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Buildings are significant contributors to global energy consumption, necessitating urgent action to reduce energy
use and associated emissions. Urban Building Energy Modeling (UBEM) is a critical tool that provides essential
insights into citywide building energy dynamics though generating quantitative energy data and enabling ho-
listic analysis and optimization of energy systems. However, current UBEM methodologies and tools are con-
strained by their reliance on non-urban-specific and aggregated climate data inputs, leading to discrepancies
between modeled and actual energy expenditures. This article presents a comprehensive review of the datasets,
tools, methodologies, and novel case studies deployed to integrate microclimates into UBEMs, aiming to bridge
the modeling gap and to address the uncertainties due to the absence of real-world microclimate data in the
models. It expands beyond conventional methods by elaborating on substitutional observational-based and
simulation-based datasets, addressing their spatial and temporal tradeoffs. The review highlights that while
remote sensing technologies are extensively utilized for building geometric data UBEM inputs, there remains an
underexplored potential in reanalysis and observational-based products for environmental data; specifically, for
the inclusion of parameters that are conventionally not included in UBEM analysis such as tree canopy coverage
and land surface temperature. Furthermore, adopting a hybrid methodology, which combines observational and
simulation-based datasets, may be a promising approach for more accurately representing microclimate condi-
tions in UBEM; as this process would ensure more representative climate parameter inputs and ground-truthing,
while effectively managing computational demands across extensive temporal and spatial simulations. This could
be achieved through integrating local earth observation datasets with computational fluid dynamics (CFD) tools
or by merging local earth observational data with simulation-based reanalysis products and coupling these
weather inputs with simulation-based building energy management models. Finally, this review underscores the
importance of validating UBEMs with local microclimate weather data to ensure that model results are action-
able, reliable, and accurate.

influenced wind patterns and turbulence [11] by creating large shadows

1. Introduction

The percentage of global population residing in cities is projected to
increase to 68 % by 2050 [1]. This rapid urbanization has led to denser
buildings, infrastructure, and increased inter-building connections [2],
as well as significant changes in land use patterns in cities [3]. These
developments have intensified the Urban Heat Island (UHI) effect [4,5],
characterized by elevated urban temperatures [6], alerted albedo [7],
reduced native foliage concentrations [8,9], and disrupted surface en-
ergy balances and thermal properties [10]. Additionally, urban
morphological factors, such as taller buildings and higher skylines, have

and localized thermal eddy trappings [12]. These transformations have
led to the emergence of microclimate conditions, where the local cli-
mates differ significantly from surrounding environments [13] and have
thus impacted the energy demands for heating, cooling, and ventilation
systems needed to maintain habitable conditions indoors. Understand-
ing these microclimate conditions is essential for interpreting the in-
teractions between the built environment and urban energy dynamics,
ensuring cities remain sustainable and resilient.

Urban Building Energy Modeling (UBEM) has emerged as a powerful
tool for analyzing energy patterns and optimizing building performance
within urban contexts [14-16]. To fully understand energy dynamics,
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Nomenclature

Abbreviations

BEM Building Energy Management
BPS Building Performance Simulation
CDF Computational Fluid Dynamics
CDD Cooling Degree Day

DEM Digital Elevation Models

EO Earth Observation

EMR Electromagnetic Radiation

HDD Heating Degree Day

HI Heat Island
IEQ Indoor Environmental Quality
LES Large Eddy Simulation

LiDAR  Light Detection and Ranging
LST Land Surface Temperature

NDVI Normalized Difference Vegetation Index
NWP Numerical Weather Prediction

RANS Reynolds Averaged Navier Stokes
UBEM  Urban Building Energy Modeling

UCM Urban Canopy Model

UHI Urban Heat Island

UHII Urban Heat Island Index
SWIR Shortwave InfraRed

TIR Thermal Infrared

™Y Typical Meteorological Year
VNIR Visible and Near-Infrared

the scope of energy modeling must extend beyond the individual
building level and include interactions between buildings and their
urban contexts [17]. Unlike Building Performance Simulation (BPS)
tools, which focus on single buildings, UBEM examines clusters of
buildings, accounting for inter-building connections, and broader urban
influences. UBEM methods vary based on the scale (e.g., block, neigh-
borhood, or city) and temporal scope (e.g., daily, episodic, or annual)
[15]. These methods fall into two major bottom-up approaches: data-
driven and physics-based models [18], as elaborated on in Section 4.
Emerging hybrid approaches combine the two methodologies to
enhance the reliability and computational efficiency of UBEMs [18,19].
UBEM relies on diverse datasets, including building geometry, occu-
pancy data, localized weather and climate, and urban scale parameters,
to holistically characterize energy demands [20]. By generating quan-
titative energy insights and addressing energy dynamics across neigh-
borhoods and cities, UBEM supports sustainable design, retrofit,
planning, policy-making, and resource allocation [18,16,14].

However, despite significant advancements in recent years, UBEM
faces notable limitations in accurately representing urban energy use,
resulting in a substantial gap between simulation results and actual
measured energy data [18]. These challenges stem from uncertainties in
large-scale models, reliance on oversimplified archetypes, and general-
ized climate inputs. The complexity of urban energy modeling arises not
only from thermodynamic systems but also from the nonlinear in-
teractions among diverse and dynamic urban elements, such as urban
contexts and microclimates [21-23]. Furthermore, dynamic factors,
including localized microclimates, occupancy patterns, and socio-
economic variables, are often excluded from these models, limiting
their ability to capture critical variables such as temperature gradients,
wind patterns, and solar radiation variations, all of which significantly
influence energy performance [24-27].

Expansive climatic differences worldwide have been shown to
drastically impact building energy demands [28,29]. Additionally, the
proximity of buildings to surrounding infrastructure further contributes
to energy performance variations, with urban morphology factors such
as building density, interconnections, and the Urban Heat Island (UHI)
effect influencing microclimate conditions [15,30-32]. The relation-
ships among UHI intensity, urban compactness, and building energy
demands are well-documented, emphasizing how urban microclimate
dynamics alter energy loads and performance [33-37]. These challenges
are compounded by issues in data resolution, sufficiency, and method-
ological robustness, which hinder the ability of UBEM to provide accu-
rate and actionable insights [14,23,38-40]. Addressing these gaps is
critical for improving the accuracy and applicability of UBEM in
evolving urban landscapes, enabling more resilient and sustainable
urban energy systems.

The primary objective of this article is to address the simulation-to-
reality gap in UBEMs by offering a comprehensive review of datasets,

tools, and methodologies for integrating urban microclimates into their
frameworks. It aims to enhance the accuracy and applicability of UBEM
by examining how localized microclimate variables can effectively
inform urban energy dynamics. The article evaluates methods for pre-
dicting building energy performance in urban contexts, presenting a
detailed analysis of key literature, datasets, and tools. In this context,
“datasets” represent critical climate data for energy predictions, divided
into simulation-based and observational-based categories, whereas
“tools” refer to the software and platforms utilized to simulate and assess
the interactions between microclimates and energy systems. Addition-
ally, it introduces a collection of novel case study methodologies, which
include approaches and frameworks for integrating these datasets into
UBEMs, highlighting their strengths, opportunities, and spatiotemporal
trade-offs. Finally, the article provides recommendations for future
research directions to enhance UBEM accuracy and performance, spe-
cifically by improving the integration of environmental data, thereby
bridging the simulation-to-reality gap.

