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A B S T R A C T

Buildings are significant contributors to global energy consumption, necessitating urgent action to reduce energy 
use and associated emissions. Urban Building Energy Modeling (UBEM) is a critical tool that provides essential 
insights into citywide building energy dynamics though generating quantitative energy data and enabling ho
listic analysis and optimization of energy systems. However, current UBEM methodologies and tools are con
strained by their reliance on non-urban-specific and aggregated climate data inputs, leading to discrepancies 
between modeled and actual energy expenditures. This article presents a comprehensive review of the datasets, 
tools, methodologies, and novel case studies deployed to integrate microclimates into UBEMs, aiming to bridge 
the modeling gap and to address the uncertainties due to the absence of real-world microclimate data in the 
models. It expands beyond conventional methods by elaborating on substitutional observational-based and 
simulation-based datasets, addressing their spatial and temporal tradeoffs. The review highlights that while 
remote sensing technologies are extensively utilized for building geometric data UBEM inputs, there remains an 
underexplored potential in reanalysis and observational-based products for environmental data; specifically, for 
the inclusion of parameters that are conventionally not included in UBEM analysis such as tree canopy coverage 
and land surface temperature. Furthermore, adopting a hybrid methodology, which combines observational and 
simulation-based datasets, may be a promising approach for more accurately representing microclimate condi
tions in UBEMs; as this process would ensure more representative climate parameter inputs and ground-truthing, 
while effectively managing computational demands across extensive temporal and spatial simulations. This could 
be achieved through integrating local earth observation datasets with computational fluid dynamics (CFD) tools 
or by merging local earth observational data with simulation-based reanalysis products and coupling these 
weather inputs with simulation-based building energy management models. Finally, this review underscores the 
importance of validating UBEMs with local microclimate weather data to ensure that model results are action
able, reliable, and accurate.

1. Introduction

The percentage of global population residing in cities is projected to 
increase to 68 % by 2050 [1]. This rapid urbanization has led to denser 
buildings, infrastructure, and increased inter-building connections [2], 
as well as significant changes in land use patterns in cities [3]. These 
developments have intensified the Urban Heat Island (UHI) effect [4,5], 
characterized by elevated urban temperatures [6], alerted albedo [7], 
reduced native foliage concentrations [8,9], and disrupted surface en
ergy balances and thermal properties [10]. Additionally, urban 
morphological factors, such as taller buildings and higher skylines, have 

influenced wind patterns and turbulence [11] by creating large shadows 
and localized thermal eddy trappings [12]. These transformations have 
led to the emergence of microclimate conditions, where the local cli
mates differ significantly from surrounding environments [13] and have 
thus impacted the energy demands for heating, cooling, and ventilation 
systems needed to maintain habitable conditions indoors. Understand
ing these microclimate conditions is essential for interpreting the in
teractions between the built environment and urban energy dynamics, 
ensuring cities remain sustainable and resilient.

Urban Building Energy Modeling (UBEM) has emerged as a powerful 
tool for analyzing energy patterns and optimizing building performance 
within urban contexts [14–16]. To fully understand energy dynamics, 
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the scope of energy modeling must extend beyond the individual 
building level and include interactions between buildings and their 
urban contexts [17]. Unlike Building Performance Simulation (BPS) 
tools, which focus on single buildings, UBEM examines clusters of 
buildings, accounting for inter-building connections, and broader urban 
influences. UBEM methods vary based on the scale (e.g., block, neigh
borhood, or city) and temporal scope (e.g., daily, episodic, or annual) 
[15]. These methods fall into two major bottom-up approaches: data- 
driven and physics-based models [18], as elaborated on in Section 4. 
Emerging hybrid approaches combine the two methodologies to 
enhance the reliability and computational efficiency of UBEMs [18,19]. 
UBEM relies on diverse datasets, including building geometry, occu
pancy data, localized weather and climate, and urban scale parameters, 
to holistically characterize energy demands [20]. By generating quan
titative energy insights and addressing energy dynamics across neigh
borhoods and cities, UBEM supports sustainable design, retrofit, 
planning, policy-making, and resource allocation [18,16,14].

However, despite significant advancements in recent years, UBEM 
faces notable limitations in accurately representing urban energy use, 
resulting in a substantial gap between simulation results and actual 
measured energy data [18]. These challenges stem from uncertainties in 
large-scale models, reliance on oversimplified archetypes, and general
ized climate inputs. The complexity of urban energy modeling arises not 
only from thermodynamic systems but also from the nonlinear in
teractions among diverse and dynamic urban elements, such as urban 
contexts and microclimates [21–23]. Furthermore, dynamic factors, 
including localized microclimates, occupancy patterns, and socio- 
economic variables, are often excluded from these models, limiting 
their ability to capture critical variables such as temperature gradients, 
wind patterns, and solar radiation variations, all of which significantly 
influence energy performance [24–27].

Expansive climatic differences worldwide have been shown to 
drastically impact building energy demands [28,29]. Additionally, the 
proximity of buildings to surrounding infrastructure further contributes 
to energy performance variations, with urban morphology factors such 
as building density, interconnections, and the Urban Heat Island (UHI) 
effect influencing microclimate conditions [15,30–32]. The relation
ships among UHI intensity, urban compactness, and building energy 
demands are well-documented, emphasizing how urban microclimate 
dynamics alter energy loads and performance [33–37]. These challenges 
are compounded by issues in data resolution, sufficiency, and method
ological robustness, which hinder the ability of UBEM to provide accu
rate and actionable insights [14,23,38–40]. Addressing these gaps is 
critical for improving the accuracy and applicability of UBEM in 
evolving urban landscapes, enabling more resilient and sustainable 
urban energy systems.

The primary objective of this article is to address the simulation-to- 
reality gap in UBEMs by offering a comprehensive review of datasets, 

tools, and methodologies for integrating urban microclimates into their 
frameworks. It aims to enhance the accuracy and applicability of UBEM 
by examining how localized microclimate variables can effectively 
inform urban energy dynamics. The article evaluates methods for pre
dicting building energy performance in urban contexts, presenting a 
detailed analysis of key literature, datasets, and tools. In this context, 
“datasets” represent critical climate data for energy predictions, divided 
into simulation-based and observational-based categories, whereas 
“tools” refer to the software and platforms utilized to simulate and assess 
the interactions between microclimates and energy systems. Addition
ally, it introduces a collection of novel case study methodologies, which 
include approaches and frameworks for integrating these datasets into 
UBEMs, highlighting their strengths, opportunities, and spatiotemporal 
trade-offs. Finally, the article provides recommendations for future 
research directions to enhance UBEM accuracy and performance, spe
cifically by improving the integration of environmental data, thereby 
bridging the simulation-to-reality gap.

2. Methodology

The outcomes of review papers are heavily influenced by the search 
criteria for, and selection processes of, novel articles. Systematic pro
cedures are used in this review to ensure an objective and repeatable 
review processes [41]. This paper utilizes a query-based methodology to 
find relevant publications within the field of interest using Web of Sci
ence (WoS) and Science Direct databases, as highlighted in Fig. 1. 
Different search criteria were used for each database to strategically 
include both case study articles and review articles. For instance, the 
WoS database returned more articles on case study methodologies and 
frameworks, whereas Science Direct returned more review article results 
– thus respective databases’ strengths were catered to. It should be noted 
that WoS and Science Direct databases often returned the same articles 
under their unique selection criteria, but both databases were used to 
diversify the sources included in this review. Beyond these databases, 
additional publications were screened and references, specifically to 
provide insights to nontrivial technicalities of earth observational 
technologies. The quantity of articles incorporated into this review that 
include aspects of UBEM and microclimates is 53 as shown in Section C 
of Fig. 1.

