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Abstract
Reducing emissions from point sources may be justified by the large expected benefits 
of improved health. However, the optimal reduction in emissions is complicated by the 
large uncertainty regarding the magnitude of these benefits. In particular, there is un-
certainty in the size of the impact of pollution on increased premature mortality, and in 
the monetary valuation of reducing risks of mortality. We calculate the optimal emission 
reductions from abatement technology adoption at most point sources of SO2, NOX, and 
primary PM2.5 in the United States across a wide range of uncertainty in the parameters 
used to estimate benefits of reductions. The results demonstrate that although the range 
of uncertainty in benefits is very wide, as long as the benefits are not at the low end of 
the distribution, the optimal abatement from sources is in a relatively narrow range. It is 
when benefits of reducing pollution are well below their mean estimates that the optimal 
reduction in emissions varies substantially. Resolving the likelihood of very low benefits 
of abatement could potentially reduce the uncertainty regarding optimal abatement policy.
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1 Introduction

Fine particulate matter air pollution (PM2.5) is a major health threat around the world. Two 
features of the science in relation to PM2.5 are well understood. One feature is that the health 
threat is more serious than was known even a few decades ago. A state-of-the-science study 
places the estimate at 8.9 million premature deaths around the world each year (Burnett et 
al. 2018). Another feature, closely related, is that reducing air pollution saves lives, even 
in locations that might appear to be clean, and where PM2.5 concentrations are well below 
the United States (US) EPA’s national ambient air-quality standards (Thakrar et al. 2020). 
Particulate pollution is decidedly not a problem only in the developing world, and therefore 
it continues to present important policy challenges in the US.

Because PM2.5 is so dangerous, estimates show that reducing emissions of fine particles 
and their precursors confers large health benefits in lives saved. A number of sophisticated 
reduced-form tools have been developed in recent years to estimate the benefits of reduc-
tions and where they occur across the US (e.g., ISRM (Goodkind et al. 2019), AP3 (Muller 
2014), EASIUR (Heo et al. 2016)). A common finding in this literature, confirmed in a 
number of EPA regulatory impact analyses (US EPA 2011, 2013, 2015), is that even as 
PM2.5 concentrations drop, the economic benefits of further reductions remain high, in the 
billions of $US annually. For example, according to EPA estimates, the benefits associated 
with reductions of particle pollution that result from the Mercury and Air Toxins Standards 
exceed the costs by a factor that ranges from 3.4 to 9.4 (US EPA 2011). The lion’s share of 
the monetary benefits flowing from further abatement are due to avoided premature mor-
tality from exposure to PM2.5. Shapiro and Walker (2020) find that for most regions in the 
US, marginal benefits of abatement exceed marginal abatement costs by more than tenfold.

An important policy question, then, is this: Just how low should we drive PM2.5 levels to 
achieve the best outcome for society? In order to answer this question using a cost-benefit 
analysis framework, one needs to compare marginal benefits of further reductions to the 
marginal costs of further reductions, and one need to make this comparison in a way that 
is spatially sensitive. Another important policy question is how to make sound policy deci-
sions in the face of remaining uncertainty around the various health and economic estimates 
associated with particulate pollution.

The purpose of the present paper is to address these two challenges. We conduct an 
empirical exercise that explicitly compares the cost and benefits of abatement technology 
adoption at most point sources of emissions in the US, accounting for the spatial distribution 
of health impacts from each source. Our model takes advantage of cost estimates from the 
EPA’s Control Strategy Tool (CoST) model (US EPA 2016), which provides granular infor-
mation on abatement and costs for a variety of control technologies at each source. Here 
our objective is to take one step in the direction of estimating the optimal level of PM2.5 
reductions, by which we mean the emissions levels, by source, at which the marginal cost 
of further abatement equals (or is greater than) the marginal benefits of further abatement.

A natural question arises in connection with much of the work in this area: How confi-
dent can one be in the leading estimates of health impacts, and of the economic valuation 
of those impacts? A close look at the main elements of the epidemiological and economic 
literature on which policy analyses are based suggests that the uncertainty around the most 
prominent benefits estimates is quite large. We introduce uncertainty into our model, with 
the aim of quantifying the range of possibly optimal policy outcomes. We focus on three 
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main sources of uncertainty: (i) uncertainty in the concentration-response (C-R) functions 
that govern estimates of lives lost as a function of PM2.5 concentrations; (ii) uncertainty in 
the economic estimates of the value of a statistical life (VSL); and (iii) the functional form 
of the C-R function, which relates to the curvature of that relationship.

The C-R functions we employ are from Krewski et al. (2009), the most recent reanalysis 
of the American Cancer Society (ACS) cohort study of air pollution and premature mortal-
ity. The Krewski study is attractive because it offers statistical estimates of the C-R in two 
functional forms, log-linear and log-log. It also has a lower estimate of the PM2.5 health risk 
than does Lepeule et al. (2012), the other major study on which EPA estimates rely, which 
means our results lie at the conservative end of the range. Finally, the log-log results from 
Krewski closely resemble the C-R estimates from Burnett et al. (2018). Our approach to 
incorporating uncertainty in the C-R function is to exploit the published confidence intervals 
in Krewski et al. (2009).

Our treatment of uncertainty in the VSL is based upon the Weibull distribution that the 
EPA has fitted statistically to the sample of 26 studies that form the foundation of the agen-
cy’s guidance on the use of VSL in policy analysis (US EPA 2010). Finally, although the 
comparison is not strictly statistical in nature, we also conduct our entire empirical exercise 
using both the log-linear and the log-log C-R functions from Krewski et al. (2009), incorpo-
rating their respective error structure.

The approach we have developed, in broad outlines, is to draw a set of values from the 
VSL and C-R distributions and then, for each of the C-R functional forms, to compute the 
optimal control strategies to be applied at each point source of emissions in the CoST data-
set. A control strategy is optimal for a given source when the next most aggressive, or costly, 
strategy is no longer advantageous at the margin, with source-specific marginal benefits of 
abatement computed according to the InMAP Source-Receptor Matrix (ISRM) (Goodkind 
et al. 2019; Tessum et al. 2017). The resulting vector of optimal controls becomes a high-
resolution spatial distribution of PM2.5 precursor emissions, and resulting PM2.5 concentra-
tions across the continental US. The map of concentrations generates health impacts in the 
form of avoided premature mortality, which are converted to economic benefits by multiply-
ing avoided statistical deaths by the relevant VSL draw.