2. Methodology

The outcomes of review papers are heavily influenced by the search
criteria for, and selection processes of, novel articles. Systematic pro-
cedures are used in this review to ensure an objective and repeatable
review processes [41]. This paper utilizes a query-based methodology to
find relevant publications within the field of interest using Web of Sci-
ence (WoS) and Science Direct databases, as highlighted in Fig. 1.
Different search criteria were used for each database to strategically
include both case study articles and review articles. For instance, the
WoS database returned more articles on case study methodologies and
frameworks, whereas Science Direct returned more review article results
— thus respective databases’ strengths were catered to. It should be noted
that WoS and Science Direct databases often returned the same articles
under their unique selection criteria, but both databases were used to
diversify the sources included in this review. Beyond these databases,
additional publications were screened and references, specifically to
provide insights to nontrivial technicalities of earth observational
technologies. The quantity of articles incorporated into this review that
include aspects of UBEM and microclimates is 53 as shown in Section C
of Fig. 1.

Ten case studies, noted as unique in the field due to their innovative
methodologies for incorporating microclimate data into UBEMs, are
elaborated on more explicitly in this literature review and summarized
in Table 5. The selection criteria for the case studies are characterized in
Section D of Fig. 1. We adhered to common standards used in previous
literature reviews published in scientific journals to access the quality of
included studies. These standards include peer-review status, citation
analysis, clarity and rigor of study design and methodology, sample size
and representativeness, transferability of findings, transparency,
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A. Study Identification

Key Phrase: Urban Building Energy 4
Modeling and Microclimate OF
Key Word (must include): Building SCIENCE
Energy, Microclimate, Urban

Date Searched: December 19th, 2023
Timeline of Publishing: 2013 - 2023

Language: English Meet Criteria

A. Study Identification

Key Word : ""urban building energy
modeling" AND "urban" AND
"microclimate" AND ("simulation" OR
"remote sensing" OR "earth
observational" OR "coupling")

Date Searched: December 20t, 2023
Timeline of Publishing: 2013 - 2023
Language: English

Type: Article

ScienceDirect

& sl
ELSEVIER

Meet Criteria
n=123

Type: Article n=159
B. Abstract and Title Screening
1. The approach must be used for
Urban Building Energy Modeling
2. The methodology must examine
multiple buildings
3. The purpose must explicitly
include microclimate factors Meet Criteria
n= 37

B. Abstract and Title Screening

1. The manuscript must discuss
simulation or earth observational
datasets

2. The methodologies must be
directly related to urban building
energy modeling

Meet Criteria
n=41

C. Combination of Databases

1. Removed article duplicates that are repeated in both databases

Total Number of Articles Meeting Criteria
n=53

D. Novel Case Study Examination

inB
2. Addresses spatial and temporal scope of study

microclimate integration

1. Screen articles based on their content and adherence to criteria outlined

3. Documents discernable and comparable results in terms of UBEM and

Number of Novel Case Studies
n=10

Fig. 1. Stages of evaluation for the articles included in this review article.

reproducibility of the study, and the use of standardized measures. This
approach enables a rigorous evaluation of the reliability and validity of
the studies included in the review.

3. Existing literature on microclimates and energy modeling

Various existing review articles comment on aspects of both UBEM
and urban microclimates within the building energy modeling sector.
For instance, [14-16,18,20], expand on urban building energy modeling
tools and methodologies, and introduce some key tools and methodol-
ogies for including microclimate data. A review of CFD urban micro-
climate studies expands on applications of simulation-based datasets in
the built environment [42]. This literature is complimented by [13], a
systematic review article that expands on the applications of microcli-
mate studies. Moreover, simulation based microclimate data and
building energy models coupling techniques are well documented and
compared in [43]. The integration of local climate data in building en-
ergy models is addressed for simulation-based datasets for building level
energy models in [44]. Additionally, systematic data-driven energy
prediction reviews [45] and [46] tabulate commonly used machine
learning methods and climate data inputs. Another recently published
UBEM and microclimate hybrid-systematic review article [47] elabo-
rates on key terms in the field, conducts cluster analysis of recent
studies, and outlines future research directions specifically focusing on
applications with hot climate contexts.

This review article at present stands out due to its novel approach.
Unlike previous studies, it explicitly examines urban building energy
modeling at larger scale (ex. neighborhood and city) while incorporating
a diverse array of microclimate datasets. This review - dives deeply into
both observational-based and simulation-based sources, and specifically
focus on earth observational datasets, which have significant potential
in addressing data gaps. This review article is the first of its kind to
introduce the application of earth observational datasets in UBEMs,
highlighting their benefits, limitations, and potential for future research.
Table 1 further illustrates the distinctions between this review and

existing literature, underscoring the novelty and unique contributions of
this study to the field.

4. Microclimate datasets and tools for UBEM inputs

This review examines effective methods for accurately predicting
building energy performance in urban contexts through a comprehen-
sive analysis of key datasets and tools for integrating microclimate
variables into UBEM frameworks. Microclimates, defined as encom-
passing a spatial scale of up to 120 m vertically in the atmosphere
[48,49] and up to 2 km horizontally [50], as illustrated in Fig. 2,
significantly impact building energy demands. These impacts arise from
variations in temperature, solar radiation, wind patterns, humidity
levels, and precipitation in urban areas compared to rural settings with
similar climate zones. In this context, “datasets” refer to climate data
critical for UBEM energy predictions, categorized into simulation-based
and observational-based types, while “tools” denote the software and
platforms used for modeling and analyzing the interactions between
microclimates and energy systems.

Common UBEM models use historically aggregated weather data for
their weather and climate component inputs. These datasets, often in
form of a Typical Meteorological Year (TMY) [51], are conventionally
collected in remote open areas that are normally absent of urban context
terrain [15]. TMY datasets contain measurements of hourly weather
observations over only a 12 meteorological month calendar, although
collected from multiple years and aggregated into one year [51]. Due to
their specific aggregation process, TMY datasets fail to account for en-
ergy estimations during extreme weather events, such as heat waves and
cold waves, periods responsible for peak thermal loadings and where
infrastructure reliability is pivotal for the protection of human health.
Furthermore, these datasets fail to include microclimate parameters
known to influence urban building energy consumption such as albedo,
vegetation density, water availability in the soils, land surface temper-
ature, etc. Additionally, these datasets do not account for changing
climate conditions and do not report inputs at a high enough spatial
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Article Name

Type of Review

Application
Scale

Climate Datasets Discussed

Detail

Addressing the modeling-to-reality gap:
A comprehensive review of datasets,
tools, and methodologies for
integrating microclimates into urban
building energy models (UBEMs)
[Present paper]

Ten questions on urban building energy
modeling [15]

Data acquisition for urban building
energy modeling: A review [20]

Urban energy use modeling methods
and tools: A review and an outlook
[18]

How building energy models take the
local climate into account in an urban
context — A review [44]

A review on the CFD analysis of urban
microclimate [42]

A review of data-driven building energy
consumption prediction studies [46]

Urban microclimate and its impact on
built environment — A review [13]

Correlating the urban microclimate and
energy demands in hot climate
Contexts: A hybrid review [47]

Urban microclimate and building energy
models: A review of the latest progress
in coupling strategies [43]

Review of datasets, tools,
and methodologies for
integrating urban
microclimates into UBEMs

UBEM overview

Review of UBEM data
inputs

Review of UBEM
methodologies (simulation
based, data-driven,
hybrid)

Literature review of the
simulation-based datasets
for building energy models

Review of CFD
microclimate studies for a
wide variety of research
applications

Systematic review of data-
driven energy prediction
studies

Systematic review of
urban microclimate
studies for a wide variety
of research applications

