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U.S. Ambient Air Monitoring Network Has Inadequate Coverage
under New PM, ; Standard
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EPA monitoring misses many regions exceeding new PM, , standard
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ABSTRACT: The Clean Air Act (CAA) in the United States relies heavily on regulatory monitoring networks, yet monitoring sites
are sparsely located, especially among historically disadvantaged communities. For ambient fine particulate matter (PM,;), we
compare the air quality monitoring data with spatially complete concentrations derived from empirical models to quantify the gaps in
existing U.S. monitoring networks in capturing concentration hotspots and exposure disparities. Recently, the U.S. Environmental
Protection Agency adopted a more stringent annual-average air quality standard for PM, 5 (9 ug/m®). Here, we demonstrate that
44% of urban areas exceeding this new standard—encompassing ~20 million people—would remain undetected because of gaps in
the current PM, g monitoring network. Crucially, we find that “uncaptured” hotspots, which contain 2.8 million people in census
tracts that are misclassified as in attainment of the new PM, s standard, have substantially higher percentages of minority populations
(i.e, people of color, disadvantaged communities, and low-income populations) compared with the overall U.S. population. To
address these gaps, we highlight 10 priority locations that could reduce the population in the uncaptured hotspots by 67%. Overall,
our findings highlight the urgent need to address gaps in the existing monitoring network.

KEYWORDS: PM,;, Clean Air Act, air quality monitoring, environmental justice, NAAQS

H INTRODUCTION network is sparsely located across the U.S., often missing
localized concentration variations'”'" and causing millions of
high-exposure populations to be undetected and unprotected
by the monitors.'*~"*

Moreover, there are disproportionately fewer monitoring
sites in communities with higher shares of POC and low-
income people.'*™"” While new measurement approaches such
as low-cost sensors and mobile monitoring have made denser
monitoring networks and high-resolution concentration
surfaces feasible," ™" such data are still unevenly distributed
among those communities”>>* and have not been incorpo-
rated in the NAAQS nonattainment process.

Ambient air pollution causes hundreds of billions of dollars in
health damages per year in the United States, driven principally
by the health effects of fine particulate matter (PM, ). These
exposures and health burdens disproportionately affect people
of color (POC) and low-income populations.' > The U.S.
Environmental Protection Agency (EPA), implementing the
Clean Air Act (CAA) over the past five decades, has
dramatically reduced exposures to criteria air pollutants for
hundreds of millions of Americans, yielding enormous health
benefits.* Nonetheless, we do not all breathe the same air, and
major disparities in exposure remain,”* "

The CAA relies on the State and Local Air Monitoring
Stations (SLAMS) network for determining hotspots and Received: July 23, 2024
background concentrations, the health and welfare impacts of Revised:  October 4, 2024
air pollution, and compliance with the National Ambient Air Accepted:  October 4, 2024
Quality Standards (NAAQS) (see Supporting Information Published: October 15, 2024
[SI], Section 1).” However, due to the high capital and
operational cost of monitoring stations, the existing SLAMS
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Monitoring status of CBSAs exceeding hypothetical PM,  standards
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Figure 1. Core-based statistical areas (CBSAs) that exceed a hypothetical PM, ¢ standard, classified by monitoring status. Here, we consider only
those CBSAs with three or more census tracts that have modeled PM, s exceeding a range of hypothetical PM, s standards, which we thereby
consider to be in nonattainment. We classify the (a) number and (b) percentage of CBSAs exceeding the PM, ; standard into three distinct groups.
In blue, we present “captured” CBSAs. These CBSAs are correctly identified as exceeding the standard by virtue of having monitors located in tracts
that exceed the standard. In orange, we present “uncaptured” CBSAs, which would be misclassified as in attainment based on present monitoring
locations. In these uncaptured CBSAs, the highest monitored tract does not exceed the standard, despite other unmonitored hotspot tracts
exceeding the standard. Finally, in red are CBSAs that exceed a given standard value and have no monitors at all. There are no red or orange bars in
(a) and (b) when the standard is set at 11 pg/m? as the highest concentrations in all nonattainment CBSAs fall between 11 and 12 pug/m’.
Therefore, with a standard of 11 pg/m? there are no “uncaptured” or “unmonitored” CBSAs (see Figure S8 for details). In (c), we illustrate the

geographic distribution of CBSAs for the new PM, s NAAQS of 9 pug/m’.