Our results, summarized briefly, show that across the range of uncertainty in benefits of 
abatement, substantial emission reductions are optimal for point sources: ~24–42% reduc-
tions in SO2, 31–43% reductions in NOX, 30–47% reductions in primary PM2.5.1 When 
marginal benefits lie within the interquartile range of outcomes, the corresponding range 
of optimal reduction in damages from emissions is relatively narrow (32–46% reduction 
in total damages under the log-linear C-R function). The functional form of C-R makes a 
smaller difference in this case than one might expect as well, with a 44–53% reduction in 
total damages if log-log.

The gap between the optimal level of emissions reduction under the log-linear and log-
log functional forms is small, according to our results, when the background concentrations 
are at their status quo levels. As background concentration are ratcheted down in our model, 
perhaps as a result of emissions reductions in other sectors, or of an increase in renewables 
penetration in electricity generation, the difference due to functional form grows substan-
tially because the marginal benefits of a ton of abatement also grow substantially with the 
log-log C-R as PM2.5 concentrations decline. This is one of the perplexing implications of a 

1  The ranges reflect the interquartile range of reductions from the uncertainty analysis.
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log-log C-R function, explored by among others Pope et al. (2011), Marshall et al. (2015), 
and Pope et al. (2015). The results in this paper provide new insights into this question, 
regarding the role of uncertainty in the health and economic gradient between the log-linear 
and log-log specifications.

The CoST model is a useful tool for the analysis presented in this study. It provides a 
detailed set of control technologies, and their costs and abatement levels, for many point 
sources in the country, and for different pollutants at each source. That model, though, does 
not allow us to explore a number of questions that might also have a significant effect on 
pollution, health, and monetary benefits. In particular, the model covers point sources of 
emissions, and only the technologies that can be applied to the existing fleet of emission 
sources. As coal plants are closed, and then perhaps as renewable generation sources like 
wind and solar begin to cause natural gas plants to close as well, PM2.5 concentrations in the 
country will drop even further. An extension of this study to account for the health benefits 
of a renewable transition in electricity generation might add an important element to the 
discussion of climate action.

2 Methods

In this paper we estimate the cost of emission reductions at most point sources of emissions 
in the US and compare that with the benefits of reducing those emissions. Evaluating many 
possible abatement technologies for each point source, we calculate the optimal abatement 
technology adoption given the benefits. We then apply this analysis across a wide range of 
uncertainty in the benefits of abatement to determine how the optimal abatement is influ-
enced by the range of uncertainty in benefits.

2.1 Abatement Costs

To calculate the costs of abatement for point sources of emissions, we use the Control Strat-
egy Tool (CoST) model. This model is used frequently by the EPA to evaluate the cost 
of meeting emission reduction or pollution concentration targets. The model includes an 
inventory of the available and existing controls on each unit. The model is designed to 
calculate the discounted cost of implementing a new emission control on a unit over the 
lifetime of the control and compare that with the quantity of emissions reduced. The key 
output we sought with this model is the total annualized cost, which is the sum of the annu-
alized capital cost (discounted at a 3% rate) and the annual variable and fixed operating and 
maintenance costs. We compare the total annualized cost of the control with the emission 
reductions to obtain a cost per unit of emission reduction.

The CoST model is run from a baseline emission inventory which includes the current 
emissions and the existing controls. We used the 2017 National Emissions Inventory (NEI), 
the most recent inventory that is complete (US EPA 2021). We included 36,397 individ-
ual point sources from the inventory, and excluded many thousands of other point sources 
(those with the fewest emissions) that cumulatively accounted for 17% of emissions. In 
total, the included sources emitted 1.96 million tons of SO2, 1.93 million tons of NOX, and 
0.33 million tons of primary PM2.5 in 2017.
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We needed to extract from the CoST model every possible control strategy for each unit. 
This information was necessary because for a particular unit the optimal control strategy 
depends on the benefits of the emission reductions; therefore, we need all possible controls 
to see which one is best depending on the value of those emission reductions. To obtain this 
information, we exploited a function of the CoST model that calculates the least cost set of 
controls to achieve a nation-wide emission reduction goal. The least cost function identifies 
the sources and the controls employed to meet the specified target by choosing those con-
trols, among all the possibilities, that have the lowest cost per unit of emissions reduced. We 
iteratively run the model, increasing the emission reduction goal from 0 to 100% of existing 
emissions. With each iteration, we save the control strategy (i.e., which control is used at 
which source), the control cost, and the emission reduction.

Note that for a particular source, as the emission reduction goal gets higher, the least 
cost control may (and often does) change. For example, if one particular control at a source 
reduces 100 tons of SO2 emissions for a cost of $1,000,000 (or $10,00 per ton), this may be 
part of a least cost strategy with a low goal. When the goal gets progressively higher, there 
may be another control strategy for this source which is more expensive per unit of emis-
sions reduced but also reduces many more emissions. For example, another strategy may 
cost $10 million and reduce 500 tons (or $20,000 per ton). This control would potentially 
be part of the least cost strategy that requires reducing a larger share of emissions. And, 
importantly, this control would supersede the previous control (i.e., they would not work 
additively, rather, the second control would be used in place of the original control).

We ran the CoST model across all possible emission reductions (i.e., 0 to 100%) sepa-
rately for three pollutants: SO2, NOX, and primary PM2.5. These runs produced a dataset of 
all potentially least-cost control strategies for most point sources and for the three pollut-
ants. For some of the controls, multiple pollutants were reduced—specifically, some con-
trols reduced both SO2 and primary PM2.5. We calculate the combined benefits of a control 
from all pollutants that are reduced to compare with the costs, as we explain further down in 
our description of the model. Before we discuss how the different control technologies are 
chosen for the optimal abatement we first must discuss the benefits of abatement.