Hybrid-systematic review
on UBEM and
microclimate

Review of microclimate
and energy model
coupling strategies

urban scale

urban scale

urban scale

urban scale

building scale

N/A

building scale,

urban scale

N/A

urban scale

building scale,
urban scale

TMY data, simulation-based datasets
(ENVI-met, CityFFD, WFR, Meso-NH,
TRNSYS, TEB, Solene-Microclimat,),
observational-based datasets (sensor data,
downloadable data, earth observational
datasets)

TMY data, simulation-based datasets
(Urban Weather Generator, CFD, Weather
Research and Forecasting)

TMY data, observational-based datasets
(local weather stations, weather
underground), and future weather data
(Urban Weather Generator)

Simulation-based datasets (CFD, Urban
Multiscale Environmental Predictor,
ENVI-met)

Simulation-based datasets (Meso-NH, TEB,
WER, Urban Canopy Model, Building
Effect Parameterization, UWG, Canyon Air
Temperature, Canopy Interface Model,
ENVI-met, Solene-Microclimat)

Simulation-based microclimate modeling
software and equations (ENVI-met —most
popular)

Observational-based datasets (sensor data,
downloadable data)

Observational-based datasets (field
measurements), Simulation based datasets
(CFD, ENVI-met, Fluent, OpenFOAM)

Simulation-based datasets (ENVI-met,
OpenFOAM, UWG, WRF-UCM)

Simulation-based datasets (CityFFD,
OpenFOAM, TRNSYS, Fluent, UWG, Green
Building Studio, Solene-Microclimat, IES,
ENVI-met, ESP-r)

This article presents a comprehensive
review of the datasets, tools,
methodologies, and novel case studies
deployed to integrate microclimates into
UBEM. It expands beyond conventional
methods by elaborating on
substitutional observational-based and
simulation-based data types, addressing
their spatial and temporal tradeoffs.
Introduces UBEM methods, applications,
challenges, opportunities, and future
research directions.

This literature review outlines baseline
information acquiring all input data for
UBEMS. It touches on different aspects of
collecting weather and climate data and
addresses future weather sources;
although weather data is not the
preliminary focus of the article.

This review article mainly focuses on
addressing the differences between data-
driven, hybrid, and simulation based
UBEM methodologies; highlighting the
tradeoffs of each.

This literature review gives an overview
of Urban Climate Model (UCM) and
Building Energy Model (BEM) coupling
and chaining strategies; elaborating
specifically on 9 different
configurations.

This review discusses 183 CFD studies on
urban microclimate, addressing key
tools, equations, and applications.

This review conducts a meta-analysis of
data-driven energy prediction studies,
outlining their applications (heating,
cooling, ect), data-driven methods, and
metrics for assessing model
performance.

This article highlights the latest progress
in urban microclimate research,
addressing traditional methods, field
measurements, wind tunnel modeling,
CFD, and emerging data driven studies.
It reviews 563 publications on urban
microclimate.

This article conducts a systematic review
of UBEM and microclimate studies. It
elaborates on key terms in the field,
conducts cluster analysis of the studies,
and outlines future research directions
specifically focusing on applications
with hot climate contexts.

This review addresses the coupling
strategies between urban microclimate
and building energy models, elaborating
on opportunities, limitations, and future
research directions.

resolution to describe the changes to climate and weather data in urban
environments, ignoring the inferences by physical structures and their
corresponding human activities, and thus exacerbating uncertainties
within modeling results.

To account for spatiotemporal resolution in climate data, numerous
UBEM methods have been developed to substitute, modify, and replace
the conventional TMY weather data file inputs. These UBEM climate
data inputs can be categorized into observational-based and simulation-
based approaches [15], each offering unique tradeoffs in spatial and
temporal granularity. These climate variable data inputs are then com-
bined within building energy modeling platforms through various

coupling and integration techniques, as elaborated on in the next sec-
tion. Observational-based approaches include only measured values,
such as in-situ data and remote sensing observations; whereas
simulation-based approaches use numerical-based conventions to
represent local climate data elements, given reference observational
based data [17]. In-situ observations have been coupled into UBEM
models by simulation-based platforms such as TRNSYS and CityBES.
Further, earth observational data has been combined with UBEMs
through data-driven techniques. Fig. 3 presents a list of the approaches,
and data sources for both observational-based and simulation-based
methods, whereas Table 2 compares these dataset types. The
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Fig. 2. Spatial extent of climate categories: microclimate, mesoclimate, and macroclimate based on horizontal distance scale.
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Urban Canopy Model
Tools

Fig. 3. UBEM weather and climate dataset inputs.

Table 2
Analysis of Observational-Based and Simulation-Based Climate Dataset Model Inputs with Key Strengths and Limitations Across Categories.

Dataset Type Scalability Spatial Granularity Temporal Granularity Parameter Variety Reliability Coupling Feasibility

Observational-Based In-Situ - - v v v -

Earth Observational v v - v - -

Simulation-Based - v v - -
subsequent sections will elaborate on these datasets in greater detail, data is sensed with remote sensing techniques, that make observations
highlighting the benefits and uncertainties associated with each UBEM from sensors onboard satellites and unmanned arterial vehicles located
climate and weather dataset input. above the earth’s surface, subsurface, and atmosphere, and then trans-

mit the recordings remotely to servers on land [54]. Both forms of
observational based data types offer unique tradeoffs between accuracy
specifications and spatiotemporal granularity, as elaborated on in the

In 2020, the quantity of data created, captured, copied, and subsequent sections.
consumed worldwide was 64.2 zettabytes; by 2025, this value is pro- The quality of observational data is heavily dependent on its
jected to triple in size due to developments in ubiquitous sensing, collection and recording methods. For all observational-based studies it
Internet of Things (IoT), and machine learning algorithms [52]. That is, is important to address quality standards such as; temporal and spatial
observational-based data is becoming increasingly accessible to capture homogeneity, reliability, and metadata reporting [55]. It is imperative
and monitor — thus providing an exciting expansion in scientific prog- that observational-based data undergoes proper and precise monitoring
ress and discoveries. In the context of UBEM applications, increased to ensure its value. This involves adherence to World Meteorological
accessibility to higher spatial-temporal climate data can help re- Organization (WMO) standards [56], recording on regular time intervals
searchers better understand the effects of urban microclimates on in consistent locations, and continuously processing through frame-
building energy performance. works that record sensor geographical points, instrument specifications,

Observational-based climate datasets are classified from two sources, and insights to recording procedures [55]. For all observational re-
station-based data or Earth Observation (EO) derived data [53]. Station cordings, the location of collection, measurement frequency, and
based in-situ data, or ground-based sensor data, observe meteorological sensing tool accuracy play pivotal roles in data quality and reliability.
parameters from instruments located on the earth’s surface. Whereas EO Additional bias mitigation strategies include using accurate (high

4.1. Observational-based microclimate datasets
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precision) instruments and placing them in regions that are represen-
tative of the surrounding environment (not near heat sources, in sun-
light, or in drafts).

4.1.1. Station-Based, In-Situ data

Station-based, or in-situ microclimate data used in urban building
energy modeling studies take on diverse ranges of sourcing patterns and
are collected at wide ranges of spatiotemporal resolutions. Due to the
diverse availability of devices, there is a spectrum of data collection
methods present for in-situ measurement, causing considerable varia-
tion in the procedures for deploying instrumentation. Observational-
based in-situ data can be accessed using web-based portals, through
crowd sourcing and citizen science, or by context specific instrumenta-
tion deployment. Some of the most common point source, or localized
and stationary, weather observational datasets are hosted by open-
source web-based entities. These sites aggregate weather information
and forecasts for the majority of the largest US and international cities;
Example of sites with free weather download capabilities include
Weather Underground [57], Open Sky [58], and the National Oceanic
and Atmospheric Administration (NOAAs) Climate Data Online [59].
Other websites such as Cal-Adapt [60] and Open Weather Map [61] host
free Application Programing Interfaces (APIs) that facilitate instanta-
neous data transfers between local and web based servers [62], where
observations from existing weather stations can be pulled and updated
in real time.

