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HIGHLIGHTS

o Novel dataset of PM, 5 exposure estimates across the contiguous U.S. at census tract-level resolution.
e Geographically weighted regression predicted and corrected biases in source-resolved chemical transport model predictions.
o Geographically weighted regression generally outperforms ordinary least squares in bias predictions.

ARTICLE INFO ABSTRACT
Keywords: Chemical transport models (CTMs) can provide information — albeit with biases — that is lacking in observa-
Air quality tions, including PMj 5 composition and source. Correcting biases in simulated PM5 5 could facilitate their use in

Exposure estimates

exposure assessment, environmental epidemiology, environmental justice analyses, and other applications. Here
Exposure assessments

we develop a novel set of species- and source-resolved PM3 5 estimates across the contiguous United States for
2001 and 2010. We use geographically weighted regressions (GWR) to predict and then correct for the bias in
CTM PM, 5 concentration predictions for five chemical species (elemental carbon, organic aerosol, ammonium,
nitrate, and sulfate). The GWR models are trained using speciated measurements, empirical PMy 5 exposure
estimates, CTM predictions, and other geographic information. A 10-fold cross-validation shows minimal bias
across each simulated PMjy 5 species (—25 to 39 % before; 0-3 % after) and improved correlations with ground-
level monitors for elemental carbon, nitrate, and organic aerosol (R% 0.30 to 0.53 before; 0.53 to 0.87 after).
GWR outperforms ordinary least squares (OLS) corrections for all PMy s species except elemental carbon, where
performance is comparable. Corrected fields also show improved performance in predicting fractional compo-
sition. Tract-level species- and source-resolved exposure estimates developed in this study are publicly available
at www.caces.us.

1. Introduction disease (Pope and Dockery, 2006; Pope et al., 2020), and is the leading
contributor to morbidity and mortality among air pollutants (Cohen

Chronic exposure to fine particulate matter (PMy5) causes adverse et al., 2017; Lefler et al., 2019). Air quality management in the United
human health outcomes, including pulmonary and cardiovascular States has reduced concentrations of PMs 5 in recent decades (Zhang
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et al., 2018), with health benefits consistently exceeding the cost of
regulations several-fold (U.S.E.P.A. 1999, 2011, 2012). Studies suggest
that further reductions of PMy s in the United States would lead to
improved health and increased life expectancy (Apte et al., 2018; Ben-
nett et al., 2019; Correia et al., 2013; Pope III et al., 2009). To date, air
quality regulations have targeted PMy 5 total mass, with the implicit
assumption that all PMj, s is equally toxic. However, PMj 5 is a complex
mixture with varying properties, including but not limited to size, phase,
acidity, chemical composition, and source. Given the various patho-
physiological pathways for PMjs-induced morbidity and mortality
(Pope and Dockery, 2006), PMy 5 toxicity could be a function of its
properties; however, prior work has been unable to conclusively identify
key drivers of PMy 5 toxicity (Harrison and Yin, 2000; Kelly and Fussell,
2012). Investigating this topic in epidemiological studies requires ac-
curate exposure estimates of PMjy 5 resolved by composition, sources,
and/or other properties.

Conventional PMs 5 exposure estimates for health studies are pri-
marily derived from observations (Diao et al., 2019; Hoek et al., 2008,
2017). For example, data from ground-level monitors and satellites have
been used with land-use and land-cover data to build empirical models
that provide reliable and consistent estimates of ambient PM, 5 levels;
those estimates have been used in epidemiological studies as measures
of exposure. Empirical models for PMj 5 typically predict total PMjy 5
mass rather than composition and sources, reflecting in part the fact that
observational data on PMy 5 species, sources, and other properties are
often limited or unavailable.

In contrast, chemical transport models (CTMs) can readily provide
information about the character of PMj 5, such as chemical composition
and source. However, CTMs alone are unable to match the accuracy of
empirical estimates. Several sources of errors — for example, errors in
emission inventories and in chemical mechanisms, coarse grid resolu-
tion, large emissions gradients, complex terrain, and complex meteo-
rology — lead to error and bias in CTM predictions. Spatial biases in
uncorrected CTM estimates can make them unsuitable for epidemio-
logical analyses. The underlying causes of CTM errors are generally non-
random in space, resulting in different regions having different char-
acteristic biases and errors. Therefore, applying a statistical technique
that can identify and remediate regionally varying biases in CTM esti-
mates could facilitate their use, including in epidemiological analyses,
and provide much needed information on PM, 5 properties.

