentially with and without the diluter (repeatedly, 5 min in 
each configuration) in a closed and concentration-stable room. The 
design of the diluter is described in Ban-Weiss et al. (2009) and Apte 
et al. (2011). A study by Jørgensen (2019) has shown variability in the 
CPC3007 measurements when compared to the UFP measurements 
made by Scanning Mobility Particle Sample (SMPS), which could be 
largely because of differences in the cut-off size, i.e., the smallest particle 
detectable by an instrument. 

2.2.5. Carbon dioxide (CO2) 
To measure on-road CO2 concentrations, we used a LI-850 analyzer 

(Li-COR, Inc., Lincoln, USA), which employs the non-dispersive infrared 
(NDIR) absorption technique. Its measurement range is 0 to 20,000 ppm 
with an accuracy of 1.5 %. The lower limit of detection for the instru
ment is 1.5 ppm and the nominal flow rate of the instrument is 0.75 L 
min− 1. 

2.2.6. Temperature and RH 
An RH probe (RH-USB, Omega Engineering Inc., Connecticut, US) 

was used to measure temperature and RH. The device measurement 
range is 2 % to 98 % for RH and − 17 to 49 ◦C for temperature. 

2.2.7. Ambient BC 
A rack-mount seven-channel aethalometer (AE33, Magee Scientific, 

Berkeley, USA) was used to measure the ambient BC at one-minute 
averaging intervals at a fixed site. AE33 is a filter tape-based instru
ment that works on the light-absorption principle, similar to that of 
AE51 (Hansen et al., 1984). AE33 is a dual spot aethalometer that 
measures absorption in seven channels with an inbuilt loading correc
tion algorithm; absorption at 880 nm was considered as BC. AE33 is also 
capable of distinguishing between fossil fuel burning and biomass 
burning-emitted BC. During the study period, AE33 was operated at 2 L 
min− 1 with a 2.5 μm size cut cyclone installed to the sample inlet. The 
instrument was installed inside at the Center for Study of Science, 
Technology, and Policy (CSTEP, located in north Bengaluru) aerosol 
laboratory (~5 m above ground level), with the inlet tubing protruding 
outside (ambient air). CSTEP is ~110 m away from a major road. 

2.3. Data analysis 

All analysis presented in this manuscript was performed using the 
open source ‘R’ programming language (www.r-project.org). 

2.3.1. On-road BC 
BC data required rigorous cleaning and quality check due to the 

sensitivity of AE51 to vibration and shock, which, owing to the poor 
road conditions, was common during the rides, even as cushioning was 
used to dampen vibrations. We used the algorithm developed and 
described by Apte et al. (2011) for identifying spurious values attrib
utable to the vibration effect. The algorithm identified ~9 % of the one- 
second BC data as spurious and removed those from further analysis. 
Next, the correction equation developed by Kirchstetter and Novakov 
(2007) was applied to the BC data to account for the well-understood 
loading effect in BC measurements by filter-based equipment. AE51's 
underestimates of BC concentrations increase as the particle sample 
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accumulates on the filter ticket. The loading correction equations are. 

BC = BCraw
* (0.88* Tr + 0.12)− 1 (1)  

Tr = exp( − ATN/100) (2)  

where Tr is the filter transmission, and BCraw and ATN are the in
strument's reported concentration and attenuation values, respectively. 
For all references hereafter, BC is the loading-corrected BC mass 
concentration. 

2.3.2. UFP 
As the condensation particle counter operated along with a diluter, 

raw UFP values were multiplied by the dilution ratio (DR) to obtain the 
real concentrations. 

UFP = UFPraw
* DR (3) 

For all references hereafter, UFP is dilution-corrected particle num
ber concentration. 

2.3.3. CO2 
For CO₂ measurements, we are interested in concentrations relative 

to background levels, a metric we term ΔCO2. Therefore, CO2 mea
surements were adjusted by subtracting the ride (daily) minimum value 
from each of the one-second values measured in that particular ride: 

ΔCO2 = CO2− raw − CO2 daily minimum (4)  

2.3.4. Snapping and gridding 
After cleaning and correcting the pollutant concentration data, we 

added location information from GPS. Each location (latitude and 
longitude) is snapped to the nearest OSM road, thereby allowing sta
tistical analysis of repeated measurements at the same location despite 
subtle differences in GPS tracks between repeated drive passes. 
Following the approach of Messier et al. (2018), the entire route was 
divided into 30 m road segments, and the concentration data were 
assigned to the corresponding (i.e., nearest) 30 m segment. Daily, the 
mean concentration per segment was computed for each of the pollut
ants for the entire study region. To generate the study period aggregate 
map of each pollutant, the median of the daily means was used, as in 
Messier et al. (2018). 