In-situ measurements often face challenges with the routine record
keeping at high spatial resolution. Often, sensors with larger temporal
time records are deployed for aviation applications, in regions that
normally lack urban from [53]. Also, weather data that is readily
available may vary it its accuracy specifications or include only a small
subset of weather and climate variables (ex. temperature, windspeed,
rainfall, pressure). Therefore, if weather parameters are not readily
available in the desired spatial and temporal formats, researchers can
deploy their own instrumentation to meet their context-specific scien-
tific goals.

The most common in-situ weather variables collected for
observational-based data-driven energy prediction studies include: dry-
bulb temperature, dew point temperature, relative humidity, global
solar radiation, wind speed, wind direction, degree of cloudiness, pres-
sure, rainfall amount, and evaporation [46]. These observations are
sometimes transformed for analysis like binned by distribution, such as
temperature binning, normalized by heating/cooling thresholds, such as
in Heating Degree Days (HDD) calculations and Cooling Degree Days
(CDD) calculations, or quantified in terms of human safety, such as the
Heat Index (HI) calculation and the Urban Heat Island Index (UHII)
calculation [8,53].

For instance, in-situ measurements were deployed in Rome to
address the spatial and temporal granularity of microclimates bellow the
urban canopy layer. In this study, air temperature and relative humidity
were sampled every 10 min, at 5 locations across the city for three years,
then coupled and simulated in TRNSYS to access the impact on urban
climate for two reference buildings [63]. Furthermore, at a higher
spatial resolution and lower temporal resolution, hourly weather data
(dry bulb temperature, relative humidity, global horizontal radiation,
and wind speed) was collected for 10 years at 27 different monitoring
sites in San Francisco and combined into CityBES urban microclimate
mapping feature to identify spatial patterns in urban energy expendi-
tures during a 3-day heat wave in 2017 [12]. In synthesis, a downfall to
in-situ microclimate data is its inability and lack of feasibility to char-
acterize conditions at high-spatial granularity. For example, in the
instance of urban energy studies, it becomes increasingly resource
intensive and intricate to install, operate, and maintain environmental
data reporting stations at such high spatial granularity (such as the
building level) across the city-wide scale. There also pose challenges
with the availability of programs and the assumptions made in programs
when combining multi-sensor data into UBEMs. Additional challenges

Energy & Buildings 331 (2025) 115392

with data gathering methods include difficulties with synchronizing
sensor sampling rates, sensor drift, sensor communication, and sensor
operation [46]. Earth observation-derived data [64] products can
address these challenges by providing longitudinal insight to environ-
mental conditions through the respective use of the same sensor for each
product domain (ex. air temperature).

4.1.2. Earth observation-derived data

The number of articles published on remote sensing and land surface
temperature in 2020 was approximately threefold of that in 2013,
indicating a substantial surge in research activity within this field [65].
That is, advancements in knowledge of capturing, spatial coverage,
temporal coverage, methods, and frameworks have expanded the sci-
entific applications of remote sensing techniques. In simple terms, Earth
Observation (EO)-derived data uses imagery methods sampled above
earth to capture information about diverse urban climates and surface
variability [66]. Due to its location of sampling, EO-derived data depicts
the state of the atmosphere, land, and ocean, offering a unique and
expansive set of environmental predictors for urban heat island and
energy modeling studies [66]. Earth-derived satellite observations used
for climate-related energy modeling studies are measured by multi-
spectral, hyperspectral, Light Detection and Ranging (LiDAR), and
thermal remote sensing devices, with each technology offering unique
parameters for urban building energy modeling studies, as outlined in
Table 3.

EO derived data has been heavily explored for building footprint
generation in UBEM studies [67]. Although, methodologies for utiliza-
tion and coupling of EO derived environmental data in urban energy
studies are less formulated and established. Dougherty and Jain have
published two studies using remote sensing observations for their
environmental parameter inputs into data-driven UBEMs [68,69]. The
authors combine EO products and machine learning techniques to
determine the effect or urban contexts on building energy demands in
New York City. In both [68,69] data-driven modeling studies, environ-
mental data is easily combined or coupled with the building energy
loadings through merging and synchronization of the building location
with the environmental sampling location. However, these studies do
not address the pressing gap to couple EO climate data into simulation-
based BEM platforms, as the temporal resolution required for BEM
platforms does not meet temporal EO revisit periods. Dougherty and
Jain’s case studies were the first UBEM studies to utilize remote sensing
environmental data inputs and advocate for the use of these EO climate
datasets for future energy modeling endeavors due to their scalability
and resolution.

Collecting earth observational data is very resource intensive,
although because measurements are often taken on the global level, case
study methodologies are reputable and easy to scale. In general, there is
a temporal and spatial granularity trade off among EO data sources,
where the devices with the shortest revisit period may have coarser
spatial capacity, leading to issues with spatial discontinuity and
spatiotemporal incomparability. Furthermore, at present it is difficult to
couple climate and weather data EO products with simulation-based
BEMs. Compared to in-situ observations remote sensing measurements
offer much higher spatial resolution, can act as validation in CFD models
[12]. Although, a major disadvantage and uncertainty of this technique
isits inability to penetrate clouds, therefore limiting the data availability
to timestamps with clear sky conditions. Like other observational data
types, EO data suffers from uncertainties from biases in sensors, sensor
drift, and retrieval algorithms, calling for the accuracy of measurements
to be addressed explicitly [66].

4.1.2.1. Multispectral and hyperspectral imagery data. Multispectral and
hyperspectral imagery products acquire image layers at different
wavelength bands from the same scene. Multispectral high-resolution
visible sensors operate with three different primary color (ex. red,
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Table 3

Earth observational products for UBEM climate data inputs.

Sensor

Available Products

Spatial Resolution

Temporal
Resolution

Landsat 8
[70, p. 8]

MODIS [71]

ASTER [72]

Sentinel-2
[74]

Sentinel-5P
NTRI [75]

ICESat-2 [76]

ERA 5 [78]

MERRA-2
[79]

NOAA RTMA
[801]

USFS Tree
Canopy
Cover
v2021-4
[81]

NASA DEM
[82]

OLI (9 bands), TIRS (2
bands), Analysis Ready
Products: Surface
Reflectance, Land Surface
Temperature, Surface
Water Extent, Fractional
Snow Cover, Burned Area,
Provisional Actual
Evapotranspiration
Surface Temperature,
Cloud Temperature,
Atmospheric
Temperature, Cirrus
Clouds Water Vapor,
Cloud Properties, Ozone,
Cloud Altitude

Analysis Ready Products:
Brightness Temperature,
Emissivity, Surface
Reflectance, Surface
Kinetic Temperature,
Surface Radiance, DEM
[73]

BOA reflectance, TOA
radiance, Surface
Reflectance

Aerosol Index, Aerosol
Height, Carbon
Monoxide,
Formaldehyde, Nitrogen
Dioxide, Ozone, Sulfur
Dioxide

Land Ice Elevation, Artic
Sea Ice Elevation, Land
Water Vegetation
Elevation, Cloud
Characteristics [77]
Divergence, Cloud Cover,
Geopotential, Ozone mass
mixing ratio, Potential
Vorticity, Relative
Humidity, Specific Cloud
Ice Water Content,
Specific Cloud Liquid
Water Content, Specific
Rain Water Content,
Specific Snow Water
Content, Temperature,
Wind Components,
Vertical Velocity,
Vorticity