2.2 Benefits of Abatement

For the benefits of abatement, we focus solely on the reduction in adult premature mortal-
ity. There are other categories of benefits, but based on our understanding of the literature, 
this category comprises the overwhelming majority of the benefits (Muller and Mendelsohn 
2007). Still, our results are excluding several other categories of benefits and should be 
considered a lower bound. The benefits in our model are from reductions in exposure to 
PM2.5. The key damage from the emissions in our model (SO2, NOX and primary PM2.5) 
are in their contribution to PM2.5 concentrations that people are exposed to. Primary PM2.5 
directly contributes to PM2.5 concentrations, whereas, SO2 and NOX are precursor pollutants 
that form into secondary PM2.5 in the atmosphere. PM2.5 concentrations are the combination 
of primary PM2.5 and secondary PM2.5.

The benefits we calculate are source specific—that is, we estimate the contribution to 
human exposure separately for each source of emissions. This is done using the InMAP 
Source-Receptor Matrix (ISRM) (Goodkind et al. 2019; Tessum et al. 2017). The ISRM 
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isolates the impact of emissions for each source to provide the marginal benefits—or mar-
ginal change in the exposure to PM2.5—from reductions of emissions at a particular source.

Then we focus on three key factors of uncertainty in the calculation of benefits: (i) the 
VSL, (ii) the C-R function between premature mortality and exposure to PM2.5, and (iii) the 
functional form of the C-R function. Our goal is to understand how uncertainty in each of 
these factors impacts the optimal emission reductions at each source. Our application of the 
uncertainty is meant to demonstrate and represent the broad range from each facet, rather 
than be an exhaustive accounting and estimation of the uncertainty. Certainly, others could 
quibble with how we present the uncertainty, and we would not object, but our goal was to 
illustrate the uncertainty in a tractable way for the question we are looking to explore.

VSL
The frequently employed method of calculating the benefits of reductions in PM2.5 is to 

multiply the change in premature mortality by a single number, the VSL, representing the 
value of those lives saved. There are several potential issues with this method (e.g., whether 
the value should be applied uniformly across all people, regardless of age or other factors) 
which we do not attempt to engage with. We only investigate the magnitude of the VSL and 
the uncertainty around this estimate.

There are several meta-analyses of the VSL (see Viscusi and Aldy (2003) and Kochi et al. 
(2006)) which tend to find relatively similar estimates, but we focus specifically on the esti-
mate produced by the EPA (US EPA 2010), which is used to estimate the benefits of federal 
rules which impact PM2.5 concentrations. The EPA VSL estimate is based on 26 revealed-
preference and contingent-valuation studies. In their original analysis, a Weibull distribution 
was fit to the estimates of these studies. Generally, only the mean value of this distribution is 
used by the EPA. We make use of the entire distribution, which has a mean of $9.6 million 
and an interval from the 2.5th to the 97.5th percentile of $0.9 million to $28.8 million. This 
enormous range of the VSL suggests that depending on which value is used from the distri-
bution, it will dramatically alter the estimated benefits of abatement. Our goal here is to ask 
the question: How do different values in the range of uncertainty in benefits impact the opti-
mal emission reduction? We draw values from the VSL distribution, recalculate the benefits 
of emission reductions, and then calculate the optimal emission reduction from each source.

C-R function
In addition to the uncertainty regarding how to value the lives saved from emission reduc-

tions, there is also the question of how many people are actually saved from reducing PM2.5 
concentrations. As with the VSL, there are several estimates of this relationship, including 
two key estimates that are used by the EPA in evaluating the benefits of concentration reduc-
tions. One, which we will focus on here, is from Krewski et al. (2009), which is the most 
recent results from a series of estimates based on a longitudinal study by the ACS. This 
study finds that for every 10 µgm−3 increase in PM2.5 concentration, the premature mortality 
rate is 6% higher. The second, from the Harvard Six Cities (H6C) study, by Lepeule et al. 
(2012), finds much larger impacts of PM2.5 than the ACS study (approximately double the 
impact—every 10 µgm−3 is associated with a 14% increase in mortality). The EPA employs 
both studies, using the mean results from each study and estimating the benefits separately 
to produce a high and low estimate.

We focus solely on Krewski et al. (2009), and use their estimated error to evaluate the 
range of uncertainty in C-R function. We believe this better illustrates the uncertainty com-
pared with the EPA method, because their low range ignores the real possibility that impacts 
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could be lower than the mean from Krewski et al. (2009). We do not combine the results 
from the two studies, leaving out the Lepeule et al. (2012) estimates entirely, which limits 
our estimate of the high-side uncertainty in impacts.

A comparison of the marginal benefits of reducing PM2.5 using both the ACS and H6C 
estimates is shown in the middle panel of Fig. 1. Our use of Krewski et al. (2009) is based on 
three reasons. First, often the criticism of the benefits of reducing PM2.5 is that the estimates 
are far too high, therefore, we feel it is prudent to use the conservative estimate of the C-R 
function. Second, a more recent meta-analysis of the C-R function using US and interna-
tional data from Burnett et al. (2018) aligns closely in magnitude with Krewski et al. (2009) 
as shown in the right panel of Fig. 1.2 Third, the Krewski et al. (2009) estimates presents 
the results with two different functional forms of the C-R function. The functional form 
introduces another area of uncertainty that we wish to examine. The Krewski et al. (2009) 
estimates provide a clean representation of the impact of the functional form.

C-R Functional Form
The two functional forms we examine are referred to as log-linear and log-log. The log-

linear is the default form used in most of the analyses in the epidemiological literature. This 
functional form is nearly linear over the relevant range of PM2.5 concentrations, and there-
fore, shows that a reduction in PM2.5 concentrations will have similar benefits regardless of 
the initial concentration. The log-log C-R functional form, which was helpfully estimated 
by Krewski et al. (2009), is concave (or supralinear as it is referred to in this literature), 
and shows that the benefits of reducing PM2.5 concentrations are larger when the initial 
concentration is low compared to with a high initial concentration—several other studies 
also found evidence of a supralinear C-R function between premature mortality and PM2.5 

2  However, the Burnett et al. (2018) estimates are partially influenced by Krewski et al. (2009)

Fig. 1 Comparison of marginal benefits of reducing PM2.5 concentrations in a hypothetical city of 250,000 
people across different estimates of the C-R relationship. Marginal benefits are calculated using a VSL 
of $8.6 million. Left panel, Krewski et al. (2009) log-linear versus log-log. Middle panel, Krewski et 
al. (2009) log-linear versus Lepeule et al. (2012) log-linear. Right panel, Krewski et al. (2009) log-log 
versus Burnett et al. (2018) which is based on a flexible functional form. The population-weighted PM2.5 
concentration distribution for the US is shown by the bars at the bottom of each panel
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concentrations (Pope et al. 2011; Crouse et al. 2012; Burnett et al. 2014, 2018; Vodonos 
et al. 2018, Miller et al. 2021). The concave log-log C-R function leads to an interesting 
increasing-returns-to-scale feature of pollution abatement, such that each additional unit 
reduction in concentration leads to a higher marginal benefit for additional abatement. The 
impact of the different C-R functional forms on policy showed that lower concentrations are 
optimal with log-log (Goodkind et al. 2014) and raises some ethical issues of inequality if 
policy was directed to cleaning up the already clean areas first (Marshall et al. 2015).