Ten case studies, noted as unique in the field due to their innovative 
methodologies for incorporating microclimate data into UBEMs, are 
elaborated on more explicitly in this literature review and summarized 
in Table 5. The selection criteria for the case studies are characterized in 
Section D of Fig. 1. We adhered to common standards used in previous 
literature reviews published in scientific journals to access the quality of 
included studies. These standards include peer-review status, citation 
analysis, clarity and rigor of study design and methodology, sample size 
and representativeness, transferability of findings, transparency, 

Nomenclature

Abbreviations
BEM Building Energy Management
BPS Building Performance Simulation
CDF Computational Fluid Dynamics
CDD Cooling Degree Day
DEM Digital Elevation Models
EO Earth Observation
EMR Electromagnetic Radiation
HDD Heating Degree Day
HI Heat Island
IEQ Indoor Environmental Quality
LES Large Eddy Simulation

LiDAR Light Detection and Ranging
LST Land Surface Temperature
NDVI Normalized Difference Vegetation Index
NWP Numerical Weather Prediction
RANS Reynolds Averaged Navier Stokes
UBEM Urban Building Energy Modeling
UCM Urban Canopy Model
UHI Urban Heat Island
UHII Urban Heat Island Index
SWIR Shortwave InfraRed
TIR Thermal Infrared
TMY Typical Meteorological Year
VNIR Visible and Near-Infrared
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reproducibility of the study, and the use of standardized measures. This 
approach enables a rigorous evaluation of the reliability and validity of 
the studies included in the review.

3. Existing literature on microclimates and energy modeling

Various existing review articles comment on aspects of both UBEM 
and urban microclimates within the building energy modeling sector. 
For instance, [14–16,18,20], expand on urban building energy modeling 
tools and methodologies, and introduce some key tools and methodol
ogies for including microclimate data. A review of CFD urban micro
climate studies expands on applications of simulation-based datasets in 
the built environment [42]. This literature is complimented by [13], a 
systematic review article that expands on the applications of microcli
mate studies. Moreover, simulation based microclimate data and 
building energy models coupling techniques are well documented and 
compared in [43]. The integration of local climate data in building en
ergy models is addressed for simulation-based datasets for building level 
energy models in [44]. Additionally, systematic data-driven energy 
prediction reviews [45] and [46] tabulate commonly used machine 
learning methods and climate data inputs. Another recently published 
UBEM and microclimate hybrid-systematic review article [47] elabo
rates on key terms in the field, conducts cluster analysis of recent 
studies, and outlines future research directions specifically focusing on 
applications with hot climate contexts.

This review article at present stands out due to its novel approach. 
Unlike previous studies, it explicitly examines urban building energy 
modeling at larger scale (ex. neighborhood and city) while incorporating 
a diverse array of microclimate datasets. This review - dives deeply into 
both observational-based and simulation-based sources, and specifically 
focus on earth observational datasets, which have significant potential 
in addressing data gaps. This review article is the first of its kind to 
introduce the application of earth observational datasets in UBEMs, 
highlighting their benefits, limitations, and potential for future research. 
Table 1 further illustrates the distinctions between this review and 

existing literature, underscoring the novelty and unique contributions of 
this study to the field.

4. Microclimate datasets and tools for UBEM inputs

This review examines effective methods for accurately predicting 
building energy performance in urban contexts through a comprehen
sive analysis of key datasets and tools for integrating microclimate 
variables into UBEM frameworks. Microclimates, defined as encom
passing a spatial scale of up to 120 m vertically in the atmosphere 
[48,49] and up to 2 km horizontally [50], as illustrated in Fig. 2, 
significantly impact building energy demands. These impacts arise from 
variations in temperature, solar radiation, wind patterns, humidity 
levels, and precipitation in urban areas compared to rural settings with 
similar climate zones. In this context, “datasets” refer to climate data 
critical for UBEM energy predictions, categorized into simulation-based 
and observational-based types, while “tools” denote the software and 
platforms used for modeling and analyzing the interactions between 
microclimates and energy systems.

Common UBEM models use historically aggregated weather data for 
their weather and climate component inputs. These datasets, often in 
form of a Typical Meteorological Year (TMY) [51], are conventionally 
collected in remote open areas that are normally absent of urban context 
terrain [15]. TMY datasets contain measurements of hourly weather 
observations over only a 12 meteorological month calendar, although 
collected from multiple years and aggregated into one year [51]. Due to 
their specific aggregation process, TMY datasets fail to account for en
ergy estimations during extreme weather events, such as heat waves and 
cold waves, periods responsible for peak thermal loadings and where 
infrastructure reliability is pivotal for the protection of human health. 
Furthermore, these datasets fail to include microclimate parameters 
known to influence urban building energy consumption such as albedo, 
vegetation density, water availability in the soils, land surface temper
ature, etc. Additionally, these datasets do not account for changing 
climate conditions and do not report inputs at a high enough spatial 

Fig. 1. Stages of evaluation for the articles included in this review article.
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resolution to describe the changes to climate and weather data in urban 
environments, ignoring the inferences by physical structures and their 
corresponding human activities, and thus exacerbating uncertainties 
within modeling results.

To account for spatiotemporal resolution in climate data, numerous 
UBEM methods have been developed to substitute, modify, and replace 
the conventional TMY weather data file inputs. These UBEM climate 
data inputs can be categorized into observational-based and simulation- 
based approaches [15], each offering unique tradeoffs in spatial and 
temporal granularity. These climate variable data inputs are then com
bined within building energy modeling platforms through various 

coupling and integration techniques, as elaborated on in the next sec
tion. Observational-based approaches include only measured values, 
such as in-situ data and remote sensing observations; whereas 
simulation-based approaches use numerical-based conventions to 
represent local climate data elements, given reference observational 
based data [17]. In-situ observations have been coupled into UBEM 
models by simulation-based platforms such as TRNSYS and CityBES. 
Further, earth observational data has been combined with UBEMs 
through data-driven techniques. Fig. 3 presents a list of the approaches, 
and data sources for both observational-based and simulation-based 
methods, whereas Table 2 compares these dataset types. The 

Table 1 
Existing literature review articles in this research domain.

Article Name Type of Review Application 
Scale

Climate Datasets Discussed Detail

Addressing the modeling-to-reality gap: 
A comprehensive review of datasets, 
tools, and methodologies for 
integrating microclimates into urban 
building energy models (UBEMs) 
[Present paper]

Review of datasets, tools, 
and methodologies for 
integrating urban 
microclimates into UBEMs

urban scale TMY data, simulation-based datasets 
(ENVI-met, CityFFD, WFR, Meso-NH, 
TRNSYS, TEB, Solene-Microclimat,), 
observational-based datasets (sensor data, 
downloadable data, earth observational 
datasets)

This article presents a comprehensive 
review of the datasets, tools, 
methodologies, and novel case studies 
deployed to integrate microclimates into 
UBEM. It expands beyond conventional 
methods by elaborating on 
substitutional observational-based and 
simulation-based data types, addressing 
their spatial and temporal tradeoffs.

Ten questions on urban building energy 
modeling [15]

UBEM overview urban scale TMY data, simulation-based datasets 
(Urban Weather Generator, CFD, Weather 
Research and Forecasting)

Introduces UBEM methods, applications, 
challenges, opportunities, and future 
research directions.

Data acquisition for urban building 
energy modeling: A review [20]

Review of UBEM data 
inputs

urban scale TMY data, observational-based datasets 
(local weather stations, weather 
underground), and future weather data 
(Urban Weather Generator)

This literature review outlines baseline 
information acquiring all input data for 
UBEMS. It touches on different aspects of 
collecting weather and climate data and 
addresses future weather sources; 
although weather data is not the 
preliminary focus of the article.