Air Temperature, Wind
Components, Sea Level
Pressure, Surface
Pressure, Total
Precipitable Water Vapor
Pressure, Temperature,
Dew Point Temperature,
Specific Humidity, Wind
Speed, Wind Direction,
Wind Speed (gust),
Visibility, Cloud Cover,
Precipitation

Tree Canopy Cover

Digital Elevation

30 m (visible, NIR,
SWIR); 100 m
(thermal), 15 m
(panchromatic)

250 m (bands 1-2),
500 m (bands 3-7),
1000 m (bands
8-36)

15 m (VNIR), 30 m
(SWIR), 90 m (TIR)

10 m (B2, B3, B4,
B8), 20 m (BS5, B6,
B7, B8a, B11, B12)
60 m (B1, B9, B10)
1113.2m

20m

0.25 °x 0.25°

0.5 °x 0.625°

2.5 km

30m

30m

16 days

16 days

16 days

5 days

daily

91 days

hourly

hourly

hourly

N/A

N/A
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Table 3 (continued)

Sensor Available Products Spatial Resolution Temporal
Resolution
USGS Landcover 30m N/A
National
Landcover
Database
[83]

green, and blue) band pixel assignments [84] with sensing capabilities
between the visible to middle infrared electromagnetic spectrum [85].
Multispectral imagery products such as Landsat 8 OLI [70, p. 8], Landsat
9 OLI-2 [70, p. 9], MODIS (Moderate Resolution Imaging Spectroradi-
ometer) [71], ASTER (Advanced Spaceborne Thermal Emission and
Reflection Radiometer) [72], Visible Infrared Imaging Radiometer Suite
(VIIRS) [86] and Sentinel-2 [74] offer valuable insights into vegetation,
soil, water burned area, and thermal land properties for microclimate
UBEM parameter inputs, through products such as Normalized Differ-
ence Vegetation Index (NDVI), Land Surface Temperature (LST), ect..
The advantage of these products being their ability to contextualize
areas at high spatial resolution (10 m to 250 m); although, with a
tradeoff being that their temporal revisits are less frequent (5-16 days).
Hyperspectral imagery technology extends beyond the multispectral
range and gathers data from a wide spectrum of light [87]. Due to their
small band widths and ability to distinguish separate entities in an
image, multispectral and hyperspectral imagery can be used as land use
and vegetation data classification parameter inputs [85]. For example,
Dynamic World is a synthetic dataset that provides regularly updated
classifications of global land use and landcover (LULC) and is trained off
of and derived from 10 m Sentinel-2 data [88]. Parameters from mul-
tispectral and hyperspectral sensing technologies offer valuable insights
into urban microclimates, as foliage and land characteristics play an
important role in the thermal properties of urban areas [89].

4.1.2.2. LiDAR data. LiDAR satellites use laser altimeter systems to
measure physical distance through pulse travel time [90]. LiDAR mea-
surements provide insights to the vertical profile to the atmosphere on
the global scale, the vertical and horizonal distribution of clouds,
landscape topography, and heights of ice sheets, land, forests, lakes and
urban areas [90]. LIDAR measurements have been used in NWP models,
offering perspectives to cloud temperature and formation processes, as
well as in Digital Elevation Models (DEMs), providing quantification of
surface heights. LIDAR missions tend to have shorter deployment times,
longer revisit periods, and higher spatial resolution than imagery mis-
sions. In urban building energy and climate applications, LiDAR devices
can provide insight to landscape topography, land elevation, building
heights, and cloud formation. LiDAR data have been used to extract
building geometric data such as building heights and size characteristics
[91], and have informed training data that builds off of the Microsoft
footprints dataset [92] to create a rasterized building footprint dataset
[93], a building characteristic input to urban building energy models.

4.1.2.3. Thermal imagery data. Weather, climate, and microclimate
parameters used within urban building energy studies are heavily
dependent on thermal parameters of sites [94]. Thermal infrared (TIR)
sensing provides insight to these characteristics by measuring the
amount of radiation from an object, and in terms of satellite data
collection, measuring the radiative heat fluxes (RHF) from the earth
surfaces [95]. Thermal sensors operate in the emissions part of the earth
spectrum, ranging from 8- 14 um [94]. TIR output data is used for
monitoring agricultural drought, land cover, land surface albedo,
Normalized Difference Vegetation Index (NDVI), thermal environment,
thermal anomaly, and urban surface atmosphere exchange [65,96]; with
the most prominently derived parameter for being land surface tem-
perature (LST); a measurement that is widely used in UHI studies due to
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its tendency to identifying spatial anomalies and variation in surface
energy balances [96]. LST effectively measures surface skin tempera-
ture, or the ground radiometric temperature as observed from above,
quantifying the energy emitted and reflected from a surface [97]. There
are a variety of products that take TIR measurements at different spatial
and temporal scales.

High temporal granularity is important for LST measurements to
accurately portray UHI effects and have been used to address stability in
climate conditions [98]. Although, it should be noted that sensor accu-
racy is not always consistent, as the MODIS LST product was shown to be
accurate at night compared to the daytime [99,100]. Further, a vertical
spatial profile for LST measurements exists and should be considered
alongside horizontal variability [101] and may affect building heating
and cooling loads, specifically tall rise structures. Also, in dense urban
areas, LST measurements may inaccurately represent the surface tem-
perature of rooftops rather than inside of the street canyon [97],
emphasizing the differences between land surface temperature mea-
surements and air temperature measurements. Although LST acts as a
proxy for air temperature, the observations have different meanings and
responses to atmospheric conditions [102]. For use in robust applica-
tions, numerous methods have been carried out to derive air tempera-
ture from remote sensing observations, such as one that uses statical
methods with satellite and weather station data to produce a monthly
timeseries air temperature values for 2003 to 2016 [103], and meteo-
rological reanalysis products that provide air temperature measure-
ments resulting from both simulation based and observational based
domains.

4.1.2.4. Reanalysis products. Reanalysis products are derived from
global weather forecasting models under observationally constrained
scenarios using data assimilation techniques [104]. Because reanalysis
models are constrained by weather observational data and combined
with physical models, these products embody both observational and
simulation-based techniques [103]; offering a product that is most
suitable for spatiotemporally consistent environmental analysis [105].
For instance the ERAS reanalysis product provides hourly estimates for a
large number of atmospheric, land, oceanic, and climate variables on a
30 km or 0.1°grid [78]. It combines a large number of observations from
in-situ and EO data with an integrated forecast system cycle (Cy41r2)
and 4D-Var cost function techniques [105]. MERRA-2 is another popular
reanalysis data product for the period 1980 to present with approximate
resolution of 0.5° x 0.625° at 1 h temporal resolution [79]. The NOAA
Real Time Mesoscale Analysis (RTMA) product is preferred for urban
energy studies due to its spatial granularity [69], and is available at a
one hourly frequency for the continental US at 2.5 km spatial resolution
[80].

Table 4
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4.2. Simulation-based microclimate datasets and tools

Simulation-based microclimate modeling methods, conditioned on
physical and morphological parameters, are used to explore the effect of
urban contexts on building energy performance [106]. In general, urban
climate simulation techniques serve to model a surrounding environ-
ment, with reference to observational weather station data [43]. These
techniques are used for a wide variety of spatial scales, ranging from
indoor conditions (less than 10 m) to mesoscale (greater than 200 km)
[42].

