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H I G H L I G H T S G R A P H I C A L  A B S T R A C T

• Observed indoor PM2.5 levels were 
comparable to, or even exceeded, out
door levels.

• Significant seasonal differences were 
observed in both indoor and outdoor 
PM2.5 levels.

• Infiltration factors derived in Dhaka are 
generally higher than those reported in 
the US or Europe.

• Locally derived scientific evidence can 
help persuade policymakers toward a 
science- and data-driven approach to air 
quality mitigation.

A B S T R A C T

We collected simultaneous indoor and outdoor PM2.5 measurements from 17 homes in Dhaka, Bangladesh, to characterize spatio-temporal variations and identify 
factors influencing indoor and outdoor PM2.5 levels. A pair of PurpleAir PM2.5 sensors were deployed at each home, one indoors and the other outdoors, during the 
wet and dry seasons, and the locally calibrated data were used for analysis. Indoor and outdoor PM2.5 levels were three times higher during the dry season (indoor 
146 ± 22 μg/m³, outdoor 153 ± 23 μg/m³) than during the wet season (indoor 52 ± 12 μg/m³, outdoor 50 ± 11 μg/m³). Indoor to outdoor (I/O) ratios were close to 
1 in both seasons (dry: 0.97 ± 0.14, wet: 1.05 ± 0.19). This suggests that regional background pollution levels significantly influence indoor levels observed in 
different households. Infiltration factors closer to 1 (dry: 0.83 ± 0.12; wet: 0.87 ± 0.14), determined through mixed-effects regression of indoor and outdoor time 
series data, further highlight the substantial impact of outdoor pollution on indoor levels. Data from individual households exhibited strong temporal correlation 
between indoor and outdoor levels in both seasons (Pearson R: 0.82 ± 0.12 during the dry season and 0.83 ± 0.14 during the wet season), whereas indoor-outdoor 
spatial correlations across measured households were moderate (R: 0.49 and 0.62 during dry and wet seasons, respectively). These spatial correlations and empirical 

* Corresponding author. Department of Civil Engineering, Bangladesh University of Engineering and Technology, Polashi, Dhaka, 1000, Bangladesh.
E-mail addresses: provat@ce.buet.ac.bd, sahaprovat@gmail.com (P.K. Saha). 

Contents lists available at ScienceDirect

Atmospheric Environment

journal homepage: www.elsevier.com/locate/atmosenv

https://doi.org/10.1016/j.atmosenv.2024.120945
Received 3 August 2024; Received in revised form 15 November 2024; Accepted 20 November 2024  

Atmospheric Environment 342 (2025) 120945 

Available online 21 November 2024 
1352-2310/© 2024 Elsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies. 

mailto:provat@ce.buet.ac.bd
mailto:sahaprovat@gmail.com
www.sciencedirect.com/science/journal/13522310
https://www.elsevier.com/locate/atmosenv
https://doi.org/10.1016/j.atmosenv.2024.120945
https://doi.org/10.1016/j.atmosenv.2024.120945


regression modeling suggest that while the spatial variation of outdoor PM2.5 levels significantly influences indoor levels’ spatial variation, other factors such as 
indoor source activities and ventilation-related features play crucial roles in explaining variabilities in indoor PM2.5 across homes. Overall, our study suggests that 
indoor environments in Dhaka city are nearly as polluted as outdoor settings, and this locally derived scientific evidence can be valuable for enhancing public 
awareness and developing mitigation measures to reduce PM2.5 exposures in Bangladesh.

1. Introduction

Fine particulate matter (PM2.5), consisting of airborne particles with 
diameters below 2.5 μm, originates from various sources and poses 
substantial health risks to humans(Burnett et al., 2018; Dockery et al., 
1993; Pope et al., 2019). Individual daily exposures to PM2.5 are influ
enced by numerous factors, including time spent in different indoor and 
outdoor environments, weather conditions, indoor sources, infiltration 
of outdoor pollution into indoor settings, and ventilation systems 
(Adgate et al., 2007; Hänninen et al., 2011; MacNeill et al., 2012). 
Regional and local outdoor pollution can significantly elevate indoor 
PM2.5 levels through infiltration, while indoor sources, like cooking and 
cleaning, contribute to indoor and outdoor PM2.5 levels (Adgate et al., 
2007; Hänninen et al., 2011; Li et al., 2017; MacNeill et al., 2012; 
Massey et al., 2009).

Effective air quality management necessitates a comprehensive un
derstanding of PM2.5 sources, dynamics, and population exposure in 
both indoor and outdoor settings (Li et al., 2017; Martins and Carrilho da 
Graça, 2018; Sokhi et al., 2022). However, understanding PM2.5 sources 
and exposure in many developing countries is largely impeded by a lack 
of monitoring data, particularly in South Asian countries (Abdul Jabbar 
et al., 2022; Gulia et al., 2015; Schwela et al., 2006). These countries are 
ranked as global hotspots of PM2.5, with thousands of premature deaths 
annually attributed to severe outdoor and indoor elevated levels of 
PM2.5 (Apte et al., 2015; Burnett et al., 2018; World Bank, 2023). 
Bangladesh, with its population of 170 million, is one such country 
where the annual mean outdoor PM2.5 levels range from 80 to 100 μg 
m− 3 (Salam et al., 2008; World Bank, 2023), which is about 15–20 times 
higher than the recent standard set by the World Health Organization 
(WHO) (World Health Organization, 2021).

Past studies in Bangladesh, employing limited ground monitoring 
data, satellite data, and modeling analysis, indicate significantly higher 
PM2.5 concentrations across the country with distinct seasonal patterns; 
concentrations are 2–6 times higher in dry seasons compared to wet 
seasons (Begum and Hopke, 2018; Rahman et al., 2019). Seasonal 
sources, meteorology, and transboundary pollution play a pivotal role in 
determining PM2.5 population exposure in Bangladesh (Afrin et al., 
2021; Begum et al., 2011, 2013; Begum and Hopke, 2018; Rana and 
Khan, 2020; Salam et al., 2008; World Bank, 2023). PM2.5 concentration 
gradients are observed across the country, with higher levels in the 
central and northwest regions and relatively lower levels in the south
east part of the country, likely influenced by strong transboundary air 
pollution effects from Indian states in the Indo-Gangetic Plain (IGP) 
region (Du et al., 2020; Islam et al., 2019; World Bank, 2023; Zaman 
et al., 2021).

Short-term air quality monitoring using handheld monitors has been 
employed in previous studies in Bangladesh to assess air pollution ex
posures in various micro-environments, including households in rural 
and urban areas (Begum et al., 2009; Gurley et al., 2013), the outdoor 
urban environment (Kamal et al., 2024), locations near brick kilns 
(Brooks et al., 2023; Haque et al., 2018), and schools (Roy et al., 2023). 
A study by Gurley et al. (2013) in a low-income community in Dhaka, 
Bangladesh, reported a substantial fraction of hours in a day with indoor 
PM2.5 concentrations exceeding 100 μg/m³. These studies provide in
sights into substantial variabilities in PM2.5 exposures across 
micro-environments. However, they often lacked repeated sample col
lections, limiting their effectiveness in capturing spatio-temporal dy
namics (Blanco et al., 2023; Li et al., 2019; Saha et al., 2019). Systematic 
repeated short-term sampling across multiple seasons at 35 locations in 

Dhaka city, Bangladesh, revealed a moderate intra-urban spatial 
gradient for PM2.5 and a large gradient for ultrafine particle number 
concentration (PNC) (Saha et al., 2024).