Geographically weighted regression (GWR) is a local spatial analysis
technique that models the spatially varying relationships between in-
dependent and dependent variables (Brunsdon et al., 1996). Regression
coefficients in GWR are determined locally and can allow targeted
identification of spatial biases in simulated PMy 5. GWR’s predictions of
spatial biases can then be used to correct the CTM predictions
throughout the domain. Several studies have used GWR to develop
PM, 5 exposure estimates, primarily as a predictive tool to correct sat-
ellite Aerosol Optical Depth (AOD) measurement to ground-level mon-
itors (Franklin et al., 2017; Hammer et al., 2020; Hu, 2009; Hu et al.,
2013; Li et al., 2017a; Ma et al., 2014; Meng et al., 2019; Song et al.,
2014; van Donkelaar et al., 2015, 2016, 2019; You et al., 2016; Zhai
etal., 2018). A subset of these studies has incorporated information from
CTMs, such as spatiotemporal extent of PMy 5 (Hammer et al., 2020; Li
et al., 2017b; Meng et al., 2019; van Donkelaar et al., 2015, 2016, 2019;
Zhang et al., 2020a). Only a few studies used CTMs to predict the
chemical composition of PMy 5 (Di et al., 2016; Geng et al., 2020; Jin
et al., 2024; Rahman and Thurston, 2022; van Donkelaar et al., 2019). In
the broader literature, studies using techniques other than GWR have
also incorporated CTMs in PM, 5 exposure estimates (Berrocal et al.,
2020; Brauer et al., 2012; de Hoogh et al., 2016; Evans et al., 2013; Geng
et al., 2015, 2017; Huang et al., 2021; Lee et al., 2012; Lyu et al., 2019;
van Donkelaar et al., 2006, 2010; Wang et al., 2016; Zhang et al.,
2020b). However, most of these studies used CTMs to obtain spatio-
temporal estimates of total PMy s mass; a few used information on
chemical composition (Di et al., 2016; Geng et al., 2017; Jin et al., 2024;
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Li et al., 2017b; Meng et al., 2018a, 2018b; Philip et al., 2014). Zhang
et al. (2022) extended the approach of Zhang et al. (2020b) to include
also AOD data for greater coverage in regions where ground level ob-
servations are not available. Jin et al. (2024) combined the predicted
WRF-Chem PMj 5 composition with the AOD observations from the
Multi-angle Imager for Aerosols (MAIA) instrument using Bayesian
model averaging methods.

Data assimilation methods produce optimal estimates of a system
state which is usually dynamical (e.g. temporal variation of pollutant
concentrations), combining prior knowledge from model simulations
with observations to produce an updated posterior estimate with tech-
niques including Kalman filtering, Ensemble Kalman filtering, etc. If
temporal variations are not considered GWR is more efficient, since data
assimilation methods are more computationally demanding than GWR
models.

Moreover, other studies used observations to treat algorithms in
order to improve gas phase species predictions like Os, using different
methods like decision trees (Ivatt and Evans, 2020), bias correction
(Skipper et al., 2021, 2024) or even machine learning (Keller et al.,
2021). Most of the previous studies (Meng et al., 2018b; Ivatt and Evans,
2020; Zhang et al., 2020a, Skipper et al., 2024) rely on only one type of
observations, usually ground-based observations for their analysis. A
few studies (Di et al., 2016; Geng et al., 2020; Jin et al., 2024) have
combined different types of data like ground-based observations and/or
satellite data and/or land use data in order to improve CTM predictions
of PMy 5 and its composition. These studies were applied to a specific
region of US and used a limited number of land use parameters to
describe the details of each certain point.