Urban energy use modeling methods 
and tools: A review and an outlook 
[18]

Review of UBEM 
methodologies (simulation 
based, data-driven, 
hybrid)

urban scale Simulation-based datasets (CFD, Urban 
Multiscale Environmental Predictor, 
ENVI-met) 

This review article mainly focuses on 
addressing the differences between data- 
driven, hybrid, and simulation based 
UBEM methodologies; highlighting the 
tradeoffs of each.

How building energy models take the 
local climate into account in an urban 
context – A review [44]

Literature review of the 
simulation-based datasets 
for building energy models

building scale Simulation-based datasets (Meso-NH, TEB, 
WFR, Urban Canopy Model, Building 
Effect Parameterization, UWG, Canyon Air 
Temperature, Canopy Interface Model, 
ENVI-met, Solene-Microclimat)

This literature review gives an overview 
of Urban Climate Model (UCM) and 
Building Energy Model (BEM) coupling 
and chaining strategies; elaborating 
specifically on 9 different 
configurations.

A review on the CFD analysis of urban 
microclimate [42]

Review of CFD 
microclimate studies for a 
wide variety of research 
applications

N/A Simulation-based microclimate modeling 
software and equations (ENVI-met − most 
popular)

This review discusses 183 CFD studies on 
urban microclimate, addressing key 
tools, equations, and applications.

A review of data-driven building energy 
consumption prediction studies [46]

Systematic review of data- 
driven energy prediction 
studies

building scale, 
urban scale

Observational-based datasets (sensor data, 
downloadable data)

This review conducts a meta-analysis of 
data-driven energy prediction studies, 
outlining their applications (heating, 
cooling, ect), data-driven methods, and 
metrics for assessing model 
performance.

Urban microclimate and its impact on 
built environment – A review [13]

Systematic review of 
urban microclimate 
studies for a wide variety 
of research applications

N/A Observational-based datasets (field 
measurements), Simulation based datasets 
(CFD, ENVI-met, Fluent, OpenFOAM)

This article highlights the latest progress 
in urban microclimate research, 
addressing traditional methods, field 
measurements, wind tunnel modeling, 
CFD, and emerging data driven studies. 
It reviews 563 publications on urban 
microclimate.

Correlating the urban microclimate and 
energy demands in hot climate 
Contexts: A hybrid review [47]

Hybrid-systematic review 
on UBEM and 
microclimate

urban scale Simulation-based datasets (ENVI-met, 
OpenFOAM, UWG, WRF-UCM)

This article conducts a systematic review 
of UBEM and microclimate studies. It 
elaborates on key terms in the field, 
conducts cluster analysis of the studies, 
and outlines future research directions 
specifically focusing on applications 
with hot climate contexts.

Urban microclimate and building energy 
models: A review of the latest progress 
in coupling strategies [43]

Review of microclimate 
and energy model 
coupling strategies

building scale, 
urban scale

Simulation-based datasets (CityFFD, 
OpenFOAM, TRNSYS, Fluent, UWG, Green 
Building Studio, Solene-Microclimat, IES, 
ENVI-met, ESP-r)

This review addresses the coupling 
strategies between urban microclimate 
and building energy models, elaborating 
on opportunities, limitations, and future 
research directions.
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subsequent sections will elaborate on these datasets in greater detail, 
highlighting the benefits and uncertainties associated with each UBEM 
climate and weather dataset input.

4.1. Observational-based microclimate datasets

In 2020, the quantity of data created, captured, copied, and 
consumed worldwide was 64.2 zettabytes; by 2025, this value is pro
jected to triple in size due to developments in ubiquitous sensing, 
Internet of Things (IoT), and machine learning algorithms [52]. That is, 
observational-based data is becoming increasingly accessible to capture 
and monitor − thus providing an exciting expansion in scientific prog
ress and discoveries. In the context of UBEM applications, increased 
accessibility to higher spatial–temporal climate data can help re
searchers better understand the effects of urban microclimates on 
building energy performance.

Observational-based climate datasets are classified from two sources, 
station-based data or Earth Observation (EO) derived data [53]. Station 
based in-situ data, or ground-based sensor data, observe meteorological 
parameters from instruments located on the earth’s surface. Whereas EO 

data is sensed with remote sensing techniques, that make observations 
from sensors onboard satellites and unmanned arterial vehicles located 
above the earth’s surface, subsurface, and atmosphere, and then trans
mit the recordings remotely to servers on land [54]. Both forms of 
observational based data types offer unique tradeoffs between accuracy 
specifications and spatiotemporal granularity, as elaborated on in the 
subsequent sections.

The quality of observational data is heavily dependent on its 
collection and recording methods. For all observational-based studies it 
is important to address quality standards such as; temporal and spatial 
homogeneity, reliability, and metadata reporting [55]. It is imperative 
that observational-based data undergoes proper and precise monitoring 
to ensure its value. This involves adherence to World Meteorological 
Organization (WMO) standards [56], recording on regular time intervals 
in consistent locations, and continuously processing through frame
works that record sensor geographical points, instrument specifications, 
and insights to recording procedures [55]. For all observational re
cordings, the location of collection, measurement frequency, and 
sensing tool accuracy play pivotal roles in data quality and reliability. 
Additional bias mitigation strategies include using accurate (high 

Fig. 2. Spatial extent of climate categories: microclimate, mesoclimate, and macroclimate based on horizontal distance scale.

Fig. 3. UBEM weather and climate dataset inputs.

Table 2 
Analysis of Observational-Based and Simulation-Based Climate Dataset Model Inputs with Key Strengths and Limitations Across Categories.

Dataset Type Scalability Spatial Granularity Temporal Granularity Parameter Variety Reliability Coupling Feasibility

Observational-Based In-Situ – – ✓ ✓ ✓ –
Earth Observational ✓ ✓ – ✓ – –

Simulation-Based – ✓ ✓ – – ✓
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precision) instruments and placing them in regions that are represen
tative of the surrounding environment (not near heat sources, in sun
light, or in drafts).

4.1.1. Station-Based, In-Situ data
Station-based, or in-situ microclimate data used in urban building 

energy modeling studies take on diverse ranges of sourcing patterns and 
are collected at wide ranges of spatiotemporal resolutions. Due to the 
diverse availability of devices, there is a spectrum of data collection 
methods present for in-situ measurement, causing considerable varia
tion in the procedures for deploying instrumentation. Observational- 
based in-situ data can be accessed using web-based portals, through 
crowd sourcing and citizen science, or by context specific instrumenta
tion deployment. Some of the most common point source, or localized 
and stationary, weather observational datasets are hosted by open- 
source web-based entities. These sites aggregate weather information 
and forecasts for the majority of the largest US and international cities; 
Example of sites with free weather download capabilities include 
Weather Underground [57], Open Sky [58], and the National Oceanic 
and Atmospheric Administration (NOAAs) Climate Data Online [59]. 
Other websites such as Cal-Adapt [60] and Open Weather Map [61] host 
free Application Programing Interfaces (APIs) that facilitate instanta
neous data transfers between local and web based servers [62], where 
observations from existing weather stations can be pulled and updated 
in real time.

In-situ measurements often face challenges with the routine record 
keeping at high spatial resolution. Often, sensors with larger temporal 
time records are deployed for aviation applications, in regions that 
normally lack urban from [53]. Also, weather data that is readily 
available may vary it its accuracy specifications or include only a small 
subset of weather and climate variables (ex. temperature, windspeed, 
rainfall, pressure). Therefore, if weather parameters are not readily 
available in the desired spatial and temporal formats, researchers can 
deploy their own instrumentation to meet their context-specific scien
tific goals.