The majority of past studies in Bangladesh focus on characterizing 
PM2.5 exposures in outdoor microenvironments; thus, the scarcity of 
indoor air pollution monitoring data is more severe (Gautam et al., 
2016; Junaid et al., 2018; Kumar et al., 2018; World Bank, 2023). 
However, many past studies around the world suggest that PM2.5 con
centration levels in indoor environments could also be significantly 
high, contingent upon indoor and outdoor sources, ventilation and 
building systems, geographic locations, people’s behaviors, and various 
other factors (Adgate et al., 2007; Bi et al., 2021; Cao et al., 2012; 
Challoner and Gill, 2014; Korhonen et al., 2021; MacNeill et al., 2012; 
Massey et al., 2009). Understanding the indoor-outdoor relationship of 
PM2.5 is important for developing evidence-based mitigation measures. 
Nonetheless, the relationship between indoor and outdoor PM2.5 levels 
and their spatio-temporal variations remains largely unexplored in 
Bangladesh. The high capital cost of traditional air quality monitoring at 
higher temporal and spatial resolutions largely hinders high 
spatio-temporal measurements in Bangladesh.

Recent advancements in low-cost sensor technology offer a more 
affordable means of air quality monitoring with higher temporal and 
spatial resolutions, enabling continuous measurements and broader 
coverage across a city (Liu et al., 2020; Morawska et al., 2019). Never
theless, proper calibration against reference monitors and careful data 
interpretation are essential to ensure the accuracy of low-cost sensor 
measurements (Giordano et al., 2021; Karagulian et al., 2019; Malings 
et al., 2020). Leveraging low-cost sensors presents an opportunity to 
address significant data gaps, particularly in exploring within-city var
iations in indoor and outdoor PM2.5 exposures in Bangladesh.

To address these gaps, our study implemented locally calibrated low- 
cost sensors to investigate indoor and outdoor PM2.5 exposures in 
various households in Dhaka, Bangladesh. We collected parallel mea
surements of indoor and outdoor PM2.5 at 17 homes in Dhaka city by 
deploying a pair of PurpleAir low-cost PM2.5 sensors (Barkjohn et al., 
2021; Stavroulas et al., 2020) at each home, one positioned indoors and 
another outdoors, and collected data across multiple seasons. Analyzing 
this dataset, we characterized the spatial and temporal dynamics of in
door and outdoor PM2.5 concentrations across diverse households, 
elucidated the interplay between indoor and outdoor PM2.5 levels, and 
identified key factors influencing these relationships.

2. Methods

2.1. Sampling homes

Fig. 1A shows the locations of the 17 sampled homes within Dhaka 
city. These selected sites represent a diverse range of land-use charac
teristics, including major road density, restaurant density, and popula
tion density around each location, as illustrated in Fig. 1B. Following the 
method of Bari et al. (2015), before initiating air pollution data collec
tion, we conducted a questionnaire survey to gather information about 
indoor and outdoor characteristics of the sampled homes, with a focus 
on kitchen features, cooking practices, ventilation arrangements, and 
surrounding land use. Table S1 summarizes these indoor and outdoor 
features in the sampled homes.

All selected homes were apartment units, situated on floors ranging 
from the 1st to the 6th in different buildings. Apartments were selected 
as they represent the predominant residential housing option in Dhaka 
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city (Bproperty, 2018). These homes were located within 50–500 meters 
of arterial roads and bus routes, with apartment sizes ranging between 
850 and 3400 square feet (mean 1685 square feet). The number of 
windows in the apartment units varied between 3 and 11 (mean 5.4), 
and the number of occupants ranged from 1 to 6 (mean 4.2).

Natural ventilation served as the primary air exchange mechanism in 
the selected homes. Most homes had window-type air conditioning 
units, particularly in the bedrooms; none were equipped with central air 
conditioning or mechanical ventilation systems, nor did they possess air 
purifying units. These features reflect typical residential scenarios in 
Dhaka city.

None of the selected homes used solid biomass-based cook stoves. 
Kitchens were equipped with either gas stoves or electric stoves, and the 
presence of exhaust fans in the kitchen, with or without hoods, was 
common in all sampled homes. A subset of homes (5 out of 17) was 
equipped with kitchen hoods. The frequency of cooking per day varied 
between 1 and 3 (mean 2.1), with a daily cooking duration ranging from 
1 to 4 h (mean 2.8 h), primarily involving frying and boiling. Among the 
17 homes studied, 7 were inhabited by primary smokers, and 3 homes 
reported occasional use of mosquito coils.

2.2. Measurements of indoor and outdoor PM2.5 in different homes

PM2.5 data were collected in various homes across two distinct sea
sons: wet (June to August 2021; “summer”) and dry (December 2021 to 
February 2022; “winter”), with approximately one week of continuous 
measurement at each home during each season. While 17 homes 
participated in the study, 2 homes did not participate in the wet season, 
and another two homes did not participate in the dry season, resulting in 
data from both seasons being available for 13 homes.

A pair of PurpleAir PM2.5 sensors was deployed at each home, with 
one sensor placed indoors and another outdoors within the same 
apartment. This setup enabled simultaneous measurement of indoor and 
outdoor PM2.5 concentration levels at each selected home, capturing 
dynamic variations in pollution levels inside and outside the home. The 
indoor sensors were positioned either in the bedroom or living room of 
each home at a height of approximately 5 feet from the floor, while the 
outdoor sensors were primarily placed on balconies at a similar height. 

Careful consideration was given to the placement of outdoor sensors to 
avoid close proximity to kitchen exhausts.

Four PurpleAir sensors (PurpleAir Classic Air Monitor, Edition: PA-II- 
SD) were available, enabling simultaneous measurements in two homes 
at a time. Each home was monitored for approximately one week per 
season, resulting in around 5000 2-min raw PurpleAir observations per 
home per season, and approximately 10,000 raw data points per home 
across both seasons. The overall data collection period per season was 
about 10–12 weeks to cover all participating homes. <Total number of 
household-days of paired indoor-outdoor measurements.>

PurpleAir devices use Plantower sensors to optically detect PM2.5. 
Each PurpleAir unit contains two Plantower PMS5003 sensors that 
alternate operation every 10 s to provide 2-min averaged data (Sayahi 
et al., 2019). The Plantower sensors detect 90◦ light scattering using a 
laser (wavelength: 680 ± 10 nm). The effective measurement range for 
PM2.5 concentration with each PMS5003 sensor is 0–500 μg/m³, with a 
detection limit of 1 μg/m³. The sensors quantify particle number con
centrations across various PM fractions, with internal calibrations con
verting particle counts into PM mass concentrations. Each PurpleAir unit 
also contains sensors for temperature, relative humidity, and barometric 
pressure to provide basic weather data. The PurpleAir PM2.5 sensors 
deployed in each home recorded data on SD cards at 2-min intervals.