In this work, we propose a novel approach for correcting biases in
species- and source-resolved CTM PMj; 5 predictions by combining for
the first time Geographically Weighted Regression (GWR) with the In-
tegrated Empirical Geographic (IEG) regression (Kim et al., 2020). The
IEG model leverages a comprehensive dataset—including land use
regression and satellite observations—that characterizes well each area
within the domain, ensuring rich contextual information. While CTM
predictions may suffer from both spatial and temporal biases, our focus
is on correcting spatial biases in long-term predictions, which are
particularly critical for exposure assessment. By integrating diverse data
sources (ground-level monitors, land use information, satellite re-
trievals, and CTM predictions), the method reduces uncertainties and
strengthens prediction reliability for spatially resolved PMy 5 sources
and composition. A key advantage of our approach lies in the role of
GWR, which explicitly accounts for spatial heterogeneity by performing
local regressions around each point and weighing nearby observations.
When local observations are unavailable, the IEG model provides robust
fallback estimates, thereby maintaining high prediction accuracy. This
dual mechanism offers a clear improvement over traditional machine
learning algorithms, which are generally not inherently spatial and
require spatial features to be added explicitly. As a result, our method
can deliver more accurate and spatially consistent source-resolved PMy 5
estimates. These improved predictions not only enhance the reliability
of source apportionment analysis but also provide a strong foundation
for epidemiological studies across large regions, such as the contiguous
US (Pond et al., 2022). Tract-level species- and source-resolved PMy 5
exposure estimates developed through this method are publicly acces-
sible at www.caces.us.

2. Methods
2.1. Overview

Our approach combines observations from speciated ground-level
monitors, empirical model estimates of total PMy s (Kim et al., 2020),
CTM predictions (Skyllakou et al., 2021), and other geographic infor-
mation. First, GWR is used to predict the bias in speciated CTM pre-
dictions using training data at speciated monitor locations, similar to
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van Donkelaar et al. (2019). The bias for each species predicted by GWR
is then used to correct annually averaged CTM simulations across the
contiguous United States. Species included in this study are elemental
carbon (EC), organic aerosol (OA), ammonium (NHY), nitrate (NO3) and
sulfate (SO%’). Since we lack national-scale observations of source
apportionment, we hold fractional source apportionment constant as we
correct each species.

2.2. PMCAMXx chemical transport model

PMCAMXx (Karydis et al., 2010; Murphy and Pandis, 2010; Posner
et al., 2019; Tsimpidi et al., 2010) is used to simulate PMy 5 over the
contiguous United States for 2001 and 2010 using a methodologically
consistent set of emissions inventories (Xing et al., 2013). The Particu-
late Source Apportionment Technology (PSAT) algorithm (Skyllakou
et al., 2014, 2017, 2021; Wagstrom et al., 2008, Wagstrom and Pandis,
2011a,b) is used to track the apportionment of emissions sources in a
computationally efficilent manner. The model domain covers the
contiguous United States, portions of Canada and Mexico, and nearby
offshore regions. The horizontal resolution is 36 km. Six source cate-
gories are resolved here: electricity-generating units (EGUs; industrial
point sources included in EPA’s Integrated Planning Model), other in-
dustrial point sources (non-EGU), on-road mobile, off-road mobile,
biogenic volatile organic compounds (VOCs) from vegetation, and
“other” which includes on-road emissions from Canada and Mexico,
wildfire emissions, and all other emissions. This work is based on the
results of Skyllakou et al. (2021). In Skyllakou et al. (2021) the wildfires
were included into the “other” source category. The PM emissions from
biomass burning were similar for 2001 and 2010. Wildfires were the
dominant PM source of the “other” category, contributing 80 % in 2001
and 83 % in 2010 to the total emissions of this category. PMy 5 con-
centrations attributed to the model’s boundary and initial conditions are
tracked as separate categories. Species predicted by the model and used
in this work include sulfate, nitrate, ammonium, EC, primary organic
aerosol (POA) and secondary organic aerosol (SOA). The apportionment
of secondary PM components is based on the apportionment of their
precursors. As a result, the apportionment of sulfate, nitrate, ammo-
nium, and SOA is based on the apportionment of SOz, NOy, NH3, and
VOCs respectively. PMCAMX uses an advanced treatment of OA (using
the “volatility basis set”) that accounts for the semi-volatile nature of
primary organic emissions and recent advances in our understanding of
SOA chemistry (Donahue et al., 2006; Murphy and Pandis, 2009; Rob-
inson et al., 2007). Model predictions of sodium, chloride, and mineral
dust are excluded from this analysis due to large uncertainties in their
emissions and because there are no direct measurements of ambient dust
concentrations. Meteorological data input to PMCAMx are taken from
simulations performed using the Weather Research Forecasting model
(WRF v3.6.1) for these time periods. Initial and boundary conditions
were generated from the ERA-Interim global climate re-analysis data-
base. The CTM simulations are described further in Skyllakou et al.
(2021).