On February 7, 2024, the EPA revised the annual primary
standard for PM, s, from 12 to 9 /lg/ms.25 At present, the EPA
is modifying the PM, s monitoring network design to include
an environmental justice factor” and is distributing tens of
millions of dollars for enhancing monitoring in overburdened
communities.”*>” However, limited scientific knowledge exists
regarding 1) the effectiveness of the existing monitoring
network under the new standard and 2) how to address the
monitoring gaps. Here, we quantify gaps in the SLAMS
network’s ability to detect concentration hotspots under the
new PM,  standard, particularly for minority populations. We
also evaluate approaches for adding monitoring sites to address
these gaps. We find that the existing SLAMS are inadequate for
capturing concentration hotspots and disparities. Adding
monitors can improve the representation of concentration
hotspots but not concentration disparities. This study provides
the first quantification of the monitoring gaps under new and
future decreasing standards and informs policies for addressing
monitoring gaps.

B METHODS AND MATERIALS

Air Pollution Data and Attainment Status Definition.
The U.S. EPA uses ambient measurements from SLAMS to
determine whether a specific geographical area is in attainment
of the NAAQS. Attainment here is assessed for Core-Based
Statistical Areas (CBSAs), with each corresponding to one or
more adjoining counties that encompass a large urban area or
population nucleus. We employ CBSAs because they are
usually used for determining area-wide air quality levels and
planning new monitors (see SI Section S1).” There are 894
CBSAs in the contiguous U.S., home to 320 million people:
379 metropolitan statistical areas (MSAs; population >50,000)
and S15 micropolitan statistical areas (uSAs; population
10,000—49,999).

To investigate whether SLAMS are potentially missing areas
of elevated PM,; in excess of the NAAQS, we employ a
spatially complete data set of census-tract level PM,  estimates
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for the contiguous U.S. from the empirical model of the Center
for Air, Climate and Energy Solutions (CACES, www.caces.
us),”**” building on partial least-squares regressions with a
universal kriging framework. For the model years we consider
here (2017—2019), the predictions have high-fidelity to out-of-
sample validation measurements (R?: 0.77—0.83; standardized
root-mean-square error: 14%—16%).”” We compute three-year
averaged tract-level concentrations from the annual model
predictions to match the EPA’s design values (three-year
averaged measurements)>° and further reduce the influence of
model uncertainties and extreme events (see SI Section S2).

Next, we obtain the design values and geographical
coordinates of the 2017—2019 active PM, s monitoring sites
(n = 988) from the EPA’s Air Quality System and match them
with CACES predictions (Figure S1). To further validate the
empirical model, we checked if model predictions correctly
classify monitoring sites exceeding 9 ug/m® NAAQS (Figure
$2). The model’s low bias makes our conclusions slightly
conservative in identifying exceeding tracts. As sensitivity tests,
we separately employ years 2017, 2018, and 2019 from
CACES, and an alternative data set of remotely sensed 0.01° X
0.01;’I resolution (~1.1 km) PM, ¢ predictions (see SI Section
S2).°