2.3. Long-term continuous outdoor PM2.5 measurements

In addition to measuring indoor and outdoor PM2.5 at various homes, 
we analyzed outdoor PM2.5 data from two continuous air monitoring 
stations (CAMS) in Dhaka city. The locations of these two stations are 
depicted in Fig. 1A. One station is operated by the Department of 
Environment (DoE), Bangladesh (DoE CAMS), while the other is situated 
inside the US Embassy Dhaka (USE CAMS). Each station employs a 
MetOne BAM-1020 to measure hourly PM2.5, a real-time monitoring 
method compliant with the US-EPA federal equivalent method (FEM). 
Analyzing data from these CAMS stations allowed us to compare them 
with measurements from different homes, deriving co-location calibra
tion factors for PurpleAir Sensors (section 2.4.2) and temporal adjust
ment factors for relatively short-term measurement at different homes 
(section 2.4.3).

Fig. 1. Location of measurement sites and surrounding outdoor land use features. (A) The map displays the locations of selected homes for indoor and outdoor PM2.5 
measurements. Red symbols indicate locations where measurements were collected during both dry and wet seasons (S1 to S13), while black symbols represent sites 
where measurements from only one season were feasible (S14 to S17). Additionally, the map indicates the positions of two continuous air monitoring stations 
(CAMS) within Dhaka city. (B) The distribution of outdoor land use features surrounding the measurement locations, including major road (4 lanes and above) 
density, restaurant density, and population density within a 1 km buffer radius from each measurement site.
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2.4. Data analysis and quality assurance

2.4.1. Analyzing PurpleAir PM2.5 data
The raw PurpleAir PM2.5 data collected at different homes under

went meticulous quality assessment, involving visual inspection of raw 
time series data and the exclusion of any outliers or suspicious data 
points. Concentration values greater than 500 μg/m³ or less than 1 μg/ 
m³ are considered outliers. Each PurpleAir unit has two identical 
planttower sensors, and in the majority of cases, the data from both 
sensors showed congruence within a ±10% margin. Only a marginal less 
than 2% of the data deviated from this threshold and were subsequently 
excluded from the analysis. For data that agreed within the ±10% 
margin, the average of PM2.5 measurements from both sensors were 
calculated at a 2-min resolution. Subsequently, hourly averages were 
estimated using this 2-min time resolution data.

PurpleAir unit reports two different PM2.5 values (PM2.5_cf_1 and 
PM2.5_cf_atm) using separate internal calibration factors (Barkjohn 
et al., 2021; Bi et al., 2022; Stavroulas et al., 2020). While these two 
values were highly correlated, the absolute magnitudes of PM2.5_cf_1 
were consistently higher than PM2.5_cf_atm. For our analysis, we used 
raw PM2.5_cf_atm values and corrected them using co-location calibra
tion factors against a reference PM2.5 monitor.

We applied two adjustment factors to hourly average raw PM2.5 
measurements from various homes: one for co-location calibration 
against a reference monitor (Malings et al., 2020) (section 2.4.2) and 
another for temporal adjustment for short-term sampling (Eeftens et al., 
2015) (section 2.4.3). Then, using these corrected hourly time series 
data, we investigated variability in indoor and outdoor PM2.5 concen
tration levels, as well as the ratio of indoor to outdoor (I/O) concen
trations across different homes, seasons, and times of day. The 
indoor-to-outdoor (I/O) concentration ratio is a commonly employed 
technique to assess the influence of outdoor pollution on indoor con
centration levels (Chen and Zhao, 2011).

To examine the meteorological conditions during measurements 
collected in different homes, we also analyzed temperature and relative 
humidity data from PurpleAir sensors. A summary of the mean meteo
rological conditions (temperature and relative humidity) during mea
surements at various homes is provided in Table S2. Across all sampling 
homes, the mean ± standard deviation (SD) of outdoor temperature and 
relative humidity during the dry (winter) season were 26.3 ± 3.1 ◦C and 
46.7 ± 6.6%, respectively, while during the wet (summer) season, they 
were 33.7 ± 1 ◦C and 57.5 ± 4.3%, respectively. Indoor temperature 
and relative humidity were within ±10% of outdoor conditions in both 
seasons.

2.4.2. Co-location calibration of PurpleAir PM2.5 sensors
To develop calibration factors under local meteorological and 

pollution conditions for the PurpleAir sensors used in this study, we 
conducted co-location calibration experiments of all sensors used for 
home samplings against the BAM at the DoE CAMS station. Colocation 
experiments were conducted over two seasons, wet (April–May 2022) 
and dry (November 2022), with approximately a month-long data 
collection period in each season.

The collocation dataset was used to derive correction factors through 
regression analysis (Barkjohn et al., 2021; Malings et al., 2020). Collo
cated measurements from various sensors exhibited strong consistency, 
with Pearson correlation coefficients (R) ranging from 0.99 to 1 across 
sensor batches (Fig. S1). Therefore, regression models were developed 
by combining data from all sensors, although separate calibration 
models were derived for each season. Details regarding colocation data 
collection, linear regression fittings, derived coefficients, and model 
performances are illustrated in Fig. S1. Linear regression models pro
duced R2 values of 0.87 in the dry season and 0.83 in the wet season, 
with corresponding normalized root mean square errors (nRMSE) of 
14% and 17%, respectively, for the dry and wet seasons.

In addition to the simple linear regression model, we explored 

multiple linear regression models (Malings et al., 2020) that included 
temperature, relative humidity, dew points, and various interaction 
terms of these meteorological variables (Table S3). However, these 
models did not significantly enhance model performance, resulting in a 
reduction of nRMSE by less than 1%. Therefore, for the purpose of 
applying correction, we applied the season-specific simple linear 
regression model (corrected PM2.5 = slope × PurpleAir Measured PM2.5 
+ intercept) to adjust hourly time series data collected in different 
homes. The same factor was employed to correct both indoor and out
door data.

2.4.3. Adjustment for temporal variability
As simultaneous measurement at all homes was not feasible due to 

the limited number of available sensors, we adopted a rotating 
approach, conducting one week of data collection at each home over a 
10–12 week campaign in a season. This posed a challenge for direct 
comparison of variability in measured concentrations across different 
homes. The observed variability could arise from spatial differences in 
measured concentrations in different homes as well as week-to-week 
temporal fluctuations of city background PM2.5 levels. Week-to-week 
temporal variations of city background PM2.5 levels are expected to be 
nearly uniform across the city since they are largely dictated by mete
orological phenomena (such as atmospheric inversion and long-range 
transported pollution), which affect all sites across the city similarly. 
Our analysis of data from two CAMS sites within Dhaka city supports 
this, where we found that the ratio of weekly mean to long-term seasonal 
mean at each site follows almost a similar trend (Fig. S2).