2.3. Ground-level speciated PM> s observations

Observations of PM, 5 species (EC, OC, NH4, NO3, S037) from the
EPA Chemical Speciation Network (CSN) and the IMPROVE monitoring
network for 2001 and 2010 were downloaded from the Federal Land
Manager Environmental Database (http://views.cira.colostate.edu/fed/
). Prior to the CSN transition period from 2007 to 2009, CSN and
IMPROVE used different analytical and sampling protocols for carbon
measurements, requiring harmonization across the datasets (Malm
et al., 2011; Solomon et al.,, 2014; Spada and Hyslop, 2018). Most
notably, pre-transition CSN monitors used the thermal optical trans-
mittance (TOT) analytical protocol for carbon measurements, while
IMPROVE and post-transition CSN monitors use the thermal optical
reflectance (TOR) protocol. We adjust 2001 CSN carbon measurements
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to match post-transition CSN protocols following the approach in Lordo
et al. (2016). Additionally, a filter blank correction of 0.4 pg m™3 is
applied to organic carbon (OC) measurements in 2010. To account for
differences in the aging of organic aerosol in urban and rural areas, an
OA:OC ratio of 1.4 and 1.8 was applied to OC measurements collected at
CSN and IMPROVE sites, respectively. There are uncertainties in the
estimation of these constants, especially about the one used for
IMPROVE sites because it could be higher or lower if the OA is very aged
or not (El-Zanan et al., 2005; Ruthenburg et al., 2014). The value of 1.8
applied for IMPROVE sites is an assumption for the regulatory sites
based on Pitchford et al. (2007). On average, 23 CSN and 92 IMPROVE
monitors were used in 2001, and 165 CSN and 146 IMPROVE monitors
were used in 2010 (Table 1).

2.4. Geographically weighted regression

We use GWR to correct bias in speciated PMCAMXx predictions. Here,
GWR is a spatial extension of ordinary least squares (OLS) regression. In
GWR, regression coefficients vary in space, and observations are
weighted in the regression according to their proximity to a desired
prediction point in space. A consequence of this formulation is that there
is no global model. Instead, the model is solved locally for every pre-
diction point in space such that:

X"'WOXpi) =X"W(i)Y m

where X is a matrix containing predictor variables, W is a weighting
matrix (kernel) at location i, f is a vector of regression coefficients at
location i, and Y is the dependent variable. The weighting matrix is a
diagonal matrix, where each diagonal element is the weight assigned to
an observation and is calculated by a user-defined weighting function
(Eq. (2)). Selection of the weighting function depends largely on the
nature of the dataset. Weighting functions are typically calibrated to an
optimal bandwidth, which controls the rate observations are down-
weighed with distance. Weighting functions can also have cut-offs,
which exclude observations past a certain distance threshold. Com-
mon weighting functions include inverse distance weighting and a
Gaussian function. Several weighting functions were considered and are
discussed in the Supporting Information (SI). The primary results pre-
sented in this paper use a Gaussian weighting function:

w;j = exp (7ad,.2j) 2

where w;; is the weight assigned to an observation in location j for pre-
dictions in location i, a is the decay coefficient or bandwidth, and d is the
distance between location i and j. The bandwidth () is calibrated by
minimizing the root mean square error in the GWR model. In Eq. (2), a

Table 1

Number of speciated monitors used in observational data by year, PM s species,
and monitoring network. The number of co-located monitors reflects the in-
stances where all 5 species are measured at the same monitoring location.

Year Species CSN IMPROVE Total
2001 EC 28 92 120
2010 EC 151 147 298
2001 oM 27 92 119
2010 oM 153 145 298
2001 NHy 20 91" 111
2010 NHy 174 146" 320
2001 NO3 20 91 111
2010 NO3 168 145 313
2001 S0% 21 91 112
2010 S0% 175 146 321
2001 Co-located 18 91 109
2010 Co-located 140 144 284

# Ammonium values from IMPROVE monitors are not directly measured and
are instead inferred assuming full neutralization of sulfate and nitrate.
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bandwidth of zero would lead to equal weighting for all observations,
making the GWR model equivalent to OLS. The decay coefficient de-
scribes how the influence of nearby data points decreases with distance
in the model. Variations in dispersion characteristics and atmospheric
lifetimes across PMg s components can result in differing estimated
decay coefficients.