The most common in-situ weather variables collected for 
observational-based data-driven energy prediction studies include: dry- 
bulb temperature, dew point temperature, relative humidity, global 
solar radiation, wind speed, wind direction, degree of cloudiness, pres
sure, rainfall amount, and evaporation [46]. These observations are 
sometimes transformed for analysis like binned by distribution, such as 
temperature binning, normalized by heating/cooling thresholds, such as 
in Heating Degree Days (HDD) calculations and Cooling Degree Days 
(CDD) calculations, or quantified in terms of human safety, such as the 
Heat Index (HI) calculation and the Urban Heat Island Index (UHII) 
calculation [8,53].

For instance, in-situ measurements were deployed in Rome to 
address the spatial and temporal granularity of microclimates bellow the 
urban canopy layer. In this study, air temperature and relative humidity 
were sampled every 10 min, at 5 locations across the city for three years, 
then coupled and simulated in TRNSYS to access the impact on urban 
climate for two reference buildings [63]. Furthermore, at a higher 
spatial resolution and lower temporal resolution, hourly weather data 
(dry bulb temperature, relative humidity, global horizontal radiation, 
and wind speed) was collected for 10 years at 27 different monitoring 
sites in San Francisco and combined into CityBES urban microclimate 
mapping feature to identify spatial patterns in urban energy expendi
tures during a 3-day heat wave in 2017 [12]. In synthesis, a downfall to 
in-situ microclimate data is its inability and lack of feasibility to char
acterize conditions at high-spatial granularity. For example, in the 
instance of urban energy studies, it becomes increasingly resource 
intensive and intricate to install, operate, and maintain environmental 
data reporting stations at such high spatial granularity (such as the 
building level) across the city-wide scale. There also pose challenges 
with the availability of programs and the assumptions made in programs 
when combining multi-sensor data into UBEMs. Additional challenges 

with data gathering methods include difficulties with synchronizing 
sensor sampling rates, sensor drift, sensor communication, and sensor 
operation [46]. Earth observation-derived data [64] products can 
address these challenges by providing longitudinal insight to environ
mental conditions through the respective use of the same sensor for each 
product domain (ex. air temperature).

4.1.2. Earth observation-derived data
The number of articles published on remote sensing and land surface 

temperature in 2020 was approximately threefold of that in 2013, 
indicating a substantial surge in research activity within this field [65]. 
That is, advancements in knowledge of capturing, spatial coverage, 
temporal coverage, methods, and frameworks have expanded the sci
entific applications of remote sensing techniques. In simple terms, Earth 
Observation (EO)-derived data uses imagery methods sampled above 
earth to capture information about diverse urban climates and surface 
variability [66]. Due to its location of sampling, EO-derived data depicts 
the state of the atmosphere, land, and ocean, offering a unique and 
expansive set of environmental predictors for urban heat island and 
energy modeling studies [66]. Earth-derived satellite observations used 
for climate-related energy modeling studies are measured by multi
spectral, hyperspectral, Light Detection and Ranging (LiDAR), and 
thermal remote sensing devices, with each technology offering unique 
parameters for urban building energy modeling studies, as outlined in 
Table 3.

EO derived data has been heavily explored for building footprint 
generation in UBEM studies [67]. Although, methodologies for utiliza
tion and coupling of EO derived environmental data in urban energy 
studies are less formulated and established. Dougherty and Jain have 
published two studies using remote sensing observations for their 
environmental parameter inputs into data-driven UBEMs [68,69]. The 
authors combine EO products and machine learning techniques to 
determine the effect or urban contexts on building energy demands in 
New York City. In both [68,69] data-driven modeling studies, environ
mental data is easily combined or coupled with the building energy 
loadings through merging and synchronization of the building location 
with the environmental sampling location. However, these studies do 
not address the pressing gap to couple EO climate data into simulation- 
based BEM platforms, as the temporal resolution required for BEM 
platforms does not meet temporal EO revisit periods. Dougherty and 
Jain’s case studies were the first UBEM studies to utilize remote sensing 
environmental data inputs and advocate for the use of these EO climate 
datasets for future energy modeling endeavors due to their scalability 
and resolution.

Collecting earth observational data is very resource intensive, 
although because measurements are often taken on the global level, case 
study methodologies are reputable and easy to scale. In general, there is 
a temporal and spatial granularity trade off among EO data sources, 
where the devices with the shortest revisit period may have coarser 
spatial capacity, leading to issues with spatial discontinuity and 
spatiotemporal incomparability. Furthermore, at present it is difficult to 
couple climate and weather data EO products with simulation-based 
BEMs. Compared to in-situ observations remote sensing measurements 
offer much higher spatial resolution, can act as validation in CFD models 
[12]. Although, a major disadvantage and uncertainty of this technique 
is its inability to penetrate clouds, therefore limiting the data availability 
to timestamps with clear sky conditions. Like other observational data 
types, EO data suffers from uncertainties from biases in sensors, sensor 
drift, and retrieval algorithms, calling for the accuracy of measurements 
to be addressed explicitly [66].

4.1.2.1. Multispectral and hyperspectral imagery data. Multispectral and 
hyperspectral imagery products acquire image layers at different 
wavelength bands from the same scene. Multispectral high-resolution 
visible sensors operate with three different primary color (ex. red, 
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green, and blue) band pixel assignments [84] with sensing capabilities 
between the visible to middle infrared electromagnetic spectrum [85]. 
Multispectral imagery products such as Landsat 8 OLI [70, p. 8], Landsat 
9 OLI-2 [70, p. 9], MODIS (Moderate Resolution Imaging Spectroradi
ometer) [71], ASTER (Advanced Spaceborne Thermal Emission and 
Reflection Radiometer) [72], Visible Infrared Imaging Radiometer Suite 
(VIIRS) [86] and Sentinel-2 [74] offer valuable insights into vegetation, 
soil, water burned area, and thermal land properties for microclimate 
UBEM parameter inputs, through products such as Normalized Differ
ence Vegetation Index (NDVI), Land Surface Temperature (LST), ect.. 
The advantage of these products being their ability to contextualize 
areas at high spatial resolution (10 m to 250 m); although, with a 
tradeoff being that their temporal revisits are less frequent (5–16 days). 
Hyperspectral imagery technology extends beyond the multispectral 
range and gathers data from a wide spectrum of light [87]. Due to their 
small band widths and ability to distinguish separate entities in an 
image, multispectral and hyperspectral imagery can be used as land use 
and vegetation data classification parameter inputs [85]. For example, 
Dynamic World is a synthetic dataset that provides regularly updated 
classifications of global land use and landcover (LULC) and is trained off 
of and derived from 10 m Sentinel-2 data [88]. Parameters from mul
tispectral and hyperspectral sensing technologies offer valuable insights 
into urban microclimates, as foliage and land characteristics play an 
important role in the thermal properties of urban areas [89].

4.1.2.2. LiDAR data. LiDAR satellites use laser altimeter systems to 
measure physical distance through pulse travel time [90]. LiDAR mea
surements provide insights to the vertical profile to the atmosphere on 
the global scale, the vertical and horizonal distribution of clouds, 
landscape topography, and heights of ice sheets, land, forests, lakes and 
urban areas [90]. LiDAR measurements have been used in NWP models, 
offering perspectives to cloud temperature and formation processes, as 
well as in Digital Elevation Models (DEMs), providing quantification of 
surface heights. LiDAR missions tend to have shorter deployment times, 
longer revisit periods, and higher spatial resolution than imagery mis
sions. In urban building energy and climate applications, LiDAR devices 
can provide insight to landscape topography, land elevation, building 
heights, and cloud formation. LiDAR data have been used to extract 
building geometric data such as building heights and size characteristics 
[91], and have informed training data that builds off of the Microsoft 
footprints dataset [92] to create a rasterized building footprint dataset 
[93], a building characteristic input to urban building energy models.