To account for temporal variations, we applied a temporal adjust
ment factor to the measurement from each home based on long-term 
continuous measurements at a reference site (i.e., CAMS site in the US 
Embassy, Dhaka). There are two commonly used methods for temporal 
adjustment used in past studies: the difference method (Klompmaker 
et al., 2015) and the ratio method (Eeftens et al., 2015). Both methods 
rely on adjusting the spatially and temporally distributed measurements 
with data collected at the central reference site. We adopted the ratio 
method for our analysis. Following the method of Eeftens et al. (2015), 
we calculated temporally corrected concentrations for site i by multi
plying the uncorrected concentration at site i in period t by the ratio 
between the long-term concentration measured at the reference site 
(over 10–12 weeks, encompassing the data collection period at all 
homes in a season), and the concentration measured at that same 
reference site during period t (typically 1 week at each season); Ci,t,corr =

(Cref, long-term/Cref, t) × Ci,t,un_corr.
An example of the derivation of such temporal correction factors is 

provided in Fig. S3. We derived correction factors as a function of the 
hour of the day by comparing the long-term average diurnal profile to 
the short-term average diurnal profile at the CAMS location. We esti
mated such factors for the measurement period at each different home 
and each season. Then, we applied these factors to measured concen
trations from each home as a function of the hour so that if we used the 
corrected hourly time series to estimate mean concentrations at each 
home, the resulting mean concentration should give a quasi-long-term 
mean concentration.

Both BAM collocation correction factors and temporal adjustment 
factors were derived based on outdoor concentrations. When we applied 
these correction factors to correct data from different homes, we used 
the same factors for both indoor and outdoor measurements. We do not 
anticipate substantial bias from applying the same correction factors to 
both indoor and outdoor sensors. This is because indoor PM2.5 levels are 
largely influenced by outdoor levels, as suggested by the high correla
tion and similarity in diurnal and seasonal patterns observed in 
measured indoor and outdoor PM2.5 from different homes, as discussed 
in detail in the results sections. Moreover, in the absence of indoor- 
specific correction factors, which were not feasible for both BAM 
collocation and derivation of temporal adjustment factors, applying 
outdoor-derived factors allows us to correct the data using the best 
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available correction factors, thereby improving the quantitative assess
ment of the absolute value of PM2.5 concentrations. For relative 
assessment, such as the comparison of indoor/outdoor (I/O) ratio of 
PM2.5 in different homes, these correction factors do not make any 
difference.

2.5. Analyzing relationships between indoor and outdoor PM2.5 levels

2.5.1. Temporal relationship
Utilizing corrected hourly time series data from each home, we 

investigated the temporal relationship between indoor and outdoor 
PM2.5 levels measured in different homes and seasons using the Pearson 
correlation coefficients. Furthermore, we applied a statistical regression 
technique called mixed-effects regression (Harrison et al., 2018) to 
quantify the infiltration factor of outdoor pollution indoors.

The mixed-effects regression analysis, as employed in previous 
indoor-outdoor air pollution studies (Bi et al., 2021; Chen and Zhao, 
2011; Lunderberg et al., 2023; Wallace et al., 2022), involves fitting 
timeseries of indoor and outdoor concentrations to a linear regression 
equation (y = mx + c; where y represents indoor concentration, x de
notes outdoor concentrations, m indicates the slope, and c indicates the 
intercept). However, unlike simple linear regression, mixed-effects 
regression allows for variation in both the slope and intercept of the 
regression relationship. This analysis is conducted separately for each 
home and each season. Regression is carried out using the ’lmer’ func
tion of the ’lme4’ package in the R programming language.

The coefficients obtained from mixed-effect regression analysis can 
provide valuable insights. In prior studies (Bi et al., 2021; Chen and 
Zhao, 2011; Lunderberg et al., 2023; Wallace et al., 2022), the slope is 
typically interpreted as the infiltration factor of outdoor pollution (the 
proportion of outdoor pollution infiltrated indoors), while the intercept 
signifies the contribution of indoor sources to indoor PM2.5 levels.

In our analysis, we allowed both the slope and intercept of the 
regression to vary based on the time of day. This approach aimed to 
capture real-world dynamics, where indoor-generated levels fluctuate 
with indoor activities such as cooking and cleaning. Similarly, the 
infiltration of outdoor pollution may vary throughout the day due to 
changes in ventilation settings (typically, windows remain open during 
the daytime and closed at night), fluctuations in outdoor concentration 
levels due to meteorological factors (such as changes in mixing height), 
and variations in local outdoor source strength (such as traffic during 
rush hours).

2.5.2. Spatial relationship
Using mean PM2.5 concentrations from each measured home, we 

examined the spatial relationship between indoor and outdoor PM2.5 
levels measured across diverse homes using the Pearson correlation 
coefficient. To explore the factors influencing spatial variability, we 
conducted univariate and multivariate regression analyses with indoor 
and outdoor PM2.5 levels and various indoor and outdoor physical fea
tures at measurement locations. Various physical features used in 
regression analysis were collected during a baseline questionnaire sur
vey at the selected homes (Table S1). These include apartment size, 
number of windows, cooking habits, and kitchen features (cooking 
duration, presence of exhaust fan, kitchen hood), as well as other indoor 
sources such as the use of mosquito coils and presence of smokers in the 
apartment. The analysis is conducted using season-specific mean PM2.5 
values as well as the overall mean PM2.5 from both seasons.

The goal of the multiple linear regression analysis was to identify 
important features and develop a model that explains the spatial vari
ability for indoor PM2.5. This model development process resembled that 
of empirical land-use regression models (Hoek et al., 2011; Saha et al., 
2019), where measured concentrations and land-use covariates are 
regressed to establish a statistical relationship. We used various indoor 
features (Table S1) and mean outdoor PM2.5 from measured homes as 
potential covariates.

For the multiple linear regression analysis, the selection of predictor 
variables among the available list of potential covariates followed a 
supervised stepwise regression approach (Eeftens et al., 2012; Saha 
et al., 2019). In this process, the model selects variables one at a time 
based on the adjusted R-squared (coefficient of determination) of uni
variate linear regressions, starting with the variable that provides the 
highest adjusted R-squared. The variable selection process continues 
until a newly added variable would improve the overall model adjusted 
R-squared by more than 1%. Variables with p-values (predictor signifi
cance) exceeding 0.1 were removed from the selected set. We employed 
a leave-one-out cross-validation approach to assess the model’s perfor
mance on unseen data. Model performance was evaluated using 
adjusted R-squared and root mean square error (RMSE) for both model 
development and cross-validation. The model development was imple
mented in the R programming language.