2.3.5. Bootstrap resampling 
We used bootstrap resampling to understand robustness in the choice 

of the central tendency statistic used in the study. Using the one-second 
measurements in a particular 30 m road segment and resampled data 
(10,000 times with replacement), we computed the central tendency 
statistics (mean and median). We observed that the standard error of the 
median computed from the observations and the standard deviation of 
the median for the bootstrapped subsamples were almost equal for all 
the road segments. 

2.3.6. Intraclass correlation (ICC) 
We computed intraclass correlation, a metric of the reliability of 

repeated measures that varies between 0 and 1, by binning the pollution 
data based on road types, to investigate the robustness in the pollutant 
spatial variations. ICC is the ratio of variability between different groups 
(road segments) to the variability within groups (measurements for each 
road segment). A high value of ICC (> 0.75) indicates that variability is 
more prominent between groups than within groups. 

2.3.7. Monte Carlo analysis 
We performed a Monte Carlo subsampling analysis to investigate if 

the air pollution data collected from a lesser number of rides can pro
duce stable maps or not. This analysis sheds light on the point of 
“diminishing returns” (in terms of the number of rides), beyond which, 

adding more data would not appreciably change the pollution maps. 
Here, we subsampled (without replacement) the daily mean pollutant 
value for each road segment. For N = 2, 4, 6, 8, 10, 12, 14, 16, and 18, 
we performed 100 random draws, hence producing 100 subsampled 
median maps (for each N ride). For road segments having measurements 
less than N, all the data was included to create a subsampled median 
map. As N increases, the subsampled data tends to be similar to the total 
number of rides. Data from each subsampled map was then compared 
with the concentration median maps derived from the full dataset (N =
22 rides). The coefficient of determination (R2, a metric of precision) 
and normalized root mean square error (NRMSE, a metric of accuracy) 
was computed for each comparison. 

2.3.8. Quasi-emission factors 
Because our data include simultaneous measurements of pollutants 

(BC, UFP) and CO2, we are able to derive real-time on-road quasi- 
emission factors (QEFs). QEF is the real-time ratio of the pollutant 
concentration (BC or UFP) to ΔCO2. (As described above, ΔCO2 refers to 
background-subtracted CO2, i.e., representing the real-time on-road 
increment in CO2.) The “quasi” in “QEF” reflects that (1) to convert the 
QEF to an actual emission factor requires assumptions regarding the 
chemical composition of the fuel (e.g., for octane [C8H18], complete 
combustion of each molecule of fuel would generate 8 molecules of 
CO2), and (2) a small portion of the fuel will incompletely combust, 
thereby forming CO, BC, or other organic emissions instead of CO2; a 
more-complete estimate for emission factors would incorporate CO 
measurements. Nevertheless, the QEF provides a useful proxy for 
emission factors (grams emitted per liter of fuel consumed), and how 
they vary in time, space, and with respect to specific attributes (e.g., 
road-type, traffic speed). 

3. Results 

3.1. Spatial variations 

Around 300,000 1-Hz concentration measurements (~83 h) of each 
pollutant were made in the urban residential neighborhood of Mal
leshwaram (MAL). The number of data points collected reflects in part 
the speed of the vehicle—the slower the vehicle, the higher the number 
of measurements per road segment. The average speed of the mobile 
monitoring vehicle in MAL was ~13 km h− 1. MAL is comprised of 2142 
road segments (30 m each; total monitored road length in MAL: 64 km; 
see Table S1). Fig. 1 shows spatial variation of on-road BC, UFP, and 
ΔCO2 (median of daily mean concentrations, for each 30 m road 
segment) in MAL. The spatial mean (median) for MAL is ~26 μg m− 3 

(15 μg m− 3) BC, ~81,000 # cm− 3 (62,000 # cm− 3) UFP, and 49 ppm 
(42 ppm) ΔCO₂. 