GWR is used to predict the bias in simulated PM 5 species, with GWR
models being trained for each species and simulation year. Bias pre-
dictions are made at the centroids of U.S. census tracts and used to
correct CTM simulations projected to census tracts. Bias predictions
were performed at monthly and annual resolutions and are evaluated in
the SI. However, the primary results of this paper are corrected with
annually averaged bias predictions due to generally better performance.
The GWR model form, modified from the model form used in van
Donkelaar et al. (2019) is:

(sim SPEC — 0bs SPEC) = fpED + fipyIDU + i, IEGb + > 3. sim SPEC.
c

3

The left side of Eq. (3) represents the CTM bias relative to speciated
ground-level monitors (i.e., the outcome variable); the right side con-
tains predictor variables and regression coefficients. SPEC represents
PMS, 5 species (EC, OA, NHZ, NO3, SO%"). ED represents the sub-grid
elevation difference, which is the difference between the elevation of
a prediction point and the mean elevation of the overlying CTM grid cell
and is used to represent topographic effects unresolved by the CTM.
Elevation is taken from the NOAA ETOP1 global relief model (Amante
and Eakins, 2009; NOAA, 2009). IDU is the inverse distance to the
nearest urban land cover as determined by using year-specific MODIS
MCD12Q1 land cover data (Friedl and Sulla-Menashe, 2019). Higher
spatial variability is expected in urban areas, potentially contributing to
model error given the relatively coarse horizontal resolution of 36 km in
the CTM. A maximum limit of 2 km™! is set for IDU (i.e., when the
distance to the nearest land cover is less than 0.5 km, the distance is
replaced with the value 0.5 km prior to calculating the inverse distance)
to avoid excessively high values for IDU. IEGb is the bias in total PMjy 5
concentration from the CTM relative to predictions of the Integrated
Empirical Geographic (IEG) model by Kim et al. (2020). The IEG model
is considered reliable, since it estimates annual averages of total PMj 5
based on ground-level monitors, universal kriging and partial least
squares of many geographic variables including land use variables and
satellite-derived estimates of pollution levels and land-cover. IEGb
serves as a useful initial guess of the bias, which we hypothesize is useful
especially in locations that are far from an ambient monitor. The final
predictor variables, SPECc, are a subset of simulated species from the
CTM: when predicting the bias of carbonaceous species, SPECc repre-
sents carbonaceous species (EC, POA, SOA); when predicting the bias of
anon-carbonaceous species, SPECc represents non-carbonaceous species
(NHZ, NO3, SO37). This specification for SPECc is meant to limit the
number of predictor variables in the model and avoid model over-fitting.
While the CTM provides predictions of POA and SOA, observations do
not, so it is not possible to separately model biases in POA and SOA
directly. Instead, the GWR is trained to model biases in total OA; after
total OA is corrected, primary and secondary fractions as predicted by
the CTM are applied proportionally to corrected OA. While corrected
estimates of OA, POA and SOA are generated by this method, only those
for total OA are evaluated here. The impact of individual regressors on
the predicted bias for all simulation years and species is shown in
Figs. S2-S11 in the SI. Each term of equation (3) can be a different
physical quantity, but similar scales are ensured by the definition of the
different coefficients p. Because the regression coefficients § are calcu-
lated locally and for each type of regression those values are a function
also of the selection of the bandwidth (equation (2)).

The density of census tracts varies: smaller (denser) tracts in urban
areas, larger (less dense) tracts in rural and remote areas. Predicting
CTM biases at a census tract resolution accomplishes several objectives.
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Predicted biases can be used to downscale (i.e., to the tract level) the 36
km -resolution CTM estimates, including in urban and population-dense
areas, where PMjs experiences often greater spatial variability.
Conversely, rural and low-populations areas are given lower resolution
corrections. Finally, using tracts facilitates population-weighted aver-
aging to coarser census geographies, such as counties or metropolitan
statistical areas (MSAs). This aspect allows GWR predictions and
therefore epidemiological analyses to be easily performed at the desired
spatial resolution (if they are tract or coarser). GWR-corrected estimates
at various census geographies are evaluated in the SI.

GWR models are evaluated here using three cross-validation
methods: 1) leave-one-out, 2) 10-fold cross-validation (CV), and 3) a
regional holdout CV. The regional holdout CV is designed to inform
model errors in regions far from monitors, where performance is likely
to be worse than that suggested by 10-fold CV. It functions similarly to
the leave-one-out CV except that all monitors within a 400 km radius are
also excluded from model training. Model training, prediction and
evaluation are performed on the R open-source software with
community-developed packages (R Core Team, 2022).