3. Results and discussion

3.1. Measured indoor and outdoor PM2.5 levels

Table 1 presents the mean indoor and outdoor PM2.5 concentrations 
and indoor-to-outdoor (I/O) ratios from individual homes, while Fig. 2
illustrates measurement variability. Data are shown separately for dry 
and wet seasons. In the dry season, across all sampled homes, the overall 
mean ± SD of indoor PM2.5 was 146 ± 22 μg/m³, outdoor 153 ± 23 μg/ 
m³, and the I/O ratio 0.97 ± 0.14. In the wet season, indoor levels were 
52 ± 12 μg/m³, outdoor 50 ± 11 μg/m³, and the I/O ratio 1.05 ± 0.19. 
Both indoor and outdoor levels were approximately three times higher 
during dry seasons compared to the wet season, while the I/O ratios 
remained similar. Mean PM2.5 levels from two outdoor CAMS mea
surements were 162 μg/m³ and 50 μg/m³ during the dry and wet sea
sons, respectively, also showing about a threefold seasonal difference.

Large seasonal differences were consistently observed in all mea
surement locations, including indoor and outdoor levels of sampled 
homes and outdoor CAMS locations. This indicates that the large sea
sonal differences are due to variations in regional background pollution 
levels between seasons. While there are variations between indoor and 
outdoor levels within specific homes and between homes during a 
particular season, these differences are relatively smaller (vary between 
10 and 30%) compared to differences between seasons, which are 
approximately a factor of three.

In Bangladesh, substantial seasonal differences in PM2.5 levels are 
influenced by seasonal meteorology, transboundary pollution influx, 
and seasonal sources (Afrin et al., 2021; Begum et al., 2011; World Bank, 
2023; Zaman et al., 2021). During the dry season, factors contributing to 
higher concentrations include long-range transported pollution from 
neighboring countries, particularly driven by predominant winds from 
the Indian Indo-Gangetic Plain (IGP) states; seasonal sources such as 
solid biomass burning in brick kilns, construction activities; and mete
orological phenomena like reduced atmospheric mixing, less rainfall. On 
the other hand, heavy rainfall during the monsoon, along with a rela
tively lesser impact from long-range transport, driven by predominant 
winds from the Bay of Bengal, are likely important factors contributing 
to observed lower PM2.5 levels in the wet season.

Despite notable seasonal variations in PM2.5 concentrations, the I/O 
ratios of PM2.5 from each season were similar and closer to 1. This 
suggests that regional background air pollution levels have a large in
fluence on indoor pollution levels in different households. While there 
were home-to-home variations of measured I/O ratios, on average, these 
variations were relatively small and remained within ±15% of 1 in both 
seasons. This underscores that, regardless of seasons, the indoor envi
ronment of residential homes in Dhaka city is nearly as polluted as 
outdoor settings, with pollution levels in many homes surpassing out
door levels. Our observed PM2.5 I/O ratios of closer to 1 are consistent 
with findings from several past studies in India, China, and other regions 
(Cao et al., 2012; Chen and Zhao, 2011; Deng et al., 2017; Jones et al., 
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Table 1 
Summary of indoor and outdoor PM2.5 concentrations measured in individual homes during dry and wet seasons.

Site ID Dry (Winter) Seasona Wet (Summer) Seasona

Mean Indoor 
PM2.5 (μg 
m− 3)

Mean Outdoor 
PM2.5 (μg 
m− 3)

Ratio of Indoor 
to Outdoor 
PM2.5

Person R of 
Indoor 
-Outdoor PM2.5

Slope of indoor- 
outdoor 
regression

Intercept of 
indoor-outdoor 
regression

Mean Indoor 
PM2.5 (μg 
m− 3)

Mean Outdoor 
PM2.5 (μg 
m− 3)

Ratio of Indoor 
to Outdoor 
PM2.5

Person R of 
Indoor 
-Outdoor PM2.5

Slope of indoor- 
outdoor 
regression

Intercept of 
indoor-outdoor 
regression

S1 153 138 1.11 0.88 0.96 21.1 55 46 1.19 0.95 0.97 4.9
S2 189 174 1.09 0.69 0.75 59.6 38 30 1.26 0.76 0.95 9.7
S3 103 108 0.96 0.90 0.87 8.8 52 45 1.15 0.99 0.96 3.9
S4 159 146 1.09 0.65 0.79 42.6 69 63 1.1 0.92 0.95 8.6
S5 147 153 0.96 0.93 0.93 3.7 45 60 0.74 0.71 0.60 11.1
S6 181 183 0.99 0.62 0.86 24.6 56 49 1.15 0.68 0.92 8
S7 158 141 1.12 0.89 0.94 23.3 55 49 1.13 0.98 0.98 2.2
S8 126 140 0.91 0.94 0.89 2.5 47 56 0.84 0.98 0.81 1.1
S9 142 155 0.91 0.71 0.77 21.9 35 54 0.64 0.54 0.53 7.1
S10 139 162 0.86 0.90 0.75 21.9 45 42 1.05 0.99 0.97 3.4
S11 157 169 0.93 0.63 0.76 24.3 74 60 1.24 0.81 0.90 23
S12 132 184 0.72 0.93 0.61 19.6 51 45 1.13 0.74 0.94 3.6
S13 129 186 0.69 0.92 0.64 9.9 33 32 1.03 0.9 0.94 3.6
S14 – – – – – – 59 69 0.88 0.68 0.74 8.0
S15 – – – – – – 69 53 1.28 0.87 0.85 16.8
S16 143 140 1.03 0.88 0.98 2.5 – – – – – –
S17 128 120 1.11 0.85 0.96 12.5 – – – – – –
Outdoor CAMS
USE 161 – – – – – 49 – – – – –
DoE 163 – – – – – 52 – – – – –
Mean ± Standard Deviation (SD) of all sampled homes (S1 – S17)b

Mean 
±SD

146 ± 22 153 ± 23 0.97 ± 0.14 0.82 ± 0.12 0.83 ± 0.12 19.9 ± 15.4 52 ± 12 50 ± 11 1.05 ± 0.19 0.83 ± 0.14 0.87 ± 0.14 7.7 ± 5.9

a Uncertainty in PM2.5 measurements by low-cost sensors: Local co-location calibration of the low-cost sensors used in this study with a BAM over two seasons showed a normalized RMSE (measure of relative un
certainty) of 14% (dry season) and 17% (wet season) for hourly average measurements (see SI Fig. S1 for details).

b There were data from 15 sites for the seasonal comparison. All 15 sites were used to calculate the aggregate seasonal mean and standard deviation, as shown in the bottom row of Table 1. Table S6 in the SI presents a 
similar seasonal comparison of indoor and outdoor PM2.5 concentrations for homes with data available from both seasons. The conclusions remain mostly unchanged.
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2000; Lv et al., 2017; Massey et al., 2009).

3.2. Diurnal variations of indoor and outdoor PM2.5

Fig. 3 shows the daily fluctuations in indoor and outdoor PM2.5 

levels, along with their corresponding indoor-to-outdoor (I/O) ratios, in 
the dry and wet seasons. Both indoor and outdoor PM2.5 levels showed 
significant variability throughout the day, with more pronounced fluc
tuations during the dry season compared to the wet season.