For each CBSA, we compare PM, model predictions at
monitoring sites with PM, 5 distributions for all census tracts.
The EPA designates a CBSA as “nonattainment” if any SLAMS
monitors’ design values exceed the NAAQS. We adapt this by
defining nonattainment as having three or more tracts within a
CBSA exceeding the standard, allowing us to focus on areas
with elevated concentrations that likely affect thousands of
people, rather than small-location hotspots. As sensitivity tests,
we employ alternative nonattainment definitions (see SI
Section S2). Finally, we classify nonattainment CBSAs by
whether the PM, 5 estimates at monitoring locations exceed the
NAAQS (see Table S1). CBSAs are considered to be
“captured” if they are correctly identified as nonattainment
by monitoring locations and “uncaptured” if they are
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Figure 2. Tract-level racial-ethnic composition under different PM, ¢ exposure levels. Instead of considering the whole CBSAs (Figure 1), this
figure considers the census tracts themselves. If a high-exposure census tract (>9 ug/m®) is in the captured CBSAs (blue colors in Figure 1 c), then
the tract is defined as captured; otherwise, the high-exposure census tract is defined as uncaptured. Left panel: tract-level racial-ethnic composition
(White, Hispanic, Black, Asian, or Other; upper row) and concentration distribution (population-weighted; bottom row) across the concentration
range (3—15 ug/m®). The new standard (9 ug/m?®) is represented by black dashed lines. The uncaptured high-exposure tracts (>9 pg/m?) are
represented by the orange shadow (bottom-left panel). Right panel: racial-ethnic composition for (i) overall census tracts; (ii) census tracts with
concentrations <9 ug/m? (iii) census tracts with concentrations >9 yg/m? and located in nonattainment CBSAs that are captured by monitors
(blue color in Figure 1c); (iv) census tracts with concentrations >9 ug/m® and not in the captured nonattainment CBSAs. There are three reasons
for noncapturing: the census tracts are in nonattainment CBSAs that are uncaptured by monitors (orange and red colors in Figure 1c); the CBSAs
where the census tracts are located do not have three or more census tracts exceeding the standard; or the census tracts are rural tracts (not within
any CBSAs). The latter two reasons include high-exposure tracts that are not located in the blue, orange, or red CBSAs in Figure lc.

misclassified as in attainment by monitoring locations but have and low-income populations, minus the overall population-
other unmonitored hotspots exceeding the NAAQS. Uncap- average concentration. Disparities are calculated for all census
tured CBSAs are of special concern here. As another sensitivity tracts and tracts near monitors (n = 4360; defined here as
test, we evaluate nonattainment at the county level (see SI centroids within 1-km buffer of a monitoring site).

Section S2).

Demographic Data and Exposure Disparities. We B RESULTS AND DISCUSSION
consider three demographic groupings: (1) race/ethnicity, (2)

disadvantaged community (DAC) status, and (3) median The median number of PM, ; monitoring stations in an MSA is
household income, all determined by the census tract for 2020. 1 (uSA: 0) (population-weighted median: 5 [MSA], 1 [uSA];
The five racial-ethnic groups based on U.S. Census data are Figure S7). On average, there is one site per 250,000 people.
non-Hispanic White (58%; “White”), Latino or Hispanic For NAAQS attainment status, the results reveal that 89
(19%; “Hispanic”), non-Hispanic Black or African American CBSAs (total population: 107 million) exceed the new PM,
(12%; “Black”), non-Hispanic Asian and Pacific Islander (5%; standard (9 pg/m?) (Figure 1a). Among the nonattainment
“Asian”), and American Indian, another race, or multiracial CBSAs, 44% (n = 39; 20 million people) are not captured by
(3%; “Other”). All except non-Hispanic White are grouped as monitoring (Figure 1b and Figure S8), because the CBSA has
People of Color (POC). either no monitoring stations or the existing locations fail to
Second, DACs are defined by combining six publicly capture the concentration hotspots (see Figure S9 for case
available national screening tools from the federal government studies). Most uncaptured nonattainment CBSAs are in the
(SI Section S3; Table S2). We identify a census tract as DAC if Midwest and the South (Figure Ic). The estimations of
it surpasses the specified thresholds by three or more tools monitoring gaps are robust considering model errors, using
(~25% of the total U.S. population; Figures S3—S6). The alternative nonattainment definitions, separate years, alter-
reasons for combining six tools are to avoid the ineffectiveness native concentration data, and at the county level (see SI
or uncertainty in any single tool*” and to highlight locations of Section S2; Figures S10—S13; Table S3). Under future
highest concern or federal funding. decreasing standards (e.g., to the World Health Organization
Third, median household income is from the 2020 American guideline, 5 pg/m?®), ~60% of nonattainment CBSAs would