Simulation-based microclimate tools have been implemented to
simulate conditions from the building level to the city scale and examine
the effect of localized climates on urban energy consumption through
microscale Computational Fluid Dynamics (CFD), mesoscale CFD, Nu-
merical Weather Prediction (NWP), and Urban Canopy Model (UCM)
tools and models, as elaborated on in Table 4. These techniques have
been criticized in UBEM applications due to their high computational
costs and their resource intensity to scale beyond small scale flow fields
(buildings, small campuses) and small temporal (hourly, daily) resolu-
tions [16,42,106]. Although, their comparative analysis flexibility and
flow parameter iterabilities over entire domains spaces make simula-
tion- based methods an attractive microclimate modeling method. This
is especially true when researchers have extensive knowledge and
experience in CFD model configuration settings, input parameters, and
simulation methods [15,42]. Model coupling has been adopted to
rapidly and accurately combine simulation based microclimate datasets
into UBEMs to obtain more realistic results [43]. This approach helps to
combat simulation program computational demands through load
sharing, although complications may arise while merging program
specific time-scales [43] and during generation of comparable formats
[97]. As for data accuracy, applying CFD into microclimate studies may
produce conditions for specific locations that are far from reality [43].
Moreover, because this data is fundamentally modeled, simulation-
based microclimate datasets may deviate from actual observed mea-
surements and conditions, further propagating errors within building
energy model demand estimates. For this reason, it is necessary to
ground-truth and validate simulation-based microclimate datasets with
real measurements to ensure accurate modeling results.

4.2.1. Computational fluid dynamics microclimate dataset modeling tools
The most common simulation-based urban climate modeling tech-
niques for UBEM applications utilize foundational Computational Fluid
Dynamics (CFD) principles. CFD models leverage physics-based fluid
motion conservation laws (conservation of mass, momentum, and en-
ergy) to produce quantitative predictions about fluid flow phenomena
[114]. CFD simulates thermal and mass interactions over contextualized
obstacles, such as building terrain in urban studies [15] by solving either
the Reynolds Averaged Navier Stokes (RANS) or Large Eddy Simulations

Popular simulation-based microclimate dataset modeling tools for building energy modeling studies.

Platform Microclimate Dataset Modeling Tool Category Computational Scalability ~ Coupling Small Scale
. . R Demands Feasibility Turbulence
Computational Fluid Numerical Weather ~ Urban
Dynamics Prediction Canopy
Model
ENVI-met [107] v ++ - - ++
CityFFD [108] v + + ++ +
Meso-NH [109] v +++ ++ ++ -
Weather Research and 4 - ++ ++ -
Forecasting Model (WRF)
[110]
Town Energy Balance (TEB) v _ + + _
[111]
Urban Weather Generator v _ ++ + _
(UWG) [112]
Solene Microclimat [113] v + _ + +
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(LES) fundamental governing equations [42]. The most frequently used
micro-scale CFD tool for building energy modeling is ENVI-met, which
solves for atmospheric flow and heat transfer with RANS equations
[18,44,115], followed by CityFFD, a Fast Fluid Dynamics solver with
computing algorithms based on the semi-Lagrangian approach. Micro-
scale CFD simulations are computationally expensive and often
limited to small spatial scale flow fields (buildings and small campuses)
and small temporal (hourly, daily) resolution [16,42,106]. Within these
platforms, temperature, wind velocity, and surface temperature are the
most commonly studied and prominent parameters in urban microcli-
mate research [42].

Within UBEM studies, CFD microclimate tools have limitations in
their ability to communicate with and exchange information between
building energy management (BEM) tools. To combat these challenges,
Elnabawi et al. used ENVI-met v4 software to model the most common
microclimate parameters over a 6-day summer period for a university
building in Bahrain and combined this output with urban weather
generator, Meteronorm, to produce a synthetic urban specific weather
dataset (USWD). This dataset consisted of a typical year of timeseries
data in an hourly format compatible for building energy modeling tool
IES-VE [51]. In contrast, Alyakoob et al. went way with merging
microclimate and Building Energy Management (BEM) platforms alto-
gether, by using a machine learning tree-based algorithm approach that
examined the impact of ENVI-met produced microclimate conditions at
three Arizona State University (ASU) buildings over three representee
summer days [116]. Although, these methodologies were able to combat
limitations with platform communication, both augmented UBEM and
ENVI-met studies cited programs computational cost as a challenge to
expanding their case study region to larger temporal and spatial
resolutions.

Coupling CFD with BEM tools is a commonly employed method for
considering urban microclimate conditions in building energy research
[16,106]. Coupling, in this context, refers to the combination and ex-
change of information between independent simulation platforms, a
building energy model, and an urban microclimate model, enabling
communication and data transfer between them. In downtown Mon-
treal, Katal et al. combine open source building geometric data, building
property data, and measured weather station data (air temperature,
solar radiation, and wind speed and direction) into CityFFD and Cit-
yBEM, using the ping-pong coupling strategy [117] to examine micro-
climate conditions over a case study region of 225 buildings for a 15 day
summer period [118]. Whereas a tool-agnostic semantic schema (in
JSON) coupling strategy was used to map building surfaces with CFD
grids and transfer data between CityFFD and CityBES pairing nodes,
ensuring no double counted or miscounted heat fluxes, over a 97
buildings case study region in northeast San Francisco during a 48-hour
summer heat wave [62]. A wide variety of BEM and CFD coupling
strategies in UBEM frameworks exist, as well as tool specific optimiza-
tion strategies, which are well tabulated in this coupling review article
[43].

4.2.2. Numerical weather prediction microclimate dataset modeling tools
Numerical Weather Prediction (NWP) tools simulate CFD principles
in the atmosphere, using prediction methods to provide insight about
atmospheric processes in larger spatial mesoscales [119]. Meso-NH is a
noteworthy NWP, or non-hydrostatic mesoscale atmospheric model that
considers earths sphericity and is designed to simulate atmospheric
processes (ex. motion, moisture, and thermodynamics) at the regional
scale [120,121]. Whereas the World Research and Forecasting (WRF)
model is one of the most popular NWP tools, which consists of both a
data assimilation system and computational architecture with three
coupled Urban Canopy Models [110]; and is used to provide insight for
actual atmospheric conditions or idealized atmospheric conditions
across a wide range of spatial scales, spanning from tens of meters to
thousands of kilometers [110]. An advantage of WREF is its ability to
initialize simulations with both statically modeled meteorological
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conditions and actual measurements, creating many diverse use case
applications [122]. Jain et al. used the WRF model to simulate hourly
climate conditions over a two-day summer period for 20 buildings in
Goose Island Region, Chicago, IL, initialized by the NOAA real-time
High-Resolution Rapid Refresh (HRRR) [123] dataset [122]; this
output was then coupled through a central data translation engine by
data-exchange units with energy plus to examine the effects of micro-
climate conditions on building cooling loads. The authors acknowledge
challenges in their methodology and recommend the use of a finer-scale
CFD model to decrease these uncertainties stemming from turbulence
around buildings [122].