The gridded spatial variations in the pollutant concentrations for 
other study regions (CBD and KAN) are in Figs. S4 and S5. For the 
combined peri-urban, peri-urban–urban transects, the number of road 
segments was 2108, and the spatial mean (median) concentrations are 
~39 μg m− 3 (34 μg m− 3) BC, 82,000 # cm− 3 (79,000 # cm− 3) UFP, and 
53 ppm (49 ppm) CO2. The central business district (CBD) is comprised 
of 740 road segments; spatial mean (median) concentrations were ~ 46 
μg m− 3 (41 μg m− 3) BC, 143,000 # cm− 3 (139,000 # cm− 3) UFP, and 92 
ppm (83 ppm) CO2. For all three pollutants, the most polluted road 
segments are the highways, followed by arterials and residential (Fig. 2; 
Tables S2-S4). The differences in the pollutant concentrations by road 
type were statistically significant based on a one-way ANOVA (p <
0.001) test. 

We computed intra-class correlation (ICC) values for the 30 m road 
segments as a measure of the temporal stability of subsampled spatial 
patterns (Tables S5 to S7). ICC values of all parameters for MAL ranged 
between 0.81 and 0.92, indicating systematic spatial differences (be
tween road segments) and comparatively little residual variability 
within each road segment. ICC values for KAN ranged between 0.69 and 
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0.94, and for CBD, between 0.72 and 0.86. A closer look at road types 
revealed the lowest ICC values on arterial (0.43 for CO2) and residential 
roads (0.43 for BC and 0.54 for UFP) in KAN. 

The BC versus UFP hex plot (Fig. S6) shows variability in the 
pollutant concentrations (median of daily drive-pass means). At lower 
values of BC and UFP, the data followed a linear relation. Beyond 
150,000 # cm− 3, UFP seem to be relatively constant even with BC in
creases further. As described above, we used a dilutor with a factor of 
~5.5 dilution; thus, this saturation effect in the range 150,000 to 
300,000 (i.e., for which the instrument reads 27,000 to 54,000) is not 
attributable to measurements exceeding the manufacturer-defined 
concentration range. The adjusted R2 for the fit is 0.30 for highways, 
0.25 for arterials, and 0.55 for residential roads. 

3.2. Monte Carlo analysis 

Results from the Monte Carlo subsampling analysis for BC and UFP 
(Fig. 3) for MAL reveal that the gain in R2 with the inclusion of each 

additional ride data increased rapidly until about 7 sampling days (for 
both BC and UFP) and slowly thereafter. At ~10 sampling days, R2 is 
close to 0.8. Similarly, normalized root mean square error (NRMSE) 
curves (Fig. 3b and d) show that the error rapidly decreased with the 
inclusion of each additional sampling day, with a sharp decrease in slope 
after day 6. Unlike R2, NRMSE values continuously decreased without 
leveling off. If we pool data from all study routes for Monte Carlo sub
sampling (Fig. S7), there is no clear “point of diminishing return”, and at 
least 10 repeat measurements are required to achieve R2 > 0.75. Figs. S8 
and S9 show the Monte Carlo analysis by road type. Results for BC and 
UFP by road types are similar to that observed for MAL. The “point of 
diminishing return” is observed to be similar among road types, 
although the error (NRMSE) differed by ~20 % across the road types. 

3.3. Quasi-emission factors (QEF) 

The spatial pattern of QEFs (Fig. 4, Tables S8, S9 and S10) mostly 
followed the pollutant spatial pattern. The higher QEFs on highways 

Fig. 1. Spatial maps of on-road a) BC, b) UFP, and c) ΔCO₂. BC = black carbon; UFP = Ultrafine Particle number concentration; ΔCO2 = delta carbon dioxide, i.e., the 
measured on-road CO2 concentration minus the background CO2 concentration. 