4.1.2.3. Thermal imagery data. Weather, climate, and microclimate 
parameters used within urban building energy studies are heavily 
dependent on thermal parameters of sites [94]. Thermal infrared (TIR) 
sensing provides insight to these characteristics by measuring the 
amount of radiation from an object, and in terms of satellite data 
collection, measuring the radiative heat fluxes (RHF) from the earth 
surfaces [95]. Thermal sensors operate in the emissions part of the earth 
spectrum, ranging from 8- 14 µm [94]. TIR output data is used for 
monitoring agricultural drought, land cover, land surface albedo, 
Normalized Difference Vegetation Index (NDVI), thermal environment, 
thermal anomaly, and urban surface atmosphere exchange [65,96]; with 
the most prominently derived parameter for being land surface tem
perature (LST); a measurement that is widely used in UHI studies due to 

Table 3 
Earth observational products for UBEM climate data inputs.

Sensor Available Products Spatial Resolution Temporal 
Resolution

Landsat 8 
[70, p. 8]

OLI (9 bands), TIRS (2 
bands), Analysis Ready 
Products: Surface 
Reflectance, Land Surface 
Temperature, Surface 
Water Extent, Fractional 
Snow Cover, Burned Area, 
Provisional Actual 
Evapotranspiration

30 m (visible, NIR, 
SWIR); 100 m 
(thermal), 15 m 
(panchromatic)

16 days

MODIS [71] Surface Temperature, 
Cloud Temperature, 
Atmospheric 
Temperature, Cirrus 
Clouds Water Vapor, 
Cloud Properties, Ozone, 
Cloud Altitude

250 m (bands 1–2), 
500 m (bands 3–7), 
1000 m (bands 
8–36)

16 days

ASTER [72] Analysis Ready Products: 
Brightness Temperature, 
Emissivity, Surface 
Reflectance, Surface 
Kinetic Temperature, 
Surface Radiance, DEM 
[73]

15 m (VNIR), 30 m 
(SWIR), 90 m (TIR)

16 days

Sentinel-2 
[74]

BOA reflectance, TOA 
radiance, Surface 
Reflectance

10 m (B2, B3, B4, 
B8), 20 m (B5, B6, 
B7, B8a, B11, B12) 
60 m (B1, B9, B10)

5 days

Sentinel-5P 
NTRI [75]

Aerosol Index, Aerosol 
Height, Carbon 
Monoxide, 
Formaldehyde, Nitrogen 
Dioxide, Ozone, Sulfur 
Dioxide 

1113.2 m daily

ICESat-2 [76] Land Ice Elevation, Artic 
Sea Ice Elevation, Land 
Water Vegetation 
Elevation, Cloud 
Characteristics [77]

20 m 91 days

ERA 5 [78] Divergence, Cloud Cover, 
Geopotential, Ozone mass 
mixing ratio, Potential 
Vorticity, Relative 
Humidity, Specific Cloud 
Ice Water Content, 
Specific Cloud Liquid 
Water Content, Specific 
Rain Water Content, 
Specific Snow Water 
Content, Temperature, 
Wind Components, 
Vertical Velocity, 
Vorticity

0.25 ◦x 0.25◦ hourly

MERRA-2 
[79]

Air Temperature, Wind 
Components, Sea Level 
Pressure, Surface 
Pressure, Total 
Precipitable Water Vapor

0.5 ◦x 0.625◦ hourly

NOAA RTMA 
[80]

Pressure, Temperature, 
Dew Point Temperature, 
Specific Humidity, Wind 
Speed, Wind Direction, 
Wind Speed (gust), 
Visibility, Cloud Cover, 
Precipitation

2.5 km hourly

USFS Tree 
Canopy 
Cover 
v2021-4 
[81]

Tree Canopy Cover 30 m N/A

NASA DEM 
[82]

Digital Elevation 30 m N/A

Table 3 (continued )

Sensor Available Products Spatial Resolution Temporal 
Resolution

USGS 
National 
Landcover 
Database 
[83]

Landcover 30 m N/A
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its tendency to identifying spatial anomalies and variation in surface 
energy balances [96]. LST effectively measures surface skin tempera
ture, or the ground radiometric temperature as observed from above, 
quantifying the energy emitted and reflected from a surface [97]. There 
are a variety of products that take TIR measurements at different spatial 
and temporal scales.

High temporal granularity is important for LST measurements to 
accurately portray UHI effects and have been used to address stability in 
climate conditions [98]. Although, it should be noted that sensor accu
racy is not always consistent, as the MODIS LST product was shown to be 
accurate at night compared to the daytime [99,100]. Further, a vertical 
spatial profile for LST measurements exists and should be considered 
alongside horizontal variability [101] and may affect building heating 
and cooling loads, specifically tall rise structures. Also, in dense urban 
areas, LST measurements may inaccurately represent the surface tem
perature of rooftops rather than inside of the street canyon [97], 
emphasizing the differences between land surface temperature mea
surements and air temperature measurements. Although LST acts as a 
proxy for air temperature, the observations have different meanings and 
responses to atmospheric conditions [102]. For use in robust applica
tions, numerous methods have been carried out to derive air tempera
ture from remote sensing observations, such as one that uses statical 
methods with satellite and weather station data to produce a monthly 
timeseries air temperature values for 2003 to 2016 [103], and meteo
rological reanalysis products that provide air temperature measure
ments resulting from both simulation based and observational based 
domains.

4.1.2.4. Reanalysis products. Reanalysis products are derived from 
global weather forecasting models under observationally constrained 
scenarios using data assimilation techniques [104]. Because reanalysis 
models are constrained by weather observational data and combined 
with physical models, these products embody both observational and 
simulation-based techniques [103]; offering a product that is most 
suitable for spatiotemporally consistent environmental analysis [105]. 
For instance the ERA5 reanalysis product provides hourly estimates for a 
large number of atmospheric, land, oceanic, and climate variables on a 
30 km or 0.1◦grid [78]. It combines a large number of observations from 
in-situ and EO data with an integrated forecast system cycle (Cy41r2) 
and 4D-Var cost function techniques [105]. MERRA-2 is another popular 
reanalysis data product for the period 1980 to present with approximate 
resolution of 0.5◦ x 0.625◦ at 1 h temporal resolution [79]. The NOAA 
Real Time Mesoscale Analysis (RTMA) product is preferred for urban 
energy studies due to its spatial granularity [69], and is available at a 
one hourly frequency for the continental US at 2.5 km spatial resolution 
[80].

4.2. Simulation-based microclimate datasets and tools

Simulation-based microclimate modeling methods, conditioned on 
physical and morphological parameters, are used to explore the effect of 
urban contexts on building energy performance [106]. In general, urban 
climate simulation techniques serve to model a surrounding environ
ment, with reference to observational weather station data [43]. These 
techniques are used for a wide variety of spatial scales, ranging from 
indoor conditions (less than 10 m) to mesoscale (greater than 200 km) 
[42].

Simulation-based microclimate tools have been implemented to 
simulate conditions from the building level to the city scale and examine 
the effect of localized climates on urban energy consumption through 
microscale Computational Fluid Dynamics (CFD), mesoscale CFD, Nu
merical Weather Prediction (NWP), and Urban Canopy Model (UCM) 
tools and models, as elaborated on in Table 4. These techniques have 
been criticized in UBEM applications due to their high computational 
costs and their resource intensity to scale beyond small scale flow fields 
(buildings, small campuses) and small temporal (hourly, daily) resolu
tions [16,42,106]. Although, their comparative analysis flexibility and 
flow parameter iterabilities over entire domains spaces make simula
tion- based methods an attractive microclimate modeling method. This 
is especially true when researchers have extensive knowledge and 
experience in CFD model configuration settings, input parameters, and 
simulation methods [15,42]. Model coupling has been adopted to 
rapidly and accurately combine simulation based microclimate datasets 
into UBEMs to obtain more realistic results [43]. This approach helps to 
combat simulation program computational demands through load 
sharing, although complications may arise while merging program 
specific time-scales [43] and during generation of comparable formats 
[97]. As for data accuracy, applying CFD into microclimate studies may 
produce conditions for specific locations that are far from reality [43]. 
Moreover, because this data is fundamentally modeled, simulation- 
based microclimate datasets may deviate from actual observed mea
surements and conditions, further propagating errors within building 
energy model demand estimates. For this reason, it is necessary to 
ground-truth and validate simulation-based microclimate datasets with 
real measurements to ensure accurate modeling results.