4.2.3. Urban Canopy model microclimate dataset modeling tools

UCMs represent the exchange of momentum, heat, and moister be-
tween urban contexts and the atmosphere [124] through performing an
energy balance over a given surface. Town Energy Balance (TEB) con-
siders radiation processes and vertical wind profiles of urban geometries
in a single layer UCM [44,125], while Urban Weather Generator (URG)
[112] uses four submodules, the rural station model, the vertical diffu-
sion model, the urban boundary-layer (UBL) model and the UCM to
provide canopy level urban temperature, facilitating this information
exchange in the easy to use ladybug [126] plug in. Further, radiative
model Solene Microclimat uses radiosity algorithms to simulate whole
solar fluxes reaching urban surfaces, Program output can be coupled
with CFD models to holistically describe urban atmospheric conditions
[44,16,113]. Additionally, NWP models can be combined with Urban
Canopy Models (UCMs) to achieve finer-grain thermal insight at both
the city and building resolution. To provide context of the interactions
between residential housing energy consumption and urban climate in
the Sham Shui Po region of Hong Kong, mesoscale atmospheric model
MesoNH and UCM TEB were coupled, creating a multi-layer model that
examined energy performance over a 12-day period. The methodology
excelled in representing interactions between high density urban areas
in the atmosphere at relatively low computational cost over a longer
time duration [106].

5. Comparative analysis of case study Datasets, Methodologies,
and results

Ten studies that examine effect of more accurate climate and weather
data on UBEM performance were analyzed in this research, where
common case study metrics are tabulated in Table 5. The studies
included in this section use observational-based or simulation-based
climate and weather data inputs and analyze their performances in
UBEM:s. The studies were chosen based off criteria outlined in Section 2
of this paper.

It is evident that there are large disparities in the proposed micro-
climate datasets abilities to describe spatial and temporal states. The
relationship between these resolutions is shown as a scatterplot in Fig. 4.
In essence, simulation-based programs provide fluid flow and thermal
measurements at high granularity for smaller spaces (ex. room or
building), although these methods are limited by their computational
constraints to describe multitudes of buildings in neighborhoods and
cities. Observational-based datasets are not limited by these modeling
constraints and can span longer temporal study periods, although must
be recognized for their limitations in precision for this complex task,
specifically because revisit periods (or temporal difference between
measurements) may be much less frequent than simulation-based
datasets. In other words, simulation-based microclimate datasets are
more insightful for instances that examine the effect of microclimates on
a small subset of buildings in an urban context or during a specific
extreme weather event; whereas observational-based data is best used to
study the effects of microclimates on resource consumption over a larger
neighborhood or city scale across a longer study period.

From this synthesis of the ten case studies, it is clear that climate
dataset selection has a substantial effect on reported resource (energy,
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Table 5
Case studies exploring microclimate conditions in UBEMs.
Author Location UBEM Methodology Type Coupling Climate Datasets Climate Parameters Detail
(year) - A i method and BEM Tools
Data- Simulation- Hybrid
Driven Based
v -
1 M. H. Manama, ENVI-met v.4, AT, MRT, RH Urban Specific Weather
Elnabawi Bahrain Meteonorm, IES-VE Dataset, University
et al. (2022) Building, Summer
[51]
2 A. Alyakoob Tempe, USA v - ENVI-met AT, AH, SWR, Shading Tree Based Methods,
et al. (2022) levels Machine Learning,
[116] University Buildings,
Regression, Cooling Loads,
Summer
3 A. Katal et al. Montreal, v Ping-pong CityFFD, CityBEM AT, SR, WS, WD 3D models of buildings,
(2022) [118] Canada coupling Open datasets, Automated
processes, Summer
4 N. Luo et al. San v Tool-agnostic CityFFD, CityBEM AT, RH, WS, WD, SR, Attached Surfaces, 5 JSON
(2022) [62] Francisco, semantic Pressure, Carbon files, Data Pairing, Diverse
USA schema (in Dioxide Buildings, Summer Heat
JSON) Wave
5 R. Jain et al. Chicago, v One WFR, HRRR dataset, AT, RH, WS, WD, SR, Air Nodes, Cooling Loads,
(2020) [122] USA directional EnergyPlus SWR, LWR Diverse Buildings, Summer
coupling
6 S. Liu et al. Sham Shui v Multi-layer Meso-NH, TEB, AT, RH, WS, SR Building Archetypes,
(2023) [106] Po, Hong coupling EnergyPlus Summer Heat Wave,
Kong Nighttime differences
7 M. Zinzi et al. Rome, Italy v - 5 in-situ AT, RH Building Archetypes, Long
(2018) [63] measurements, Term Study, Seasonality
TRNSYS
8 T. Hong et al. San v - 27 in-situ AT, RH, SR, WS DOE Building Archetypes,
(2021) [12] Francisco, measurements, Summer Heat Wave
USA CityBES, EnergyPlus
9 T.R. New York v - Sentinel-2 Level-1C, SR, CDD, HDD, WS, Remote Sensing,
Dougherty City, USA VIIRS, and NASA’s Nighttime Light Regression, Linearity, Gas
and R. K. Jain SRTM, NOAA RTMA Radiance, Vegetation Consumption, Electricity
(2022) [69] Index, Cloud Cover, Consumption, Diverse
Precipitation, Buildings
Elevation
10 T.R. New York v - Sentinel- 1, Sentinel- AT, ST, WS, WD, RH, Remote Sensing, Tree Based
Dougherty City, USA 2, Landsat 8, CMIP, SR, SWR, Pressure, Methods, Machine
and R. K. Jain Dynamic World, SAR, Vegetation Index, Learning, Gas
(2023) [68] VIIRS, Elevation Cloud Cover, Consumption, Electricity

Precipitation,
Elevation

Consumption, Nonlinearity,
Seasonality, Diverse
Buildings

AT: Air Temperature, ST: Surface Temperature, GT: Global Temperature, MRT: Mean Radiant Temperature, CDD: Cooling Degree Days, HDD: Heating Degree Days, RH: Relative
Humidity, AH: Absolute Humidity, WS: Wind Speed, WD: Wind Direction, SR: Solar Radiation, SWR: Short Wave Radiation, LWR: Long Wave Radiation

Time duration of study (in days)
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Fig. 4. Spatial and temporal scales of the UBEM case studies.
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cooling, and heating) consumption of buildings. The results of each case
study are shown in Fig. 5 and outlined in Table 5, along with case study
locations, methodologies, coupling methods, climate datasets, climate
parameters, and generic keyword details. The most common result
reporting method entails the comparison of energy consumption values
given both an urban specific microclimate weather dataset and the
traditional TMY climate dataset. For the case studies analyzed in this
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manner, relative changes between microclimate and TMY datasets
resulted in 5 % and 23 % change in energy consumption, 4.7 % to 74 %
increase in cooling consumption, and a 15 % to 20 % decrease in heating
consumption. That is, for the climate zones examined, cooling loads are
more unlikely to be underestimated due to the exclusion of urban
microclimate data, than heating loads. Moreover, the inclusion of urban
microclimate data substantially impacts UBEM results- thus actions
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Fig. 5. UBEM and microclimate case study findings, highlighting variability in reporting methods and their impacts on energy and temperature metrics.

should be taken to include these conditions in UBEMs to decrease the
misrepresentations of energy consumption patterns and to ensure ac-
curate and realistic modeling. Due to the relatively small sample size and
the differing spatial-temporal scopes of UBEM case studies examined,
there is a limitation for creating more transferable concrete conclusions.
That is, it should be noted these aggregated summary statistics are
inherently case study specific and may not be interpreted to extend
beyond the intended climate zone and building types. Additionally,
other obvious and unpredictable factors that are not included as UBEM
inputs may influence building energy consumption, thus all re-
sponsibility of these additional loadings may not soley be attributable to
urban microclimate conditions, among these factors include indoor
building set points, occupant comfort controls, and variability with
resource consumption.