Fig. 2. Pollutant concentration distribution by road type for the median of drive pass-means, for a) BC, b) UFP, and c) ΔCO2. The whiskers represent the 5th and 95th 
percentile, the box represents the 25th and 75th percentile, and the median and mean are shown by the line and point inside the box, respectively. 
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may be attributable to heavy-duty diesel vehicles, whose particulate 
emission factors can be much higher than that of light motor vehicles, 
which are mostly petrol and CNG operated. The mean values for QEFs 
(Table S8) indicate that BC emissions per liter of fuel are ~2 times 

higher on highways than on arterial roads, and ~ 20–70 % less on res
idential roads than on arterial roads. For UFP, QEFs relative to arterials 
were ~ 20–85 % higher on highways and ~ 8–20 % lower on (except 
KAN) residential roads (Table S9). QEFs (and pollutant levels) increased 

Fig. 3. Monte-Carlo subsampling analysis for the MAL neighborhood, showing R2 values (left column), and normalized root-mean-square-error (right column). 
Panels a) and b) correspond to BC, c) and d) correspond to UFP. 

Fig. 4. Gridded spatial variation and box plots of BC/ΔCO2 (BC QEF), UFP/ΔCO2 (UFP QEF), and UFP/BC. The whiskers represent the 5th and 95th percentile, the 
box edges represent the 25th and 75th percentile, and the median and mean are shown by the line and point inside the box respectively. 
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with increases in the traffic speed is observed for all the road types and 
pollutants (Fig. S10). 

3.4. Ambient and on-road BC 

Median concentrations were 2.9 μg m− 3 (November) to 6.2 μg m− 3 

(August) for ambient conditions (CSTEP fixed site) and 9.7 μg m− 3 

(December) to 19.9 (October) μg m− 3 for on-road conditions (Fig. S11). 
On average, on-road BC values are nearly ten times higher than that of 
the ambient. Seasonal patterns are substantially greater for ambient BC 
than for on-road BC. For example, the ratio of BC concentrations in 
September versus in December is ~1.8 for ambient, ~1.2 for on-road. 

4. Discussion 

The present study is one of the few large-scale repeated mobile 
monitoring exercises conducted in India. We made a total of 22 repeat 
measurements over the study route to construct high-resolution, 
neighborhood-level, stable, on-road pollution maps. We followed best 
practices (related to instrument maintenance and data analysis) in 
conducting a mobile monitoring campaign of air pollutants, as outlined 
in Alas et al. (2019). Results here shed light on adaptability of mobile 
monitoring technique in a middle-income-country urban setting with 
relative higher pollution levels. 

Our study revealed large spatial variability in pollutant concentra
tions within the residential neighborhood and also by road type (Figs. 1 
and 2) in Bengaluru. The difference in pollution levels between road 
types is more pronounced for BC than for CO2 and UFP. Highways 
experienced average BC concentrations of about five times that of resi
dential roads and at least twice that of arterial roads (Table S2). Even 
within the same road type, variability in pollutants concentrations be
tween road segments was observed. The ICC values for all parameters in 
MAL ranged between 0.81 and 0.95, indicating a significant difference 
in pollution levels between road types. On-road CO2 followed the same 
pattern as BC and UFP, suggesting that spatial variation in on-road 
pollution is likely due to the differences in on-road traffic volumes. 
Ambient concentrations are nearly 10 times lower than on-road con
centrations (Fig. S9), further demonstrating large spatial differences in 
exposure and ambient pollution levels. 

Measurements of on-road UFP concentrations are scarce in India. For 
comparison, the mean on-road UFP concentration in Bengaluru (current 
study) coincided with the lower end of measurements from a mobile 
monitoring study in New Delhi, a city with historically higher back
ground levels of pollution (Apte et al., 2011). Average BC concentrations 
reported from measurements carried over 60 round trips during early 
spring and summer in an autorickshaw in New Delhi were about twice 
that observed in this study. In contrast, mean estimates of on-road BC 
and UFP in the current study were twice that of stationary measure
ments at LUR sites in Delhi (Saraswat et al., 2013). Notably, both the 
studies referenced here (i.e., by Apte et al. and by Saraswat et al.) re
ported geometric means, unlike the arithmetic mean reported in our 
study. 

To test the generalizability of the results obtained from MAL, we 
investigated the data collected in other parts of the city with distinctly 
different characteristics (Figs. S4 and S5). Overall, we observed that all 
pollutant concentrations had the lowest values in urban and peri-urban 
residential neighborhoods. The urban-to-rural pollution gradient 
(Fig. S5) involves highest on-road concentrations in the urban area, 
decreasing through the urban–peri-urban transect and the lowest levels 
in the peri-urban area. The overall highest concentrations were in the 
urban business district. For all three neighborhoods (MAL, CBD, KAN), 
CO2 maps mirrored the UFP and BC maps. 