3. Results and discussion
3.1. CTM and GWR evaluation

We compared estimates of total uncorrected PMy 5 from the CTM to
those from the IEG model (Kim et al., 2020) and found significant
regional biases in the raw CTM predictions (Fig. 1). Spatial trends in
biases are problematic for long-term epidemiological studies because
differences in health responses cannot be properly related to differences
in chronic PMy s exposures. This underscores the importance of cor-
recting biases in CTM estimates with the GWR model.

In the Eastern U.S., CTM estimates are on average (population-
weighted) 4.2 and 2.9 pg m™~> higher — in 2001 and 2010, respectively —
when compared to the IEG model (Fig. 1, top panel). In the Western U.S.,
CTM estimates are on average 3.4 and 1.5 pg m~> lower — in 2001 and
2010, respectively — when compared to the IEG model. We observed that
much of the CTM’s over-prediction in the Eastern U.S. could be attrib-
uted to high concentrations of crustal and sea salt PM. On average,
crustal PM accounts for 6.1 and 5.4 pg m~° in the Eastern U.S., in 2001
and 2010, respectively. In the Western U.S., crustal PM accounts for 3.0
and 2.0 pg m~3, in 2001 and 2010, respectively. Previous studies have
noted large uncertainties associated with crustal PM in emission in-
ventories (Appel et al., 2013; Xu et al., 2019), making their predicted
source mixtures potentially unreliable. Due to the fact that crustal and
sea salt mostly exist in the coarse mode we make the assumption of
removing them from our analysis. However, different regional biases
persist after removing crustal PM and sea salt (Fig. 1, middle panel). In
2001, the bias is on average —1.7 pg m™° in the Eastern U.S. and —6.3 g
m ™2 in the Western U.S. In 2010, the bias is —1.9 pg m 2 in the Eastern
U.S. and —3.6 pg m~3 in the Western U.S. In California, where CTM
underpredictions are most severe, biases are on average —9.0 and —4.3
pg m~3, in 2001 and 2010, respectively. Underlying CTM predictions
corresponding to panels in Fig. 1 are illustrated in Fig. S1 in the SL

GWR corrections address spatial patterns in total PM, 5 bias and
improve the performance of all species against available observations
across several evaluation metrics (Fig. 1, bottoms panel). GWR correc-
tions improve performance of all species, reducing overall bias and
improving the predicted spatial pattern as measured by the R? (Fig. 2).
Reducing bias improves predictions, lowers systematic residual error,
and thereby decreases the unexplained variance. This directly translates
into a higher R? because more of the variance in the data is now being
accounted for by the model. Uncorrected OA and NO3 tend to be
severely underpredicted in the West, often by a factor of 2 or more. OA
in the East tends to be slightly overpredicted, particularly in the
Southeast. GWR corrections significantly improve R? coefficients for
simulated OA and NO3 from 0.30 to 0.50 (without GWR) to 0.53-0.87
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Fig. 1. Bias of CTM-predicted PM, 5 relative to IEG-predicted PM, s (i.e., CTM - IEG). Top row: uncorrected CTM predictions. Middle row: uncorrected CTM
predictions with crustal PM (CRST) and sea salt (SS) removed. Bottom row: corrected CTM predictions without crustal PM and sea salt. Left and right columns show
annually averaged biases for 2001 and 2010 predictions, respectively. Results are displayed here at the tract level.

(with GWR). While overall error and bias are improved for OA and NO3,
GWR is unable to reduce the error in Western concentrations, particu-
larly for OA. A combination of lower monitor density, complex meteo-
rology and terrain, and high spatial variability in urban areas could be
responsible for the difficulty in correcting biases in the Western U.S.
Additionally, this could reflect a need to find predictor variables that
spatially correlate with the bias for OA and NO3 in the Western U.S. For
NH{ and SO3~, GWR corrections improve upon the already good per-
formance of the original CTM results. In the West, NHJ tends to be
underpredicted while SO~ is slightly overpredicted. GWR addresses
both biases and improves R? coefficients from 0.70 to 0.97 (without
GWR) to 0.84-0.97 (with GWR). Successfully modeling EC is chal-
lenging due to its high spatial variability and the CTM’s coarse resolu-
tion. However, GWR corrections make significant improvements to
simulated EC: uncorrected EC simulations tend to be noisy and correlate
poorly with monitors, with R? coefficients of 0.38 (in 2001) and 0.52 (in
2010). GWR corrections significantly reduce error and bias and increase
R? coefficients to 0.62 (2001) and 0.71 (2010). GWR-corrected estimates
of PM3 5 species are mapped in Figs. S12-519. Despite geographic dif-
ferences in the biases, GWR models successfully improve model per-
formance in regionally specific ways.