As illustrated in Fig. 5, a wide range of result reporting procedures
exist for UBEM and microclimate studies, complicating their compara-
bility across frameworks and methodologies. That is, it is difficult to
determine which urban microclimate datasets (and the simulation-based
tools to create them) are most accurate, as they are not always validated
with real building performance data or real urban microclimate data,
and their benchmarking processes often differ in temporal and spatial
scope. Therefore, it is recommended for researchers to validate their
microclimate model results with real microclimate and energy data to
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facilitate comparison between models and to examine the reliability of
their methodologies. This will not only help with reporting but will also
increase model reliability through ensuring ground truthing of the
proposed methodologies —- as without this step it is difficult to make
applicable, and concrete actions out of study conclusions.

It is well documented that UHIs pose the largest danger to human
health during extreme heating periods. That is, for the studies examined,
urban building energy was modeled over the summer months. Notably,
most of the studies only examined microclimate conditions over the
summer, 30 % explicitly examined urban microclimate conditions dur-
ing a summer extreme weather heating event, and 30 % conducted
research over the entire annual timeframe but identified larger micro-
climate (and Urban Heat Island) effects throughout the summer months.
Therefore, more research should be taken to analyze these conditions in
more extreme climate zones and where building cooling demands are
increasing throughout summer months. Furthermore, air temperature
was the primary microclimate data parameter examined, with tradi-
tional variable expansion including humidity, wind speed, solar radia-
tion, precipitation, elevation, pressure, vegetation, cloud cover, and
shading.
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6. Discussion

Dense urban areas have altered historical land use patterns, habitats,
and intrinsically effected environmental conditions; thus, research is
needed to account for these changes and their impacts on city infra-
structure. Integrating urban building energy models with microclimate
weather data that is spatially characterized for urban contexts can aid in
accounting for these altercations to further increase urban building
infrastructure resiliency. Traditionally, UBEM methodologies rely on
historically aggregated TMY weather files for their climate data input
sources. However, these files are based on aggregated observations
collected as single point measurements which are often located in rural
areas; thus, failing to characterize weather and climate in urban regions
at high spatial and temporal granularity.

This literature review explores the different climate datasets, tools,
and methodologies used to integrate finer grain microclimates in UBEM
frameworks. The review characterizes these climate datasets into two
types: observational-based and simulation-based. Observational-based
datasets contextualize spatial granularity by compiling real measured
values at different spatial and temporal resolution within a region of
interest. Whereas simulation-based datasets use computational methods
to model spatial variability in climate given a reference weather file,
through physics-based conservation laws (CFD), atmospheric processes
(NWP), and energy balances (UCMs). Combining, or coupling, high-
resolution microclimate data into UBEMs remains one of the signifi-
cant challenges in this research domain. Data-driven UBEMs can facili-
tate the integration of observational-based and simulation-based
microclimate data with building data through merging timestamps and
locations. However, this comes with its own set of assumptions and
challenges, including limitations with high temporal data availability
and quality. Building energy simulation platforms such as TRANYSYS,
IES-VE, CityBEM, and EnergyPlus can facilitate the data transfer process
for simulation-based microclimate datasets though the utilization of
various coupling procedures (such as one-directional and two-
directional). Although, complications such as data loss, misalignment
of timescales, high computational demands, along with the limitations
and assumptions of each underlying software platform arise under these
scenarios. Furthermore, because simulation-based datasets are funda-
mentally modeled- a ground truthing process which ensures that data-
sets are calibrated to portray actual conditions is necessary to reduce
compounding errors in urban-scale energy predictions.

To reduce the uncertainties arising from microclimate modeling,
energy modeling, and coupling platforms thereof, a blending of the two
methods can be taken. This hybrid, or augmented approach can combine
instances of both simulation-based and data-driven techniques and
leverage the benefits of both methodologies. For example, Alyakoob et.
al. use a data-driven machine learning tree-based algorithm energy
model to examine the impact of simulation-based ENVI-met produced
microclimate conditions for Arizona State University (ASU) buildings
[116]. Through using the ENVI-met microclimate data and a data-driven
UBEM model, the authors were able to reduce the computing re-
quirements of building energy simulations, increase the feasibility of
coupling the two datasets, and leverage ENVI-met for more granule
climate data. As for existing microclimate datasets, reanalysis products
embody both simulation-based and observational-based domains, are
validated and cleaned by large-scale institutions; and may offer as an
alternative to single simulations to contextualize microclimate contexts
at the larger city and state level. Due to the simulation-based generative
nature and their ability to contextualize given starting conditions,
reanalysis products are often reported with higher temporal resolution
than conventional earth observational datasets. Dougherty and Jain take
a semi-hybrid approach while blending reanalysis products with EO data
in their data-driven studies [69,68], leveraging their ability to contex-
tualize conditions at high temporal resolution.

It is recommended that hybrid methodologies are further investi-
gated for integration of microclimates into UBEM models. For instance,
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there is an opportunity for observational-based microclimate data to be
combined with and used as input into coupled CFD and BEM tools in an
augmented UBEM methodology [68]. Additionally, methodological
opportunities exist for blending earth observational datasets into
simulation-based building energy platforms to leverage both the spatial
granularity of earth observational datasets and the building granularity
of a simulation-based BEM.

Finally, for both simulation-based and observational-based climate
data inputs, it is necessary for researchers to recognize and consider the
specific limitations of their models during both analysis and result
interpretation stages [53]. Additionally, for all contexts, it is important
to use local weather data in energy models [18] either within the model
validation stage or through use of observational products. Including
these higher spatial resolution climate data products that characterize
urban climates using a diverse set of environmental features will
decrease current UBEM uncertainties. This will further raise model ac-
curacy and produce actionable steps for increasing infrastructure resil-
iency, ultimately promoting the protection of human health.

7. Conclusion

Currently, without reliable energy modeling predictions, engineers
and stakeholders struggle to accurately characterize current and future
building energy consumption, leading to discrepancies in environ-
mental, social, and economic performance for their structures. Due to
inter-building connections and microclimate conditions, such as the
urban heat island effect, these inconsistencies are exacerbated in urban
climates. This literature review details the datasets, tools, and method-
ologies used to incorporate microclimates in UBEMs, focusing to close
the simulation-based modeling gap to address environmental modeling
uncertainties. In this process, it expands on the traditionally used
methods and elaborates on substitutional observational-based and
simulation-based data types, detailing the spatial and temporal tradeoffs
of each source. It highlights the difficulties of combining both highly
temporal and spatially granule microclimate data into building energy
platforms, sighting challenges in data merging, scalability, and compu-
tation. To reduce the uncertainties associated with each simulation or
observational data type, to add more microclimate parameters into
models, and to maintain low computational requirements with larger
temporal and spatial simulations the review recommends investigating
multimethod, or hybrid approaches. Additionally, the review finds that
remote sensing technologies have been well explored for building geo-
metric data inputs. Although, there is need to leverage the spatial res-
olution of these datatypes and explore both reanalysis and
observational-based products for environmental data inputs. Further,
case study research in this sector primarily uses the air temperature
parameter for assessment of urban microclimate conditions, specifically
examining these effects during summer months. Future investigation
should be taken to explore the impacts of additional environmental
parameters across all climate zones and throughout extreme heating and
cooling weather events. Finally, an aggregation of case study findings
concludes substantial differences between modeled results with micro-
climate datasets and with conventional climate dataset inputs, under-
scoring the importance of including microclimate data into model
validation and calibration workflows. There poses a significant chal-
lenge to address both building and climate granularity in urban building
energy studies. Further research in this domain is essential to bridge
these existing gaps between simulated models and real-world scenarios.
These advancements will offer more precise recommendations for en-
ergy system improvements and guidance for energy resiliency planning,
which are specifically critical to combat future infrastructure stresses
such as extreme weather events and changing climate conditions on
energy systems at the city level.
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