Here, we examine how the difference between the functional forms impacts optimal 
abatement technology adoption using real-world estimates of the costs of abatement. Fig-
ure 1, shows the marginal benefits of reducing PM2.5 concentrations in a hypothetical city 
depending on the C-R function employed. In particular, this figure shows the benefits of a 
1 µgm−3 reduction in PM2.5 concentrations, with the dark lines showing the mean estimate, 
and the light area showing the error bands. The left panel of Fig. 1 compares the Krewski et 
al. (2009) log-linear and log-log C-R functions. The majority of the PM2.5 concentrations in 
Krewski et al. (2009) are from locations with PM2.5 levels above 10 µgm−3, and the two esti-
mates are similar in this range. The divergence is when concentrations get much lower. Here 
the benefits of cleaning up to very low concentrations are enormous if the C-R relationship 
is log-log, but are much more moderate if the C-R is log-linear.

The middle panel of Fig. 1 compares Krewski et al. (2009) log-linear with Lepeule et al. 
(2012) log-linear (i.e., the two C-R used in EPA analyses), showing that the shape is similar 
but the magnitude of the latter is much greater. The right panel of Fig. 1 compares Krewski 
et al. (2009) log-log with Burnett et al. (2018). These estimates are very similar in shape 
and magnitude. The Burnett et al. (2018) estimate is a state-of-the-science estimate of this 
relationship, especially for use in an international context, and we believe given the similar-
ity, justifies the use of Krewski et al. (2009) log-log as a relevant measure of the impact of 
pollution at low concentrations.

Marginal benefit equation and index
So far, we have explained the general concepts of the uncertainty of benefits of abate-

ment that we examine, and here we show specifically how we employ these estimates in our 
model. First, we show the marginal benefit equation, and then demonstrate how we incor-
porate uncertainty in the parameters of this equation. The marginal benefit in a location (or 
city/town) i, of a decrease in PM2.5 concentration ( Ci) is

 MBlin
i (Ci) = V · Pi · λ 0

i · γ lin · RRlin
i (Ci) (1)

and

 
MBlog

i (Ci) = V · Pi · λ 0
i · γ log ·

RRlog
i (Ci)
Ci

, (2)

with the log-linear (lin) and log-log (log) C-R functional forms. In Eqs. (1) and (2), V  is 
the VSL, Pi is the population of location i, λ 0

i  is the baseline mortality rate in location 
i, RRlin

i  and RRlog
i  are the relative risk of mortality equations for log-linear and log-log, 

respectively, of being exposed to a PM2.5 concentration level, Ci, different from the base-
line concentration, C0

i . The γ  parameters are from the relative risk equations:
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 RRlin
i (Ci) = exp

{
γ lin (

Ci − C0
i

)}

and

 
RRlog

i (Ci) =
(

Ci

C0
i

)γ log

.

Equations (1) and (2) show the marginal benefits of a concentration reduction in a location 
(e.g., these are the equations demonstrated in Fig. 1), but we need the marginal benefits of 
a reduction in emissions at a source. Define the increase in PM2.5 concentrations at location 
i from emissions of pollutant p at source j as π p

ij . These coefficients are estimated by the 
ISRM in Goodkind et al. (2019). Then the marginal benefits of reducing emissions of pol-
lutant p at source j is just the sum of marginal benefits of a concentration reduction in all 
n downwind locations, weighted by the impact on concentrations in i from emissions at j:

 MBp
j =

∑ n

i=1
MBi (Ci) · π p

ij . (3)

Equation (3) can apply for either log-linear or log-log by plugging in Eq. (1) or (2), 
respectively.

With Eq. (3) we have our mean estimates of the marginal benefits of abating emissions 
from any point source for each of our three pollutants. These estimates come essentially 
directly from Goodkind et al. (2019), but we have adjusted the numbers to 2017 dollars and 
income levels (and used a different C-R function for log-log). These are our baseline mar-
ginal benefits, and then we adjust these numbers to account for specific draws from the VSL 
and C-R function distributions. We then calculate it separately for the two functional forms 
of the C-R we use. Changes to the VSL and C-R parameters in the marginal benefit calcula-
tion, almost (but not exactly), scale the values up and down proportionally. Also, we believe 
that the uncertainty in these two parameters are independent of each other, and therefore, 
the joint distribution of the uncertainty can be reflected by combining random draws from 
each distribution separately.

To illustrate this joint distribution, rather than show both dimensions, we combine it into 
one; and then scale it so that it is equal to one when both distributions are at their mean. We 
do this so that any draw from the joint distribution can be evaluated in how it scales up or 
down the marginal benefits. We call this the marginal benefit index ( IMB), which is simply 
the product of the ratio of each draw ( k) to the mean value for each parameter:

 
IMB,k =

(
RRk

RR

)
·

(
V SLk

V SL

)

where RRk is the kth draw of the C-R distribution (relative-risk function), and RR is the 
mean; and V SLk is the kth draw of the VSL distribution, and V SL is the mean. At the 
mean values of each distribution IMB  is equal to 1. For values below 1, marginal benefits 
are lower than the mean, and for values above 1, marginal benefits are above the mean. The 
marginal benefit index distribution is shown in Table 1. The table shows, for instance, that 
at the first percentile of the joint distribution of marginal benefits accounting for uncertainty 
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in the log-linear C-R point estimate and the VSL, marginal benefits are 6% of the mean 
marginal benefit calculation. On the other extreme, the 99th percentile from this distribution 
shows that marginal benefits are 483% of the mean marginal benefit calculation. Put another 
way, the marginal benefits of abatement are 80-fold greater at the 99th percentile than the 
1st percentile. It is perhaps not surprising that the range of uncertainty in marginal benefits 
is large, but estimates of the impacts of air pollution on mortality are rarely presented with 
an acknowledgement of the magnitude of the uncertainty.