Outdoor PM2.5 levels were relatively higher during nighttime and 

Fig. 2. Measured indoor and outdoor PM2.5 concentration levels and indoor-to-outdoor (I/O) ratios in individual homes during dry and wet seasons. (A) Box-whisker 
plot showing the distribution of hourly average indoor and outdoor concentrations measured at each home during the dry season. Data from outdoor CAMS stations 
for the period of measurements collected from different homes are shown. (B) I/O ratios at each home during the dry season. (C) and (D) are similar to panel (A) and 
(B) respectively, showing the measurement data from the wet season. For the box-whisker plot, boxes indicate the interquartile range, whiskers represent the 5th- 
95th percentile range, horizontal lines within the boxes indicate the median, and circles represent the mean. The horizontal dashed line in panels B and D serves as a 
visual guide.

Fig. 3. Diurnal variation of indoor and outdoor PM2.5 concentration levels and indoor-to-outdoor (I/O) ratios during dry and wet seasons. (A) Diurnal variation of 
indoor PM2.5 levels during the dry season. The line represents the mean diurnal profile across all sampled homes, while the shaded region indicates the range of 
average diurnal profiles from individual homes. (B) Similar to panel A, showing the diurnal variation of outdoor PM2.5 concentrations during the dry season. Diurnal 
profiles from two outdoor CAMS locations are also shown. (C) Similar to panel A, showing the diurnal variations of indoor-to-outdoor (I/O) ratios during the dry 
season. Panels (D), (E), and (F) are similar to (A), (B), and (C), respectively, showing measurements from wet seasons.
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early morning hours, and lower during the afternoon. When comparing 
the average diurnal profiles across all measurement locations, outdoor 
PM2.5 levels were 15–25% higher than average during nighttime and 
early morning in the dry season, and 10–15% higher-than-average 
during the wet season. Levels were 30–35% and 10–15% lower-than- 
average in the afternoon during the dry season and wet season, 
respectively.

These diurnal variations are primarily influenced by meteorological 
conditions, particularly the diurnal variation of the atmospheric mixing 
layer (Saha et al., 2024; Sarwar et al., 2023). The height of the atmo
spheric boundary layer tends to increase during midday and decrease at 
night, resulting in lower PM2.5 concentrations during midday and higher 
concentrations during nighttime and early morning hours (Sarwar et al., 
2023). Consistent variation patterns observed across different homes 
throughout the city and outdoor CAMS locations also suggest the sig
nificant influence of meteorological and atmospheric phenomena on 
outdoor diurnal profiles.

In contrast to outdoor profiles, indoor diurnal profiles from both 
seasons showed midday peaks, indicating a likely association with in
door cooking activities. During the dry season, a midday peak occurred 
around 10–11 a.m., with concentrations 20–25% higher than-average. 
In the wet season, a midday peak was observed around 1–2 pm, with 
concentrations 15–20% higher-than-average. Late morning and midday 
are the primary cooking periods in most homes in Bangladesh 
(Akteruzzaman et al., 2023). Lower indoor PM2.5 concentrations were 
observed in the evening (5–6 pm) during the dry season and early 
morning (6–7 am) during the wet season when cooking is less likely to 
occur.

The diurnal profiles of I/O ratios showed elevated values during 
midday (12 p.m.–2 p.m.), similar to the indoor PM2.5 profiles, likely 
indicating the influence of cooking. Midday peak levels were 22% and 
19% higher-than- average during the dry and wet seasons, respectively. 
Conversely, lower I/O ratios were observed in the evening (7–8 pm) 
during the dry season (18% below the average) and in the morning (6–7 
am) during the wet season (16% below the average). These variations in 
I/O profiles are influenced by fluctuations in indoor source activities, 
outdoor concentration levels, indoor-outdoor air exchange rates, etc. 
Thus, the observed profile reflects the influence of a combination of 
indoor sources, meteorological conditions, and other factors.

3.3. Temporal relationship and infiltration factors

We observed strong temporal correlations between indoor and out
door PM2.5 levels across both the dry and wet seasons. During the dry 
season, Pearson correlation coefficients (R) between hourly time series 
of indoor and outdoor PM2.5 levels measured in individual homes ranged 
from 0.62 to 0.94, with a mean ± SD of 0.82 ± 0.12. Similarly, in the 
wet season, correlations varied from 0.54 to 0.99, with a mean ± SD of 
0.83 ± 0.14 (Table 1). The consistently positive and strong temporal 
correlation levels further demonstrate the substantial influence of out
door PM2.5 levels and meteorological factors on variations in indoor 
levels.

The derived infiltration factors, represented by slopes from mixed 
effect regression of indoor and outdoor PM2.5 time series data, also 
underscore the significant impact of outdoor pollution on indoor envi
ronments. During the dry season, infiltration factors varied between 
0.61 and 0.98 (mean ± SD: 0.83 ± 0.12), while during the wet season, 
they ranged from 0.53 to 0.98 (mean ± SD: 0.87 ± 0.14). On average, 
infiltration factors were slightly higher during the wet seasons compared 
to the dry seasons. This difference may be attributed to variations in the 
ventilation conditions of buildings between seasons. For instance, dur
ing the wet season, which coincides with summer in Bangladesh, in
dividuals are more likely to keep their windows open for enhanced 
ventilation, thus facilitating greater infiltration of outdoor pollutants 
into indoor spaces.

The infiltration factors derived from this study tend to be at the upper 

end of the distribution reported in the literature (Bi et al., 2021; Chen 
and Zhao, 2011; Hänninen et al., 2004, 2011; Krebs et al., 2021; Lun
derberg et al., 2023; Wallace et al., 2022; Zahed et al., 2022). Infiltration 
factors observed in our study are generally higher than those reported in 
studies from the US and Europe (Chen and Zhao, 2011; Lunderberg 
et al., 2023; MacNeill et al., 2012). Compared to Europe and many lo
cations in the USA—which typically have colder climates, mechanical 
ventilation, and more insulated building structures—the relatively 
warmer climate in Bangladesh leads to less insulated buildings, 
increased reliance on natural ventilation, and, consequently, greater 
infiltration of outdoor pollutants into indoor spaces.

The regression intercepts, interpreted as the mean indoor generated 
source contribution, varied significantly between homes and seasons 
(dry season: 19.9 ± 15.4 μg/m3, wet season: 7.7 ± 5.9 μg/m3) 
(Table 1). Seasonal variations in indoor sources, meteorological influ
ence, and other factors likely contribute to these differences. Derived 
factors indicate that approximately 15–20% of the overall indoor PM2.5 
levels come from indoor generated sources, with the remaining 80–85% 
contributed by outdoor infiltrations.

While the regression approach employed here is a well-established 
method in the literature (Bi et al., 2022; Chen and Zhao, 2011; Lun
derberg et al., 2023; Wallace et al., 2022), it’s important to acknowledge 
potential challenges in accurately isolating contributions of outdoor 
infiltration and indoor generated sources through statistical analysis. 
However, near unity I/O ratios, consistent seasonal influence on both 
indoor and outdoor locations, and strong correlations between indoor 
and outdoor levels all support the significant influence of outdoor levels 
on indoor PM2.5 levels in Dhaka residences. Therefore, putting these 
context all together, the derived coefficients from regressions, indicating 
high outdoor contributions (80–85%) and relatively small contributions 
(15–20%) from indoor generated sources, are physically plausible.