4.2.1. Computational fluid dynamics microclimate dataset modeling tools
The most common simulation-based urban climate modeling tech

niques for UBEM applications utilize foundational Computational Fluid 
Dynamics (CFD) principles. CFD models leverage physics-based fluid 
motion conservation laws (conservation of mass, momentum, and en
ergy) to produce quantitative predictions about fluid flow phenomena 
[114]. CFD simulates thermal and mass interactions over contextualized 
obstacles, such as building terrain in urban studies [15] by solving either 
the Reynolds Averaged Navier Stokes (RANS) or Large Eddy Simulations 

Table 4 
Popular simulation-based microclimate dataset modeling tools for building energy modeling studies.

Platform Microclimate Dataset Modeling Tool Category Computational 
Demands

Scalability Coupling 
Feasibility

Small Scale 
Turbulence

Computational Fluid 
Dynamics

Numerical Weather 
Prediction

Urban 
Canopy 
Model

ENVI-met [107] ✓ ​ ​ þþ – – þþ

CityFFD [108] ✓ ​ ​ þ þ þþ þ

Meso-NH [109] ​ ✓ ​ þþþ þþ þþ –
Weather Research and 

Forecasting Model (WRF) 
[110]

​ ✓ ​ þþþ þþ þþ –

Town Energy Balance (TEB) 
[111]

​ ​ ✓ _ þ þ _

Urban Weather Generator 
(UWG) [112]

​ ​ ✓ _ þþ þ _

Solene Microclimat [113] ​ ​ ✓ þ _ þ þ

A. Worthy et al.                                                                                                                                                                                                                                 Energy & Buildings 331 (2025) 115392 

8 



(LES) fundamental governing equations [42]. The most frequently used 
micro-scale CFD tool for building energy modeling is ENVI-met, which 
solves for atmospheric flow and heat transfer with RANS equations 
[18,44,115], followed by CityFFD, a Fast Fluid Dynamics solver with 
computing algorithms based on the semi-Lagrangian approach. Micro- 
scale CFD simulations are computationally expensive and often 
limited to small spatial scale flow fields (buildings and small campuses) 
and small temporal (hourly, daily) resolution [16,42,106]. Within these 
platforms, temperature, wind velocity, and surface temperature are the 
most commonly studied and prominent parameters in urban microcli
mate research [42].

Within UBEM studies, CFD microclimate tools have limitations in 
their ability to communicate with and exchange information between 
building energy management (BEM) tools. To combat these challenges, 
Elnabawi et al. used ENVI-met v4 software to model the most common 
microclimate parameters over a 6-day summer period for a university 
building in Bahrain and combined this output with urban weather 
generator, Meteronorm, to produce a synthetic urban specific weather 
dataset (USWD). This dataset consisted of a typical year of timeseries 
data in an hourly format compatible for building energy modeling tool 
IES-VE [51]. In contrast, Alyakoob et al. went way with merging 
microclimate and Building Energy Management (BEM) platforms alto
gether, by using a machine learning tree-based algorithm approach that 
examined the impact of ENVI-met produced microclimate conditions at 
three Arizona State University (ASU) buildings over three representee 
summer days [116]. Although, these methodologies were able to combat 
limitations with platform communication, both augmented UBEM and 
ENVI-met studies cited programs computational cost as a challenge to 
expanding their case study region to larger temporal and spatial 
resolutions.

Coupling CFD with BEM tools is a commonly employed method for 
considering urban microclimate conditions in building energy research 
[16,106]. Coupling, in this context, refers to the combination and ex
change of information between independent simulation platforms, a 
building energy model, and an urban microclimate model, enabling 
communication and data transfer between them. In downtown Mon
treal, Katal et al. combine open source building geometric data, building 
property data, and measured weather station data (air temperature, 
solar radiation, and wind speed and direction) into CityFFD and Cit
yBEM, using the ping-pong coupling strategy [117] to examine micro
climate conditions over a case study region of 225 buildings for a 15 day 
summer period [118]. Whereas a tool-agnostic semantic schema (in 
JSON) coupling strategy was used to map building surfaces with CFD 
grids and transfer data between CityFFD and CityBES pairing nodes, 
ensuring no double counted or miscounted heat fluxes, over a 97 
buildings case study region in northeast San Francisco during a 48-hour 
summer heat wave [62]. A wide variety of BEM and CFD coupling 
strategies in UBEM frameworks exist, as well as tool specific optimiza
tion strategies, which are well tabulated in this coupling review article 
[43].

4.2.2. Numerical weather prediction microclimate dataset modeling tools
Numerical Weather Prediction (NWP) tools simulate CFD principles 

in the atmosphere, using prediction methods to provide insight about 
atmospheric processes in larger spatial mesoscales [119]. Meso-NH is a 
noteworthy NWP, or non-hydrostatic mesoscale atmospheric model that 
considers earths sphericity and is designed to simulate atmospheric 
processes (ex. motion, moisture, and thermodynamics) at the regional 
scale [120,121]. Whereas the World Research and Forecasting (WRF) 
model is one of the most popular NWP tools, which consists of both a 
data assimilation system and computational architecture with three 
coupled Urban Canopy Models [110]; and is used to provide insight for 
actual atmospheric conditions or idealized atmospheric conditions 
across a wide range of spatial scales, spanning from tens of meters to 
thousands of kilometers [110]. An advantage of WRF is its ability to 
initialize simulations with both statically modeled meteorological 

conditions and actual measurements, creating many diverse use case 
applications [122]. Jain et al. used the WRF model to simulate hourly 
climate conditions over a two-day summer period for 20 buildings in 
Goose Island Region, Chicago, IL, initialized by the NOAA real-time 
High-Resolution Rapid Refresh (HRRR) [123] dataset [122]; this 
output was then coupled through a central data translation engine by 
data-exchange units with energy plus to examine the effects of micro
climate conditions on building cooling loads. The authors acknowledge 
challenges in their methodology and recommend the use of a finer-scale 
CFD model to decrease these uncertainties stemming from turbulence 
around buildings [122].

4.2.3. Urban Canopy model microclimate dataset modeling tools
UCMs represent the exchange of momentum, heat, and moister be

tween urban contexts and the atmosphere [124] through performing an 
energy balance over a given surface. Town Energy Balance (TEB) con
siders radiation processes and vertical wind profiles of urban geometries 
in a single layer UCM [44,125], while Urban Weather Generator (URG) 
[112] uses four submodules, the rural station model, the vertical diffu
sion model, the urban boundary-layer (UBL) model and the UCM to 
provide canopy level urban temperature, facilitating this information 
exchange in the easy to use ladybug [126] plug in. Further, radiative 
model Solene Microclimat uses radiosity algorithms to simulate whole 
solar fluxes reaching urban surfaces, Program output can be coupled 
with CFD models to holistically describe urban atmospheric conditions 
[44,16,113]. Additionally, NWP models can be combined with Urban 
Canopy Models (UCMs) to achieve finer-grain thermal insight at both 
the city and building resolution. To provide context of the interactions 
between residential housing energy consumption and urban climate in 
the Sham Shui Po region of Hong Kong, mesoscale atmospheric model 
MesoNH and UCM TEB were coupled, creating a multi-layer model that 
examined energy performance over a 12-day period. The methodology 
excelled in representing interactions between high density urban areas 
in the atmosphere at relatively low computational cost over a longer 
time duration [106].