Characterizing the uncertainty in marginal benefits, while necessary, is not the main 
focus of this analysis. We are interested in how the uncertainty in marginal benefits impacts 
optimal levels of abatement of emissions. To answer this question, we take a draw from the 
marginal benefit index joint distribution and apply this value to the mean marginal benefit 
estimate at each source—Equation (3), with the appropriate form of the C-R function. This 
provides the benefits, for a source, of their emission reductions. We then calculate the opti-
mal emissions based on the available abatement technologies and their associated costs, 
described in detail in the section below.

This is a cumbersome process, so we needed to make decisions about the limited number 
of values to draw from the joint marginal benefit index. We decided on using a 3 × 3 matrix 
of values, using three values of the VSL distribution and three values of the C-R distribu-
tion, and every combination thereof. With this setup we can evaluate the impact on opti-
mal abatement given low, medium, and high values from each distribution (VSL and C-R), 
rather than just knowing the value of the opaquer marginal-benefit index. The actual values 
chosen are the 10th percentile, mean, and 90th percentile of the VSL distribution; and the 
2.5th percentile, mean, and 97.5th percentile of the C-R distribution. The resulting matrices 
(one for the log-linear and one for the log-log C-R) of the marginal benefit index are in 
Table 2. The specific percentiles chosen from each distribution are somewhat arbitrary, but 
the choice is not especially important—as is demonstrated in the results—because we can 
fit a curve through these nine points and provide a close approximation for any value of the 
marginal benefit index.

2.3 Calculating Optimal Abatement for Each Source

Now that we have each piece of the model, we have to put it together to find the optimal 
emission reductions at each point source. Each source is evaluated individually, and for each 
of the nine scenarios in the 3 × 3 matrix in Table 2—and done separately for the log-linear 
and log-log C-R functions. For a given scenario (value from the matrix) and source, we have 

Percentile IMB  log-linear IMB  log-log
1 0.061 0.062
5 0.137 0.159
10 0.206 0.275
25 0.437 0.461
Median 0.792 0.784
75 1.313 1.264
90 1.916 1.942
95 2.402 2.337
99 4.827 5.063

Table 1 Marginal benefits index 
distribution for log-linear and 
log-log functional forms
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the benefits of emission reductions, and all possible controls from the CoST model, and the 
reduction in emissions and the discounted annualized cost of each control.

Each control is compared with each other and the status quo. In the status quo, there 
are no benefits or costs, therefore, zero net benefits. If no available control has positive net 
benefits, then the model chooses the status quo, and there is no abatement. For each control, 
we calculate the benefits of abatement, which is simply the marginal benefits per ton of 
abatement times the tons of emission reduced.3 For some controls, both SO2 and primary 
PM2.5 emissions are reduced, so the model calculates the benefits of each and adds them 
together. For controls of NOX, there are no other pollutants reduced. Therefore, the model 
may choose to implement a SO2/primary PM2.5 control, or not; and may also choose to 
implement a NOX control, or not. Note, that some controls reduce primary PM2.5 only or 
SO2 only, they are not necessarily both reduced, but we only allow the model to choose one 
control that reduces SO2, primary PM2.5, or both pollutants.

The model identifies the chosen control(s) that produce the greatest net benefits, calcu-
lates the emission reductions of each pollutant, the resulting benefits, and the annualized 
cost of the controls. By choosing the control for each pollutant that has the greatest net ben-
efits, the model is picking the control at which the marginal benefits of abatement intersect 
with the marginal abatement cost function. Because of the discrete nature of the abatement 
controls, this intersection occurs where the marginal benefits per ton of abatement are equal 
to or greater than the marginal cost per ton of the abatement technology (this is illustrated 
in Fig. 2 below).

As mentioned above, the marginal benefit curves for any specific source are almost 
exactly constant across all quantities of abatement, but the curvature of the log-log C-R 
function greatly impacts the marginal benefit curve when the aggregate PM2.5 concentra-
tions change—with log-log the effect is that the marginal benefit curve shifts up substan-
tially when PM2.5 concentrations are lower; with log-linear the effect is that the marginal 

3  The marginal benefit curve for any particular source is very nearly flat because the impact on PM2.5 concen-
trations from any particular source on any particular location is relatively small. Therefore, any curvature in 
the C-R function is not relevant for a specific source. Our assumption of a constant marginal benefit curve is a 
helpful simplification and very marginally impacts the results. The curvature in the C-R function is important 
when the aggregate emissions and therefore concentrations of PM2.5 change (especially with log-log) and we 
flesh out that effect separately.

Table 2 3 × 3 matrix of marginal-benefit index for log-linear (top) and log-log (bottom) C-R functions. Col-
umns are the relative-risk for a 10 µgm−3 change in PM2.5. Rows are the VSL in millions
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benefit curve shifts down very little when PM2.5 concentrations are lower. To evaluate the 
impact of this curvature we ask: What is the optimal abatement if emissions from all sources 
(not just point sources) were reduced by some amount? In addition to the baseline, we 
evaluate a scenario in which PM2.5 concentrations everywhere are 50% of the baseline, and 
see how the optimal abatement technology adoption at point sources change.

3 Results

We start by illustrating the results from one particular point source of emissions: Unit 1 from 
the ALCOA Power Plant in Warrick, IN. This source is not a particularly large emitter, but 
is chosen to represent how the model functions. This unit emitted 522 tons of NOX, 160 tons 
of SO2 and 97 tons of primary PM2.5 in 2017. Figure 2 shows the marginal abatement cost 
function in red for this unit, for each of the three pollutants. We see the stepwise feature of 
these functions, in particular for NOX, in which there are progressively more costly abate-
ment options which provides increasingly greater abatement. The blue line shows the mar-
ginal benefits of abatement from this unit. These are the mean marginal benefits (i.e., when 
the marginal benefits index is equal to one). At this point on the marginal benefit index, the 
marginal benefit of a unit of reduction of NOX emissions is $13,650—the marginal benefits 
for SO2 and primary PM2.5 reductions are $27,500 and $52,100,respectively.