GWR corrections are largely robust across the three cross-validation
methods used. Evaluation metrics like fractional error and fractional
bias were calculated for the evaluation of the CTM’s predictions against
observations. All three CV results show significant reductions in frac-
tional bias, moderate reductions in fractional error, and improved

correlations for all species (Fig. 3). Results from leave-one-out (LOO)
and 10-fold CV are nearly identical. Random folding may not provide
additional insights beyond the LOO CV, because ground-level monitors
tend to be clustered. In contrast, the regional holdout CV is helpful in
evaluating model performance in locations far from a monitor, which
tend to be remote. As expected, GWR performance is lower for regional
holdout CV than for LOO or 10-fold CV. However, the regional holdout
CV still yields significant improvements over the uncorrected CTM
despite the 400 km radius holdout. In general, the regional holdout CV
shows a fair bit of robustness of the improvements despite the chal-
lenging nature of the test. Of the models trained, the GWR performance
for NO3 in 2001 is the most sensitive to having nearby monitors.

In general, the spatial patterns of observed biases (Fig. 4) are repli-
cated by the GWR models (Fig. 5). For reference, uncorrected speciated
CTM predictions are illustrated in Fig. S20 in the SI. Biases for EC are
generally small and tend to be positive. In 2001, select metropolitan
biases exhibit a stronger positive bias, while in 2010 the bias does not
exhibit a clear spatial pattern. Biases for OA are negative in the Western
U.S., particularly in the California Central Valley, and positive in the
East Coast. For 2010, OA is overpredicted in the Southeastern U.S.,
where biogenic emissions contribute significantly to OA production. The
biogenic emissions are in general higher in the Southeastern part
compared to the other parts of US (Dinkelacker et al., 2024; Murphy and
Pandis, 2010; Sindelarova et al., 2014; Skyllakou et al., 2021). In 2001,
the OA bias in the Southeast may not be as severe in part because of
higher anthropogenic emissions that partially offset the bias, or in part
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Fig. 2. Evaluation of CTM-predicted PM, 5 species against observations from speciated ground-level monitors for simulation years a) 2001 and b) 2010. Values
shown are annual averages at monitor locations. RMSE represents the root mean square error. NMB represents the normalized mean bias. Solid lines denote a 1:1
slope. Dashed lines denote a 1:2 or 2:1 slope. Points are color-coded by longitude to illustrate potentially differing biases in Eastern (color: yellow) versus Western
(color: blue) U.S. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

because of the relatively few monitors available. Biases for NO3 are and sea salt still omitted. For both simulation years, the bias-corrected
negative in the Western U.S., particularly in California, and positive in CTM estimates continue to be biased low, by approximately 2 and 1.5
the Eastern U.S. In the Midwest, biases for NO3 tend to be positive in pg m~2 in 2001 and 2010, respectively. However, this is likely due to the
2001, except for some urban areas, and tend to be negative in 2010. The omission of crustal PM and sea salt as residual biases in species treated
change in sign may reflect the lack of monitors in the Midwest in 2001, here are too small to account for this remaining bias. Additionally, the
which causes GWR to rely heavily on positively biased eastern monitors. bias is relatively uniform and no longer characterized by severe regional
A similar pattern in the Midwest, although opposite in sign, is also variations. GWR corrections improve the spatial consistency of CTM
observed for SOF . Biases of SO3~ are overall relatively small but tend to estimates and make them viable for exposure assignment in epidemio-
be negative in the Eastern U.S. and California Central Valley, and pos- logical studies.

itive in the Western U.S. Likewise, biases for NHJ are relatively small
and tend to mirror the patterns observed for SO3~, except in the
Southeast. Since NH{ neutralizes both NO3 and SO% ™, positive biases for
NO3 in the Southeast likely lead to positive biases for NH4. Un-
certainties based on the size distributions of the inorganic species arise
because the semivolatile nature of ammonium nitrate increases the
complexity (Bauer et al., 2007; Seinfeld and Pandis, 2016). Corrected
species are reconstructed in the bottom panel of Fig. 1, with crustal PM

3.2. Changes to source mixtures

The nation-wide network of speciated ground-level PMy 5 monitors
provide critical information on chemical composition, which is the basis
for the corrections performed in this study. However, there are no
observational data for source apportionment of PMy5s on a national
scale. Therefore, analogous corrections to the source-resolution of PMj 5
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are not possible. Instead, as described above, for each species, we pre-
serve the original source mixture, as predicted by the CTM, in our cor-
rected estimates. The fractional source mixture is calculated for each
simulated PM; 5 species and then re-applied to the corrected estimates.