5. Comparative analysis of case study Datasets, Methodologies, 
and results

Ten studies that examine effect of more accurate climate and weather 
data on UBEM performance were analyzed in this research, where 
common case study metrics are tabulated in Table 5. The studies 
included in this section use observational-based or simulation-based 
climate and weather data inputs and analyze their performances in 
UBEMs. The studies were chosen based off criteria outlined in Section 2
of this paper.

It is evident that there are large disparities in the proposed micro
climate datasets abilities to describe spatial and temporal states. The 
relationship between these resolutions is shown as a scatterplot in Fig. 4. 
In essence, simulation-based programs provide fluid flow and thermal 
measurements at high granularity for smaller spaces (ex. room or 
building), although these methods are limited by their computational 
constraints to describe multitudes of buildings in neighborhoods and 
cities. Observational-based datasets are not limited by these modeling 
constraints and can span longer temporal study periods, although must 
be recognized for their limitations in precision for this complex task, 
specifically because revisit periods (or temporal difference between 
measurements) may be much less frequent than simulation-based 
datasets. In other words, simulation-based microclimate datasets are 
more insightful for instances that examine the effect of microclimates on 
a small subset of buildings in an urban context or during a specific 
extreme weather event; whereas observational-based data is best used to 
study the effects of microclimates on resource consumption over a larger 
neighborhood or city scale across a longer study period.

From this synthesis of the ten case studies, it is clear that climate 
dataset selection has a substantial effect on reported resource (energy, 
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cooling, and heating) consumption of buildings. The results of each case 
study are shown in Fig. 5 and outlined in Table 5, along with case study 
locations, methodologies, coupling methods, climate datasets, climate 
parameters, and generic keyword details. The most common result 
reporting method entails the comparison of energy consumption values 
given both an urban specific microclimate weather dataset and the 
traditional TMY climate dataset. For the case studies analyzed in this 

manner, relative changes between microclimate and TMY datasets 
resulted in 5 % and 23 % change in energy consumption, 4.7 % to 74 % 
increase in cooling consumption, and a 15 % to 20 % decrease in heating 
consumption. That is, for the climate zones examined, cooling loads are 
more unlikely to be underestimated due to the exclusion of urban 
microclimate data, than heating loads. Moreover, the inclusion of urban 
microclimate data substantially impacts UBEM results- thus actions 

Table 5 
Case studies exploring microclimate conditions in UBEMs.

Author 
(year)

Location UBEM Methodology Type Coupling 
method

Climate Datasets 
and BEM Tools

Climate Parameters Detail

Data- 
Driven

Simulation- 
Based

Hybrid

1 M. H. 
Elnabawi 
et al. (2022) 
[51]

Manama, 
Bahrain

​ ✓ ​ –
ENVI-met v.4, 
Meteonorm, IES-VE

AT, MRT, RH Urban Specific Weather 
Dataset, University 
Building, Summer

2 A. Alyakoob 
et al. (2022) 
[116]

Tempe, USA ​ ​ ✓ – ENVI-met AT, AH, SWR, Shading 
levels

Tree Based Methods, 
Machine Learning, 
University Buildings, 
Regression, Cooling Loads, 
Summer

3 A. Katal et al. 
(2022) [118]

Montreal, 
Canada

​ ✓ ​ Ping-pong 
coupling

CityFFD, CityBEM AT, SR, WS, WD 3D models of buildings, 
Open datasets, Automated 
processes, Summer

4 N. Luo et al. 
(2022) [62]

San 
Francisco, 
USA

​ ✓ ​ Tool-agnostic 
semantic 
schema (in 
JSON)

CityFFD, CityBEM AT, RH, WS, WD, SR, 
Pressure, Carbon 
Dioxide

Attached Surfaces, 5 JSON 
files, Data Pairing, Diverse 
Buildings, Summer Heat 
Wave

5 R. Jain et al. 
(2020) [122]

Chicago, 
USA

​ ✓ ​ One 
directional 
coupling

WFR, HRRR dataset, 
EnergyPlus

AT, RH, WS, WD, SR, 
SWR, LWR

Air Nodes, Cooling Loads, 
Diverse Buildings, Summer

6 S. Liu et al. 
(2023) [106]

Sham Shui 
Po, Hong 
Kong

​ ✓ ​ Multi-layer 
coupling

Meso-NH, TEB, 
EnergyPlus

AT, RH, WS, SR Building Archetypes, 
Summer Heat Wave, 
Nighttime differences

7 M. Zinzi et al. 
(2018) [63]

Rome, Italy ​ ✓ ​ – 5 in-situ 
measurements, 
TRNSYS

AT, RH Building Archetypes, Long 
Term Study, Seasonality

8 T. Hong et al. 
(2021) [12]

San 
Francisco, 
USA

​ ✓ ​ – 27 in-situ 
measurements, 
CityBES, EnergyPlus

AT, RH, SR, WS DOE Building Archetypes, 
Summer Heat Wave

9 T. R. 
Dougherty 
and R. K. Jain 
(2022) [69]

New York 
City, USA

✓ ​ ​ – Sentinel-2 Level-1C, 
VIIRS, and NASA’s 
SRTM, NOAA RTMA

SR, CDD, HDD, WS, 
Nighttime Light 
Radiance, Vegetation 
Index, Cloud Cover, 
Precipitation, 
Elevation

Remote Sensing, 
Regression, Linearity, Gas 
Consumption, Electricity 
Consumption, Diverse 
Buildings

10 T. R. 
Dougherty 
and R. K. Jain 
(2023) [68]

New York 
City, USA

✓ ​ ​ – Sentinel- 1, Sentinel- 
2, Landsat 8, CMIP, 
Dynamic World, SAR, 
VIIRS, Elevation

AT, ST, WS, WD, RH, 
SR, SWR, Pressure, 
Vegetation Index, 
Cloud Cover, 
Precipitation, 
Elevation

Remote Sensing, Tree Based 
Methods, Machine 
Learning, Gas 
Consumption, Electricity 
Consumption, Nonlinearity, 
Seasonality, Diverse 
Buildings

AT: Air Temperature, ST: Surface Temperature, GT: Global Temperature, MRT: Mean Radiant Temperature, CDD: Cooling Degree Days, HDD: Heating Degree Days, RH: Relative 
Humidity, AH: Absolute Humidity, WS: Wind Speed, WD: Wind Direction, SR: Solar Radiation, SWR: Short Wave Radiation, LWR: Long Wave Radiation

Fig. 4. Spatial and temporal scales of the UBEM case studies.
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should be taken to include these conditions in UBEMs to decrease the 
misrepresentations of energy consumption patterns and to ensure ac
curate and realistic modeling. Due to the relatively small sample size and 
the differing spatial–temporal scopes of UBEM case studies examined, 
there is a limitation for creating more transferable concrete conclusions. 
That is, it should be noted these aggregated summary statistics are 
inherently case study specific and may not be interpreted to extend 
beyond the intended climate zone and building types. Additionally, 
other obvious and unpredictable factors that are not included as UBEM 
inputs may influence building energy consumption, thus all re
sponsibility of these additional loadings may not soley be attributable to 
urban microclimate conditions, among these factors include indoor 
building set points, occupant comfort controls, and variability with 
resource consumption.

As illustrated in Fig. 5, a wide range of result reporting procedures 
exist for UBEM and microclimate studies, complicating their compara
bility across frameworks and methodologies. That is, it is difficult to 
determine which urban microclimate datasets (and the simulation-based 
tools to create them) are most accurate, as they are not always validated 
with real building performance data or real urban microclimate data, 
and their benchmarking processes often differ in temporal and spatial 
scope. Therefore, it is recommended for researchers to validate their 
microclimate model results with real microclimate and energy data to 

facilitate comparison between models and to examine the reliability of 
their methodologies. This will not only help with reporting but will also 
increase model reliability through ensuring ground truthing of the 
proposed methodologies − - as without this step it is difficult to make 
applicable, and concrete actions out of study conclusions.