The intersection of the marginal benefits and the marginal abatement costs leads to the 
level of abatement chosen by the model. In this example, a substantial share of the NOX 
emissions is abated (72% or 376 tons), but neither of the abatement options for SO2 nor 
primary PM2.5 are selected because they are too costly. A different draw from the marginal 
benefit index would shift up or down the marginal benefits, and can lead to different inter-
sections, and therefore, different levels of abatement.

Fig. 2 Marginal abatement cost and marginal benefit functions from unit 1 from ALCOA Power Plant, 
Warrick, IN. Step functions, in red, are marginal abatement cost functions for each pollutant with the 
name of each abatement option listed on each step. The blue lines show the marginal benefits of abate-
ment from this unit, at the mean marginal benefits ( IMB = 1)
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3.1 Optimal Abatement Technology Adoption

The same process as in the above example is carried out for all point sources of emissions in 
the model. A couple of general themes emerge from our results: Under many circumstances, 
substantial reductions in emissions from point sources are optimal, and the largest variation 
in the quantity of abatement of emissions is when marginal benefits are drawn from the low 
end of the marginal benefit index.

We start by showing a comparison across our nine scenarios (each draw from the 3 × 3 
matrix) of the share of initial damages that remain after optimal emission reductions of all 
pollutants from all point sources. Note that the remaining damages is just a restatement of 
the benefits of abatement; however, these are presented as the share of the initial damages 
remaining, such that a smaller number represents greater benefits.4 These are illustrated 
in Fig. 3 with log-linear on the left and log-log on the right. The horizontal axis in Fig. 3 
shows the marginal benefit index, and the box and whisker plot inside the figure shows the 
distribution of that index (i.e., the distribution described in Table 1): The mean (green line) 
is at 1; the median (black line) is lower; the box shows the interquartile range (IQR), and the 
whiskers extend to the 5th and 95th percentiles. The nine scenarios are the white dots, and 
a best fit line shows an approximation of the optimal remaining damages for any possible 

4  We illustrate our results as the share of initial damages remaining, rather than the actual level, because at 
different values along the marginal benefit index, the initial damages are also different, and this way we pro-
vide a comparable baseline. Additionally, we use damages instead of emissions of each pollutant to see the 
broadest picture of the change in air pollution impacts from a single metric.

Fig. 3 Share of initial damages remaining after optimal control technologies implemented for each of nine 
scenarios (white dots). Krewski log-linear (left) and Krewski log-log (right) functional forms for C-R. 
The fitted lines demonstrate a close approximation of the optimal damages for any value of the marginal 
benefit index. The box and whisker plot, inside the graph, shows the distribution of the marginal benefit 
index across draws. The box and whisker plot, outside the axes, shows the distribution of optimal dam-
ages corresponding to the marginal benefit index. The green line is the mean, the black line is the median, 
the box represents the interquartile range, and the whiskers extend to the 5th and 95th percentiles
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value of the marginal benefit index. The close fit to the data of the best-fit line suggests that 
the decision regarding which values to include in the 3 × 3 matrix is not pivotal because a 
close approximation for any value of the marginal benefit index is obtainable.

The figure demonstrates that across the very wide range of marginal benefits the optimal 
abatement—as measured by share of remaining damages—varies substantially. However, 
over the IQR of the marginal benefit index, the range of optimal abatement is relatively 
narrow. The IQR of the marginal benefit index for log-linear extends from 0.44 to 1.31—
approximately a three-fold difference—yet the range of optimal abatement goes from a 32% 
reduction in damages to a 46% reduction (as shown in the box to the left of each axis). With 
log-log, the optimal abatement in the IQR of the marginal benefit index is from 44% reduc-
tion in damages to a 53% reduction.

The results from this model also suggest that if marginal damages are on the high end of 
the distribution, optimal abatement does not substantially increase beyond the 75th percen-
tile results, illustrated by the flatter portion of the best-fit line. Even at the 95th percentile of 
the marginal benefit index, optimal damage reduction is 53% (for log-linear) and 57% (for 
log-log). At the low end of the marginal benefit index the optimal abatement is much lower, 
illustrated by the steeper portion of the best-fit line. At the 5th percentile, the optimal abate-
ment is only 17% (for log-linear) and 30% (for log-log). The box-and-whisker plots outside 
and left of each vertical axis demonstrates these aspects, showing the distribution of optimal 
reduction in damages that maps from the marginal benefit index.

The short length of the bottom whisker and narrow range of the IQR of these distribu-
tions shows that over a wide range of the marginal benefit index, optimal abatement is in a 
narrow range. Thus, the interesting uncertainty, in terms of having a large impact on optimal 
abatement technology adoption, is on the low end of the marginal benefit index. The reason 
for this is because the marginal abatement cost curves become very steep at high levels of 
abatement, making further abatement a net negative for almost any higher value of the mar-
ginal benefits of abatement. At low levels of abatement, the marginal abatement cost curves 
are relatively flat, meaning that small changes in the marginal benefits can lead to large 
changes in the optimal amount of abatement. Our model shows that over a wide range of the 
marginal benefit index, most of the lowest-cost abatement options are a net positive. This 
suggests that devoting resources to resolving the likelihood of the low-end marginal benefits 
of reducing PM2.5 air pollution could achieve the biggest payoff from reduced uncertainty 
regarding optimal policy.

Table 3 shows the results across the nine scenarios in the 3 × 3 matrix, where the values 
are the share of initial damages remaining. This helps compare the importance of the uncer-
tainty in the C-R versus the VSL, in determining the optimal reduction in damages. Notice 
that for a relatively small amount of abatement to be optimal, it is almost required that the 
VSL be low. Even at the low end of the C-R function (2.5th percentile) the optimal share 
of initial damages is 70% for log-linear and 55% for log-log at the mean VSL. To get one-
quarter or less of initial damages reduced, both the VSL and C-R must be towards the low 
end of their respective distributions. Because the distributions of the VSL and C-R functions 
are independent, the probability of draws from both distributions being towards the low 
extreme is very small—for example, the probability of draws at or below the 10th percentile 
of the VSL and at or below the 2.5th percentile of the C-R function is 0.25%.