Community Survey. We classify income into tertiles: high (> not be captured by existing monitors (Figure 1b).
$76,164), middle ($51,168—$76,164), and low (<$51,168). Considering only the census tracts exceeding 9 yug/m® PM, ¢
We calculate PM, 5 exposure disparities by race/ethnicity, (i.e., only the tracts themselves, rather than the whole CBSAs;
DAC status, and household income, respectively, as the “hotspot” tracts), 44 million people (14% of the U.S.
population-weighted average concentration for POC, DAC, population) live in exceeding tracts, of which most (41
1222 https://doi.org/10.1021/acs.estlett.4c00605
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Figure 3. Representativeness of monitoring locations for exposure hotspots and exposure disparities by demographics. (A) Percentages of
population living in census tracts that are more polluted than the highest monitored tracts in each CBSA. Populations are grouped by race/
ethnicity, DAC status, and income levels. The box-and-whisker plots represent the 10th, 25th, 50th, 75th, and 90th percentiles, and the yellow circle
represents the population-weighted mean. (B) State-level racial/ethnic concentration (relative) disparities in PM, 5 for all census tracts and census
tracts around (within 1-km circular buffer) monitoring sites. (C) The difference in the two disparities was calculated as disparities for all census
tracts minus disparities for tracts around monitors. The purple colors indicate that the monitoring locations underestimate racial-ethnic disparities;
the green colors indicate that monitoring locations overestimate racial-ethnic disparities.

million) live in tracts captured by monitors, and the rest (2.8
million) live in tracts not captured by monitors (Figure 2 and
Figure S14). The average concentration in the captured
hotspots (10.2 pg/m?) is higher than that in the uncaptured
hotspots (9.2 ug/m?*). Crucially, both captured and uncaptured
hotspots contain higher percentages of POC (68% and 50%,
respectively) compared to the overall population (42%)
(Figure 2). Those hotspots also contain higher percentages
of DAC (42% and 41%) and low-income populations (28%
and 39%) than the overall population (25% [DAC]; 28% [low-
income]; Figures S15—S16). Minority population percentages
in the uncaptured hotspots are higher than the state averages in
most states (Figure S17). This suggests that the existing
monitors are insufficient to identify concentration hotspots,
disproportionately impacting minority populations. According
to the Code of Federal Regulations,” regulatory monitors
primarily focus on area-wide air quality, not concentration
hotspots. However, the EPA is planning new monitors in at-
risk communities, including minority communities, to capture
source impacts (SI Section S1). Our results indicate that new
monitors are essential for detecting hotspots in those
communities.

We also examine whether monitoring locations represent
exposure hotspots, average exposure levels, and disparities by
demographic group. On average, 23% of the overall population
lives in census tracts with higher concentrations than the
highest monitored concentrations in the CBSAs. However, for
POC, DAC, and low-income populations, the numbers are
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32%, 39%, and 36%, respectively, indicating that monitoring is
less representative of the upper bounds of the population-
concentration distributions for these minority groups (Figure
3a). Comparing the concentration disparities for all census
tracts and tracts around monitors, monitored locations
underestimate state-level disparities in most states (Figure
3b—c, Figures S18—S19). For example, the national racial-
ethnic relative disparity of the PM, 5 concentration is 6.1% for
all tracts; the relative disparity for tracts around monitors is
only 4.3% (a 30% underestimation).