It is well documented that UHIs pose the largest danger to human 
health during extreme heating periods. That is, for the studies examined, 
urban building energy was modeled over the summer months. Notably, 
most of the studies only examined microclimate conditions over the 
summer, 30 % explicitly examined urban microclimate conditions dur
ing a summer extreme weather heating event, and 30 % conducted 
research over the entire annual timeframe but identified larger micro
climate (and Urban Heat Island) effects throughout the summer months. 
Therefore, more research should be taken to analyze these conditions in 
more extreme climate zones and where building cooling demands are 
increasing throughout summer months. Furthermore, air temperature 
was the primary microclimate data parameter examined, with tradi
tional variable expansion including humidity, wind speed, solar radia
tion, precipitation, elevation, pressure, vegetation, cloud cover, and 
shading.

Fig. 5. UBEM and microclimate case study findings, highlighting variability in reporting methods and their impacts on energy and temperature metrics.
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6. Discussion

Dense urban areas have altered historical land use patterns, habitats, 
and intrinsically effected environmental conditions; thus, research is 
needed to account for these changes and their impacts on city infra
structure. Integrating urban building energy models with microclimate 
weather data that is spatially characterized for urban contexts can aid in 
accounting for these altercations to further increase urban building 
infrastructure resiliency. Traditionally, UBEM methodologies rely on 
historically aggregated TMY weather files for their climate data input 
sources. However, these files are based on aggregated observations 
collected as single point measurements which are often located in rural 
areas; thus, failing to characterize weather and climate in urban regions 
at high spatial and temporal granularity.

This literature review explores the different climate datasets, tools, 
and methodologies used to integrate finer grain microclimates in UBEM 
frameworks. The review characterizes these climate datasets into two 
types: observational-based and simulation-based. Observational-based 
datasets contextualize spatial granularity by compiling real measured 
values at different spatial and temporal resolution within a region of 
interest. Whereas simulation-based datasets use computational methods 
to model spatial variability in climate given a reference weather file, 
through physics-based conservation laws (CFD), atmospheric processes 
(NWP), and energy balances (UCMs). Combining, or coupling, high- 
resolution microclimate data into UBEMs remains one of the signifi
cant challenges in this research domain. Data-driven UBEMs can facili
tate the integration of observational-based and simulation-based 
microclimate data with building data through merging timestamps and 
locations. However, this comes with its own set of assumptions and 
challenges, including limitations with high temporal data availability 
and quality. Building energy simulation platforms such as TRANYSYS, 
IES-VE, CityBEM, and EnergyPlus can facilitate the data transfer process 
for simulation-based microclimate datasets though the utilization of 
various coupling procedures (such as one-directional and two- 
directional). Although, complications such as data loss, misalignment 
of timescales, high computational demands, along with the limitations 
and assumptions of each underlying software platform arise under these 
scenarios. Furthermore, because simulation-based datasets are funda
mentally modeled- a ground truthing process which ensures that data
sets are calibrated to portray actual conditions is necessary to reduce 
compounding errors in urban-scale energy predictions.

To reduce the uncertainties arising from microclimate modeling, 
energy modeling, and coupling platforms thereof, a blending of the two 
methods can be taken. This hybrid, or augmented approach can combine 
instances of both simulation-based and data-driven techniques and 
leverage the benefits of both methodologies. For example, Alyakoob et. 
al. use a data-driven machine learning tree-based algorithm energy 
model to examine the impact of simulation-based ENVI-met produced 
microclimate conditions for Arizona State University (ASU) buildings 
[116]. Through using the ENVI-met microclimate data and a data-driven 
UBEM model, the authors were able to reduce the computing re
quirements of building energy simulations, increase the feasibility of 
coupling the two datasets, and leverage ENVI-met for more granule 
climate data. As for existing microclimate datasets, reanalysis products 
embody both simulation-based and observational-based domains, are 
validated and cleaned by large-scale institutions; and may offer as an 
alternative to single simulations to contextualize microclimate contexts 
at the larger city and state level. Due to the simulation-based generative 
nature and their ability to contextualize given starting conditions, 
reanalysis products are often reported with higher temporal resolution 
than conventional earth observational datasets. Dougherty and Jain take 
a semi-hybrid approach while blending reanalysis products with EO data 
in their data-driven studies [69,68], leveraging their ability to contex
tualize conditions at high temporal resolution.

It is recommended that hybrid methodologies are further investi
gated for integration of microclimates into UBEM models. For instance, 

there is an opportunity for observational-based microclimate data to be 
combined with and used as input into coupled CFD and BEM tools in an 
augmented UBEM methodology [68]. Additionally, methodological 
opportunities exist for blending earth observational datasets into 
simulation-based building energy platforms to leverage both the spatial 
granularity of earth observational datasets and the building granularity 
of a simulation-based BEM.

Finally, for both simulation-based and observational-based climate 
data inputs, it is necessary for researchers to recognize and consider the 
specific limitations of their models during both analysis and result 
interpretation stages [53]. Additionally, for all contexts, it is important 
to use local weather data in energy models [18] either within the model 
validation stage or through use of observational products. Including 
these higher spatial resolution climate data products that characterize 
urban climates using a diverse set of environmental features will 
decrease current UBEM uncertainties. This will further raise model ac
curacy and produce actionable steps for increasing infrastructure resil
iency, ultimately promoting the protection of human health.

7. Conclusion

Currently, without reliable energy modeling predictions, engineers 
and stakeholders struggle to accurately characterize current and future 
building energy consumption, leading to discrepancies in environ
mental, social, and economic performance for their structures. Due to 
inter-building connections and microclimate conditions, such as the 
urban heat island effect, these inconsistencies are exacerbated in urban 
climates. This literature review details the datasets, tools, and method
ologies used to incorporate microclimates in UBEMs, focusing to close 
the simulation-based modeling gap to address environmental modeling 
uncertainties. In this process, it expands on the traditionally used 
methods and elaborates on substitutional observational-based and 
simulation-based data types, detailing the spatial and temporal tradeoffs 
of each source. It highlights the difficulties of combining both highly 
temporal and spatially granule microclimate data into building energy 
platforms, sighting challenges in data merging, scalability, and compu
tation. To reduce the uncertainties associated with each simulation or 
observational data type, to add more microclimate parameters into 
models, and to maintain low computational requirements with larger 
temporal and spatial simulations the review recommends investigating 
multimethod, or hybrid approaches. Additionally, the review finds that 
remote sensing technologies have been well explored for building geo
metric data inputs. Although, there is need to leverage the spatial res
olution of these datatypes and explore both reanalysis and 
observational-based products for environmental data inputs. Further, 
case study research in this sector primarily uses the air temperature 
parameter for assessment of urban microclimate conditions, specifically 
examining these effects during summer months. Future investigation 
should be taken to explore the impacts of additional environmental 
parameters across all climate zones and throughout extreme heating and 
cooling weather events. Finally, an aggregation of case study findings 
concludes substantial differences between modeled results with micro
climate datasets and with conventional climate dataset inputs, under
scoring the importance of including microclimate data into model 
validation and calibration workflows. There poses a significant chal
lenge to address both building and climate granularity in urban building 
energy studies. Further research in this domain is essential to bridge 
these existing gaps between simulated models and real-world scenarios. 
These advancements will offer more precise recommendations for en
ergy system improvements and guidance for energy resiliency planning, 
which are specifically critical to combat future infrastructure stresses 
such as extreme weather events and changing climate conditions on 
energy systems at the city level.
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