Figure 4 is similar to Fig. 3, but illustrates the optimal abatement across the three pollut-
ants. In each panel, the blue dots and best-fit line represent the log-linear C-R function, and 
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the red dots and best-fit line represent the log-log C-R function. Reductions are similar for 
SO2, NOX, and primary PM2.5. In each case, the reduction is greater with log-log compared 
with log-linear, but the difference is relatively small. The initial quantity of SO2 emissions 
(1.96 million tons) are greatest, by mass, compared with NOX (1.93 million tons) and pri-
mary PM2.5 (0.33 million tons). Similarly, the initial damages of SO2 make up a larger share 
of total damages (51%), than NOX (21%) and primary PM2.5 (28%). In the scenario with 
both distributions at the mean (i.e., the marginal-benefit index equals 1) with log-linear, the 
optimal damages are 56% of the initial damages, with 54% of the remaining damages from 
SO2 emissions, 22% from NOX, and 24% from primary PM2.5.

Abatement costs to achieve the optimal emission reductions increases sharply as we 
move from the low-end to the high-end of the marginal benefit index. With log-linear, in the 

Table 3 Share of initial damages remaining with optimal abatement for 3 × 3 matrix of marginal benefit index 
for log-linear (top) and log-log (bottom) C-R functions

Fig. 4 Share of initial emissions under optimal control technology across nine scenarios, for SO2, NOX 
and PM2.5 emissions. Red and blue lines are fitted to the data points (white circles)
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scenario with the lowest value of the marginal benefit index—the 2.5th percentile of C-R 
and the 10th percentile of VSL—the abatement costs are $0.5 billion, or $0.03 billion per 
percentage point reduction in initial damages. At the mean values of each distribution, the 
abatement costs increase to $12.7 billion, or $0.29 billion per percentage point reduction 
in damages. Finally, in the scenario with the highest marginal benefit index—the 97.5th 
percentile of C-R and the 90th percentile of VSL—the abatement costs are $26.8 billion, or 
$0.50 billion per percentage point reduction in damages. Plotting the abatement costs and 
percentage point decrease in initial damages, we construct the abatement cost and marginal 
abatement cost functions. The equation for the aggregate marginal abatement cost (MAC) 
function is

 MAC (x) = 20,885,480e0.0934x

where x is the percentage point decrease in initial damages.
The optimal emission reductions are not uniformly distributed across the US. We find 

that the sources with the largest initial damages, and the sources that, on average, reduce 
their initial damages the most, are concentrated in the Midwest/Rust Belt, with some other 
key reductions coming from the south and southeast regions. There are some sources in the 
west that are large emitters, but the impact of those emissions is relatively small, and they 
tend to not reduce their emissions/damages appreciably in the model.

Of the point sources included in the model, the largest sector of initial damages is from 
the combustion of coal—for electricity generation and industrial boilers—representing 51% 
of total initial damages. These sources reduce their damages (in the scenario in which the 
marginal benefit parameters are at their means) by 63%. Emissions from industrial pro-
cesses, that make up one-third of initial damages, reduce their damages in this scenario by 
45%. All other sources reduce their initial damages by 33%.

3.2 Lower Background PM2.5 Concentrations

Up to this point, our results show that optimal damages are consistently similar but lower 
with the log-log C-R function compared with log-linear. Next, we show how these results 
change when background PM2.5 concentrations are lower than the baseline. As was men-
tioned earlier, when PM2.5 concentrations decrease, the log-linear marginal benefit function 
shifts down very slightly, but the log-log marginal benefit function shifts up appreciably. 
Mechanically, for log-log this is explained by Eq. (2), such that the marginal benefits are 
divided by the PM2.5 concentration—marginal benefits increase with reductions in concen-
tration. The same is not true of the log-linear marginal benefits in Eq. (1). With log-log, for 
a given source, when concentrations are decreased in all downwind locations, the benefit of 
reducing each unit of emissions is greater, thus causing the source’s marginal benefit func-
tion to shift up. When concentrations decline, and the marginal benefits shift up for each 
source, this leads some sources to abate more emissions, and other sources to start abating 
emissions.

Figure 5 illustrates these effects, where we reduce background concentrations from 100% 
of the baseline, to 50% of the baseline. With both scenarios we hold constant the initial 
emissions from any given source, and then calculate the optimal emission reductions, and 
resulting share of initial damages remaining. In Fig. 5, the solid lines (and dots) are from 
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the baseline concentrations, and the lighter lines (and dots) show the optimal damages with 
lower background concentration.

The lines for log-linear (blue) are nearly overlapping, showing that marginal benefits stay 
nearly constant regardless of the background PM2.5 concentration. The optimal damages for 
log-log (red), on the other hand, get smaller with lower concentrations. The effect is quite 
small at large values of the marginal benefit index, showing that we are reaching the limit of 
the available controls for reducing emissions. At the low end of the marginal benefit index, 
the drop in remaining damages across background concentration is substantial. For the 2nd 
lowest scenario of the marginal benefit index ( IMB  = 0.236), the optimal damage reduc-
tion for log-log is 34% with 100% background concentrations, and this reduction increases 
to 44% when the background concentrations are 50%. This translates to a much larger gap 
between log-linear and log-log when the background concentration is lower. In the above 
example, the gap with 100% background concentrations is 11 percentage points (i.e., log-log 
decreases initial damages 11 percentage points more than log-linear), but this gap increases 
to 22 percentage points when background concentrations are at 50%. The key takeaway is 
that functional form matters much more when background concentrations are substantially 
lower than current concentrations and at the low end of the marginal benefit index.

In addition, when the background concentrations are lower (50% of current levels), the 
range of optimal abatement with log-log is narrow. For example, when IMB  = 0.236 this 
leads to a 44% reduction in damages, and when IMB  = 2.77 this leads to a 58% reduction 
in damages. In other words, a ~ 12-fold increase in marginal benefits (2.77 divided by 0.236) 
only increases damage reductions by 14 percentage points (58% minus 44%).