3.4. Factors influencing the spatial variability of indoor concentrations

The Pearson’s R between mean indoor and outdoor concentrations 
across different homes were 0.49 during the dry season, 0.62 during the 
wet season, and 0.41 across both seasons. Notably, these correlations are 
lower than the temporal correlations observed within individual homes: 
0.82 ± 0.12 during the dry season and 0.83 ± 0.14 during the wet 
season. The moderate spatial correlation suggests that while the among- 
household variation of outdoor PM2.5 levels significantly influences in
door levels’ spatial variation, other factors, such as indoor source ac
tivities and ventilation-related features, likely play crucial roles in 
explaining variabilities in indoor PM2.5 levels across homes.

Univariate correlation analysis between indoor PM2.5 levels and 
various physical features in sampled homes revealed negative correla
tions with apartment size (R = - 0.33) and the presence of a kitchen hood 
(R = - 0.48), while positive correlations were observed with the presence 
of a smoker (R = 0.33) and the use of mosquito coils (R = 0.17) in the 
apartment (Table S4). We also compared mean indoor PM2.5 concen
trations between homes with smokers or mosquito coil users and those 
without (see Table S7). Overall, mean indoor PM2.5 concentrations are 
5–10% higher in homes with smokers compared to those without and 
approximately 20% higher in homes using mosquito coils during the wet 
season (the predominant mosquito season in Bangladesh). However, 
these differences are not statistically significant (p > 0.1).

Stepwise multiple regression identified outdoor PM2.5, the presence 
of a kitchen hood in the apartment, and the number of windows as key 
predictors, collectively explaining 50–70% of the spatial variability in 
indoor PM2.5 measured in different households. The multiple linear 
regression model incorporating these covariates had a fit R2 of 0.78, an 
RMSE of 7.6 μg/m³, and a CV R2 of 0.52, with an RMSE of 9.6 μg/m³ for 
overall mean concentrations across both seasons (Table 2 and Fig. S4). 
Season-specific models revealed similar predictor variables; however, 
their model performances were relatively lower (wet season: fit R2: 0.64, 
CV R2: 0.45; dry season: fit R2: 0.56, CV R2: 0.40) (Table S5).
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The selected predictor variables through stepwise regression and the 
signs of their coefficients were physically interpretable. For instance, the 
presence of a kitchen hood and an increasing number of windows 
exhibited negative coefficients, suggesting their potential to decrease 
indoor PM2.5 levels. In contrast, outdoor PM2.5 showed a positive coef
ficient, indicating that higher outdoor levels are linked with elevated 
indoor levels. The negative association between the increasing number 
of windows and indoor PM2.5 levels has also been reported in a past 
study in a low-income community in Dhaka (Gurley et al., 2013).

Our analysis suggests that indoor exposure levels in Dhaka homes 
can be predicted using outdoor PM2.5 and indoor activity-related cova
riates. Implementing the model in unmeasured areas will necessitate 
estimates of outdoor PM2.5 levels and other covariates. Outdoor PM2.5 
levels can potentially be estimated via a land-use regression model 
(Eeftens et al., 2012; Hoek et al., 2011; Saha et al., 2019). Univariate 
regression analysis between measured outdoor PM2.5 and land-use 
covariates such as restaurant density (R = 0.47), major road density 
(R = 0.46), and population density (R = 0.28) within a 1 km buffer 
radius shows good associations (Table S4), suggesting the potential for 
developing a land-use regression model for outdoor PM2.5 in Dhaka city 
using readily available covariates.

3.5. Implications, limitations, future directions

In this study, we conducted simultaneous measurements of indoor 
and outdoor PM2.5 levels across 17 homes in Dhaka city, Bangladesh. 
Significant variations in both indoor and outdoor PM2.5 levels were 
observed between seasons, primarily driven by regional pollution levels. 
Our findings indicate that indoor PM2.5 levels were similar to outdoor 
levels, with I/O ratios close to 1 across diverse locations and seasons.

Contrary to the prevalent perception among the general population 
in Bangladesh that air pollution primarily exists outdoors, our data 
indicate that indoor environments in Dhaka city are nearly as polluted as 
outdoor settings. Our study provides locally derived scientific evidence 
to enhance public awareness and develop mitigation measures for 
reducing PM2.5 exposures in Bangladesh. Educating the public and 
policymakers with scientific evidence is the very first step for imple
menting evidence-based air pollution interventions.

Our measurements reveal high indoor PM2.5 levels in Dhaka city, 
akin to outdoor levels, influenced by both outdoor pollution and indoor 
sources. This underscores the need for comprehensive and multi- 
pronged measures to reduce indoor PM2.5 exposures in Bangladesh. 
Implementing simple and affordable modification should serve as initial 
steps. For instance, our analysis highlights the importance of kitchen 
hoods and ventilation in buildings in explaining the spatial variability of 
indoor PM2.5 across different homes. Awareness and mitigation mea
sures should be promoted to enhance such practices, including the use of 
kitchen hoods, ensuring proper ventilation during and after cooking, 
and closing windows during periods of high outdoor pollution levels. 
Numerous studies have demonstrated the effectiveness of indoor air 
filters in reducing indoor pollution levels (González-Martín et al., 2021; 
Liao et al., 2019). However, given affordability challenges in 
Bangladesh, locally based low-cost air filter technology will be essential. 
The use of personal protective equipment (PPE), such as high-efficiency 
particulate air masks, is a viable option for reducing personal PM2.5 

exposure levels in both indoor and outdoor settings.
Regional pollution levels play a significant role in indoor pollution in 

Bangladesh, highlighting the need for substantial efforts to reduce 
regional pollution levels. This requires a holistic and long-term clean air 
program, currently absent in Bangladesh, which should address pollu
tion from local sources, secondary particulate pollution, and long-range 
transported pollution and coordination with neighboring countries 
(World Bank, 2023).

While our study provides valuable insights, it has limitations, and 
further research is needed to strengthen our findings. Future efforts 
should aim to expand measurement locations and conduct long-term 
(year-long) continuous measurements to better understand indoor and 
outdoor pollution dynamics. Careful use of low-cost sensors can play a 
critical role in such research. For example, a low-cost sensor network 
comprising continuous measurements of indoor and outdoor levels over 
several years at 20–30 locations across the city could provide a valuable 
dataset to comprehensively understand indoor and outdoor pollution 
dynamics.

Our measurements use low-cost sensors, which have inherent un
certainties. Although we performed a local calibration of the low-cost 
sensors, achieving an agreement within 14–17% of a beta attenuation 
monitor (BAM) at a site in Dhaka, the co-location calibration was based 
on ambient outdoor measurements. Consequently, we applied the same 
calibration factors to both indoor and outdoor measurements, as indoor 
co-location calibration was not feasible. Future studies should investi
gate potential differences in sensor performance between indoor and 
outdoor settings and assess the long-term performance of sensors 
through year-long co-location data collection in environments like 
Dhaka, where pollution levels are high, and atmospheric conditions are 
very humid.