Lastly, we examine approaches for addressing these
monitoring gaps and disparities (see SI Section S4), consistent
with recent federal and state legislation supporting enhanced
monitoring for DACs.””** Here, we present an approach for
prioritizing new monitor locations, following a simple scheme
that identifies optimal census tracts for monitoring based on
the size of the additional population in census tracts that would
be newly captured (i.e., correctly reclassified as nonattainment)
through the addition of a marginal monitoring site (see SI for
full details). Our results imply that adding only 10 new
monitor locations could reduce the population in the
uncaptured hotspots by 67% (from 2.8 million to 0.9 million;
Figure 4). This approach would reduce the percentage of POC
population in uncaptured hotspots by 20% (from 50% to 40%;
Figure S20), but would provide less benefit to DAC and low-
income populations (see Figures S20—S22 for other
approaches, which might better target those subpopulations).
Nonetheless, although adding a small number of targeted
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Figure 4. Number of the remaining population residing in high
concentration census tracts that are not captured by monitors (total =
2.8 million people). By selecting the first 10 CBSAs with the highest
number of people residing in uncaptured census tracts (10 red
locations), and adding one additional appropriately sited monitor to
each CBSA, the population remaining in uncaptured hotspots would
be reduced by 67% to 0.9 million people. The addition of these
monitors would result in each of these 10 CBSAs (total population =
13 million) being classified as in nonattainment of the new PM,
NAAQS based on the 2017—2019 design values. Note that after all
hotspots in the CBSAs are captured, there remains a nonurban high-
exposure population of ~0.2 million people that is located outside of
the CBSAs.

monitor locations could sharply reduce the number of people
“uncaptured” by the existing monitoring network, it would not
meaningfully improve the ability of the SLAMS to characterize
nationwide PM,; disparities (Figure S23). To accurately
evaluate exposure disparities, other methods or tools (instead
of regulatory monitoring) with much finer spatial resolution
are likely needed.

Implications for Future Policy. Our study comprehen-
sively quantifies gaps and disparities in the existing regulatory
monitoring network, revealing the following key points. First,
the existing SLAMS regulatory monitoring network fails to
capture 44% of nonattainment CBSA under the new PM,
NAAQS, providing inadequate protection to tens of millions of
highly exposed people. These uncaptured populations are
higher than previously documented under the old PM,;
standards,>~"* highlighting the urgent need for additional
monitors to implement the new standard effectively.

Second, the existing monitoring network has disproportion-
ately less coverage among the high-exposure minority
populations.'*™"” Those populations are already more
vulnerable and sensitive to the health effects from air
pollution.*>*® Our findings indicate that adding a small
number of additional monitors can noticeably reduce the
number of unmonitored exceeding locations; that step will
benefit the overall population and help reduce injustice via
state implementation plans.

Third, the monitoring stations underestimate exposure
disparities. Unfortunately, adding a moderate number of
monitors would be ineffective at addressing this gap (Figure
S23). Indeed, since em})irical models may underestimate
hotspot concentrations,””” the true underestimation in
disparities by the monitoring networks is likely to be even
greater than is estimated here. Our results imply that other
technologies and tools with higher spatial resolution, such as
mobile monitoring,”’~*° well-calibrated low-cost or portable

22-24,41—44 . 45—49 .
sensors, and satellite-based models,™ could aid
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in representing exposure hotspots and disparities. Those tools
may also be useful for nonattainment designation. Thus, an
important open question is whether new data/tools need to be
incorporated into the CAA policies (e.g., for identifying at-risk
communities, planning new monitors, and determining attain-
ment/nonattainment status).

Our study informs the implementation of the new PM,
NAAQS, in terms of regulatory monitoring. Our findings reveal
that as the “umbrella” to protect the U.S. population the
existing PM, ; SLAMS network has consequential monitoring
gaps. Effective and straightforward solutions exist (i.e., adding a
small number of monitors) to address the monitoring gaps
identified here. Doing so would protect the overall population,
but would not substantially change the underestimation of
disparities by the monitoring network. Our results use 2017—
2019 data, while the EPA’s nonattainment designations will
rely on post-November 2024 measurements. However, air
quality trends have been broadly steady since 2016 (Figure
S24), suggesting that our findings offer insight into near-future
attainment status, though actual concentrations may differ.

Previous research indicated that simply tightening NAAQS
standards without targeting specific locations will not address
disparities.””> Therefore, improvement in monitoring net-
works, incorporation of other high-resolution tools, and more
effective location-based strategies are all urgently needed, in
addition to stricter NAAQS standards, to address exposure
disparities. Future studies could further investigate state-level
solutions for reducing pollution levels, eliminating disparities,
and designing monitoring networks to support both goals. Our
methodologies for investigating monitoring gaps may apply to
other pollutants (e.g., nitrogen dioxide).
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