Fig. 5 Change in optimal damages given different background PM2.5 concentrations for log-linear (blue) 
and log-log (red). The lines are fitted to the data points (white circles). The solid lines and data points 
represent the results when background concentrations are at baseline levels (100%). The lighter lines and 
data points represent the results when background concentrations are at 50% of the baseline

 

1 3



A. L. Goodkind et al.

3.3 Plant Shutdown and Optimal Abatement

An important feature of pollution management, heretofore not included in the model, is the 
potential for the complete shutdown of a pollution source. In these situations, the socially 
optimal situation is for the facility to cease operation and eliminate all emissions. This can 
occur when the damages from the source are large (or the benefits of abatement are large), 
and the available abatement technologies are too expensive for the facility to adopt. This 
could potentially allow for substantially greater levels of abatement, especially when the 
marginal benefits of abatement are large. The information on the costs of such shutdowns, 
at each of the over 36,000 point sources modeled, is not available in the CoST model, and 
so cannot be directly simulated. Instead, we run a sensitivity analysis in which all emissions 
may be eliminated at a fixed dollar-per-ton shutdown cost. Then we vary this cost to see how 
this parameter affects optimal abatement decisions. The shutdown condition is included in 
the model in additional to the suite of available abatement technologies. The model then 
chooses either the status quo, an abatement technology, or shutdown, depending on which 
option provides the greatest social net benefits.

Given the diversity of sources in the model, the shutdown costs per ton of emissions 
reduced could vary enormously between facilities. We decided to choose values that rep-
resent the potential cost of providing emissions-free alternative electricity generating units 
to replace coal and natural gas power plants. Assuming a range between $35 and $60 per 
megawatt-hour (MWh) for renewable energy (EIA 2022), the cost of emissions reduced 
from coal power plants could be as low as $30,000 per ton; and the cost of emissions reduc-
tion from natural gas power plants could be as high as $200,000 per ton.5 For facilities with 
many emissions, the shutdown costs per ton of emissions could be relatively low given the 
potentially large benefits of eliminating all of the harmful emissions. On the other hand, 
facilities with few emissions, the shutdown costs may be very high, because there are rela-
tively limited health benefits of removing these emissions.

We run our model with three possible shutdown costs, using $50,000, $100,000, and 
$150,000 per ton of emissions reduced. The results are presented in Fig. 6. The red line 
and circles represent the results presented earlier in Fig. 3 for the log-log C-R function. The 
dotted lines and corresponding circles represent optimal damage reductions when shutdown 
is available, again using the log-log C-R function. The general shape of the functions with 
shutdown is similar to without, but the drop off in damages (or increase in abatement) is 
substantial. Providing the option to shut down production becomes increasing attractive for 
the range when marginal benefits of abatement are approximately half their mean values 
( IMB = 0.5) to 50% above their mean values ( IMB = 1.5). Over this range, the pollution 
damages drop substantially below the base-case levels, across all three of the shutdown cost 
scenarios.

While Fig. 6 can only provide a general approximation of how optimal abatement would 
change with the option to shut down production, it does illustrate the importance of under-
standing facility closures, and provides an avenue for future research.

5  We base these calculations using the average emission rates of SO2 and NOX per MWh of electricity pro-
duced from coal and natural gas power plants. Coal power plants release, on average, approximately 2 pounds 
of SO2 and 1 pound of NOX per MWh of electricity (EPA 2020). Natural gas power plants release, on average, 
approximately 0.5 pounds of NOX per MWh of electricity (EPA 2020).

1 3



Optimal Point Source Abatement Technology Adoption: The Impact of…

4 Conclusion

The stakes in achieving the optimal level of air pollution across the landscape are high. Even 
at the relatively low concentrations observed in the US, ambient pollution of fine particles 
remains a significant health threat. Analysis of policies to improve air quality is bedeviled 
by a number of analytical challenges, including both the correct shape of the C-R relation-
ship and the role of uncertainty around the main components of the problem.

We provided what we hope is a step forward on both of these dimensions. Using the 
CoST model, we compared the cost and benefits of abatement technology adoption at most 
point sources of air pollution in the US, accounting for the spatial distribution of health 
impacts from each source. Our results provide insights into the optimal level of pollution 
reduction, balancing the marginal cost of further reductions at each source against the mar-
ginal benefits of that reduction. Uncertainty concerning the C-R function as well as the value 
of a statistical life shows that the range of optimal reduction can be quite large. The shape 
of the C-R function, whether log-linear or log-log, has its own large impact on the results, 
with the divergence growing as air quality improves. The payoff to further refinements of 
our understanding of both uncertainty and functional form would appear to be quite high.

Our analysis is limited by a few factors. First, we rely on the CoST model for our esti-
mates of abatement costs; however, Shapiro and Walker (2020) showed that these engineer-

Fig. 6 Share of initial damages remaining after optimal control technologies or shutdown implemented 
for each of nine scenarios (white dots) and best-fit lines. The red line and circles represent the base case 
with no shutdown possible. The darker dotted line and circles represents abatement with the option to 
shutdown operators and eliminate all emissions for $150,000 per ton. The lighter dotted lines and circles 
represent abatement when shutdown costs are $100,000 and $50,000 per ton
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ing costs may deviate substantially from marginal abatement costs inferred from pollution 
markets. In particular, Shapiro and Walker found the CoST model tends to underestimate 
costs of NOx abatement and overestimate costs of VOC abatement. In addition, the CoST 
model employed here cannot incorporate other important factors that impact emissions and 
abatement technology adoption. For instance, natural gas prices may influence facilities’ 
fuel input decisions, leading to more or less coal and oil consumption and altering the emis-
sion profile for a source. These types of production decisions are beyond the abatement 
technology adoption decisions we can model. For the US-wide source-specific estimates 
of abatement costs that we sought for this analysis—to compare with the source-specific 
marginal benefits—the CoST model was an appropriate choice.

Second, the scale of the emission reductions in many of the scenarios outlined in the 
paper could have substantial impacts on local and regional air quality. This could potentially 
lead to population sorting towards areas with improved air quality, and have general equilib-
rium effects that are not accounted for here.

Third, we do not include the possibility of plants shutting down in our main analysis. 
To evaluate the actual costs of this option requires knowing the alternative production (and 
emissions) that would be adopted to replace each source. Given the scale of the sources 
evaluated here, this was not a feasible option. However, our sensitivity analysis with a 
relatively crude shutdown option illustrates the importance of incorporating this decision 
into pollution abatement models. Further research along the path we have laid down could 
profitably address the effects of a move away from fossil energy production. A renewable, 
electrified energy system for transportation and buildings and industry would likely drive a 
much larger reduction in particulate concentrations that we have considered here. That is a 
fruitful area for further research.
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