As described above (Section 3.3), after ~10 rides, each additional 
ride-day does not contribute as much to improving precision. One 
cannot identify a single, precise “point of diminishing returns” (i.e., the 
curves in Fig. 3 do not fully asymptote, nor do they have a specific, 

consistent inflection point). If future research aims to more-robustly 
identify the “point of diminishing returns” (i.e., to have the curves in 
Fig. 3 asymptote), it likely would be beneficial to conduct more visits per 
location. When we pool data from the entire study (i.e., CBD, KAN, and 
MAL; see Fig. S7), this point is not reached within the number of drive- 
days we have conducted. This result might be due to larger day-to-day 
variations in pollutant concentrations. CBD and KAN are characterized 
by more highway road segments, so we would expect greater temporal 
heterogeneity in the traffic type, volumes, and speed, relative to MAL. 
Therefore, to generate a stable pollution map in these areas, a larger 
number of rides (relative to Fig. 3 / just for MAL) are required. The 
results from MAL (Fig. 3) are encouraging though, and in agreement 
with that obtained in urban Oakland (Apte et al., 2017). With weekday 
sampling, they found that for BC and NO, at least ~10 rides were 
required to achieve the “point of diminishing return”. 

Mobile monitoring is being adapted in multiple cities to complement 
the regulatory monitoring data (e.g., Breathe London Project, 2018). 
However, this technique remains under-utilized in LMICs. While some 
studies in India have used mobile platforms to measure pollutants in 
different on-road microenvironments, they are either limited in spatial/ 
temporal coverage or focused on commute exposures. The current study 
systematically investigated the minimum requirements to generate sta
ble high-resolution pollution maps. Results obtained and lessons learned 
from this study can be exploited in expanding the mobile monitoring 
coverage, and also, in working to include other pollutant measurements 
(gaseous pollutants). Our results (irrespective of road type), showing 
that a smaller number of rides (~10 rides for the MAL neighborhood) 
can achieve stable maps (with ~80 % precision), are an encouraging 
observation in terms of prospects of this technique in Indian, and 
potentially other, urban settings. In contrast, in a study performed in 
Mol city (Belgium) by Van den Bossche et al. (2015), the minimum 
number of rides required to arrive at the representative average pollu
tion concentration varied by road type. The number of stationary 
monitors in India is increasing slowly, in part because of the high cost of 
acquiring and maintaining regulatory stations. A recent air pollution 
quantification framework for India proposed an integrated approach, 
including with intermittent use of mobile monitoring to capture high- 
resolution spatial and temporal data (Brauer et al., 2019). In keeping 
with that framework, the current study demonstrates the feasibility of 
conducting a mid-cost mobile monitoring infrastructure in low- and 
middle-income countries. 

We found (Section 3.4) that quasi-emission factors for BC and UFP 
were highest on highways. This finding likely reflects the higher pro
portion of heavy-duty diesel vehicles on highways compared to resi
dential and arterial roads. Mobile monitoring data has been used to 
compute vehicle-based emission factors (Larson et al., 2017). In a 5-day 
mobile monitoring campaign-based study in Chengdu, China, Wen et al. 
(2019) used absolute principal component analysis to tease out polluting 
heavy-duty diesel vehicles on highways based on the emission factors. 
Notably, the emission factors estimated using mobile monitoring air 
pollution data can be highly sensitive to the emissions from high-emitter 
vehicles (Kelp et al., 2020). 

Our study has a few limitations and challenges. They include: i) 
measurements were limited to daytime and weekdays, ii) the mobile 
platform is a CNG car, which is relatively low-emitting but not 
completely emissions-free. The choice of the vehicle was based on the 
distance to be covered during the rides; we were unable to find locally a 
realistic zero-emissions (i.e., electric) car with the required range. iii) 
Unplanned and indefinite road closures led to occasional changes of the 
study route and necessitated manual navigation. iv) Results presented 
here correspond to non-criteria pollutants; monitoring of criteria pol
lutants could be of greater interest to policymakers. 
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