Furthermore, our study installed a single sensor in each study home, 
either in the bedroom or living room. There may be substantial varia
tions in pollutant levels across different micro-environments within a 
home (Vardoulakis et al., 2020), such as between the living room and 
bedroom or rooms near versus away from the kitchen. Examining this 
within-home micro-environmental variability was beyond the scope of 
our work but should be explored in future studies with a systematic 
study design.

Although our modeling analysis shows promise in predicting spatial 
variability in indoor PM2.5 levels using outdoor PM2.5 and indoor 
physical features as predictor covariates, the statistical model developed 
based on a limited number of locations may limit the generalizability of 
any statistical relationships established. Therefore, future endeavors 
should consider incorporating more locations and additional covariates 
as potential input predictor variables to strengthen the robustness of 
relationships. Furthermore, future research should consider size- and 
chemically-specific PM2.5 measurements, VOCs, and air toxics for 
comprehensive air pollution characterization in diverse rural and urban 
locations. The combination of comprehensive measurements and 
modeling analysis can inform evidence-based mitigation measures and 
strategies tailored to specific environments.

CRediT authorship contribution statement

Provat K. Saha: Writing – review & editing, Writing – original draft, 

Table 2 
Multiple linear regression model for predicting spatial variabilities in indoor PM2.5 levels across sampled homes.

Model Model parameters Coefficients Model performance

Estimate Std. Error p-value Development Cross validation

R2 RMSE (μg m− 3) R2 RMSE (μg m− 3)

Indoor PM2.5 concentration (μg m− 3) Intercept 43.8 21.17 0.068 0.78 7.6 0.52 9.6
Outdoor PM2.5 0.92 0.22 0.0022
Kitchen hood in apt − 26.1 5.27 0.0008
No of windows in apt − 5.0 1.44 0.0068

P.K. Saha et al.                                                                                                                                                                                                                                 Atmospheric Environment 342 (2025) 120945 

9 



Visualization, Resources, Methodology, Investigation, Funding acquisi
tion, Formal analysis, Conceptualization. Ahsan Habib: Writing – re
view & editing, Data curation. Dipika R. Prapti: Writing – review & 
editing, Formal analysis. Talha Jubair: Writing – review & editing, 
Formal analysis. Abu U. Zarrah: Writing – review & editing, Formal 
analysis. Chowdhury A. Hossain: Writing – review & editing, Formal 
analysis. Sheikh M. Rahman: Writing – review & editing, Methodology, 
Investigation, Conceptualization. Abdus Salam: Writing – review & 
editing, Methodology, Investigation, Conceptualization. Md Aynul 
Bari: Writing – review & editing, Resources, Methodology, Investiga
tion, Conceptualization. Julian D. Marshall: Writing – review & edit
ing, Supervision, Methodology, Investigation, Funding acquisition, 
Conceptualization.

Declaration of competing interest

All authors declare they have no actual or potential competing 
financial interest.

Acknowledgments

We acknowledge the support for field data collection for this study 
provided by the Research and Innovation Centre for Science and Engi
neering (RISE) at Bangladesh University of Engineering and Technology 
(BUET) (assistance number 2021-01-037). Data analysis and manuscript 
preparation support obtained from Open Philanthropy.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.atmosenv.2024.120945.

Data availability

Data will be made available on request. 

References

Abdul Jabbar, S., Tul Qadar, L., Ghafoor, S., Rasheed, L., Sarfraz, Z., Sarfraz, A., 
Sarfraz, M., Felix, M., Cherrez-Ojeda, I., 2022. Air quality, pollution and 
sustainability trends in South asia: a population-based study. Int. J. Environ. Res. 
Publ. Health 19, 7534. https://doi.org/10.3390/ijerph19127534.

Adgate, J.L., Mongin, S.J., Pratt, G.C., Zhang, J., Field, M.P., Ramachandran, G., 
Sexton, K., 2007. Relationships between personal, indoor, and outdoor exposures to 
trace elements in PM2.5. Sci. Total Environ. 386, 21–32. https://doi.org/10.1016/j. 
scitotenv.2007.07.007.

Afrin, S., Islam, M.M., Ahmed, T., 2021. A meteorology based particulate matter 
prediction model for megacity Dhaka. Aerosol Air Qual. Res. 21, 200371. https:// 
doi.org/10.4209/aaqr.2020.07.0371.

Akteruzzaman, Md, Rahman, MdA., Rabbi, F.M., Asharof, S., Rofi, M.M., Hasan, MdK., 
Muktadir Islam, MdA., Khan, M.A.R., Rahman, M.M., Rahaman, MdH., 2023. The 
impacts of cooking and indoor air quality assessment in the southwestern region of 
Bangladesh. Heliyon 9, e12852. https://doi.org/10.1016/j.heliyon.2023.e12852.

Apte, J.S., Marshall, J.D., Cohen, A.J., Brauer, M., 2015. Addressing global mortality 
from ambient PM2.5. Environ. Sci. Technol. 49, 8057–8066. https://doi.org/ 
10.1021/acs.est.5b01236.

Bari, MdA., Kindzierski, W.B., Wheeler, A.J., Héroux, M.-È., Wallace, L.A., 2015. Source 
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Sugiri, D., Tsai, M.-Y., Yli-Tuomi, T., Varró, M.J., Vienneau, D., Klot, S. von, Wolf, K., 
Brunekreef, B., Hoek, G., 2012. Development of land use regression models for 
PM2.5, PM2.5 absorbance, PM10 and PMcoarse in 20 European study areas; results 
of the ESCAPE project. Environ. Sci. Technol. 46, 11195–11205. https://doi.org/ 
10.1021/es301948k.

Eeftens, M., Phuleria, H.C., Meier, R., Aguilera, I., Corradi, E., Davey, M., Ducret- 
Stich, R., Fierz, M., Gehrig, R., Ineichen, A., Keidel, D., Probst-Hensch, N., 
Ragettli, M.S., Schindler, C., Künzli, N., Tsai, M.-Y., 2015. Spatial and temporal 
variability of ultrafine particles, NO2, PM2.5, PM2.5 absorbance, PM10 and 
PMcoarse in Swiss study areas. Atmos. Environ. 111, 60–70. https://doi.org/ 
10.1016/j.atmosenv.2015.03.031.

Gautam, S., Yadav, A., Tsai, C.-J., Kumar, P., 2016. A review on recent progress in 
observations, sources, classification and regulations of PM2.5 in Asian environments. 
Environ. Sci. Pollut. Res. 23, 21165–21175. https://doi.org/10.1007/s11356-016- 
7515-2.

Giordano, M.R., Malings, C., Pandis, S.N., Presto, A.A., McNeill, V.F., Westervelt, D.M., 
Beekmann, M., Subramanian, R., 2021. From low-cost sensors to high-quality data: a 
summary of challenges and best practices for effectively calibrating low-cost 
particulate matter mass sensors. J. Aerosol Sci. 158, 105833. https://doi.org/ 
10.1016/j.jaerosci.2021.105833.
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