Ci.s
fi.s - Ci.tot (4)
CI(i.s :ﬁ«SQ,tor %)

where f; s is the fractional source mixture for species i and source s, C;; is
the uncorrected concentration of species i and source s, C; o is the total
uncorrected concentration of species i, Cjs is the corrected concentration
of species i and source s, and ijt is the total corrected concentration of
species i. Because the quantity of each species has been adjusted, the
source mixture for total PMy 5 is altered by GWR corrections (Fig. S21).
In general, the changes to source mixture are minimal, except for the on-
road and off-road source categories. GWR correction increases the
contribution from on-road and off-road emissions in the West by
approximately 50 %. This outcome is primarily due to the increase in
NOs3 in corrected CTM simulations. On-road and off-road emissions tend
to be concentrated near specific locations (e.g., roadways). Coupled with
complex terrain in the Western U.S., NO3 emissions gradients tend to be
large and poorly represented in coarse 36 km resolution grids. As a
result, NO3 from mobile sources are under-predicted by the CTM, an
error that is indirectly adjusted by GWR corrections. GWR-corrected
estimates of source-specific PMy 5 are mapped in Figs. S22-527.

3.3. OLS and GWR comparison

We compare the performance of GWR versus OLS at predicting CTM
biases by (1) comparing evaluation metrics for GWR- and OLS-corrected
estimates and (2) quantifying the spatial autocorrelation in GWR and
OLS residual biases. In the latter evaluation, the model that is best suited
to addresses region-specific biases should exhibit the least spatial
autocorrelation in their respective residual biases.

Those results (Fig. S28) indicate that model performance is better for
OLS than uncorrected CTM output; GWR-corrected estimates modestly

outperform than OLS-corrected estimates across all these evaluation
metrics, except for EC, where the performance for both models is com-
parable. That result reflects that EC is primary and lacks speciated
monitors needed to fully characterize the high intra-urban variability of
EC. Based on this evaluation, GWR does provide appreciable improve-
ments over OLS, given that spatial patterns of PMas species are
adequately characterized in the training data.

To further evaluate GWR improvements over OLS, residual biases are
calculated at each monitor location as the difference between the
observed and predicted CTM bias. Moran’s I is used to quantify the
spatial autocorrelation in the models’ residual biases. A Moran’s I
greater than 0 indicates positive autocorrelation (i.e., clustered values),
a Moran’s I less than 0 indicates negative autocorrelation (i.e., dispersed
values), and a Moran’s I equal to O indicates no autocorrelation (i.e.,
randomized values). Positive autocorrelation values are undesirable
here because they indicate spatially coherent — rather than random —
biases remaining in the corrected estimates, which could bias subse-
quent epidemiological work. Moran’s I is calculated at cumulatively
increasing lag distances of 100-2000 km from monitor locations.
Calculation of Moran’s I is discussed in greater detail in the SI. For NH{,
NOj3 and SO%, residual biases from the OLS model exhibit a statistically
significant positive autocorrelation across all lag distances (Fig. 6). Re-
sidual biases that are spatially autocorrelated suggest that region-
specific CTM biases are unidentified and untreated in the subsequent
corrections. In contrast, residual biases for NHf, NO3, and SOZ~ from
the GWR show no statistically significant autocorrelation, highlighting
the value added from the GWR model. In 2010, residual biases for OA
from the GWR-model exhibit a statistically significant negative auto-
correlation across all lag distances. Likewise, residual biases from EC
tend to be negatively autocorrelated, although not statistically signifi-
cant. This negative autocorrelation (i.e., dissimilarity between nearby
data points) is likely attributable to the high spatial variability of EC and
OA and the lack of monitors needed to fully characterize said spatial
variability in urban areas. In 2001, no statistically significant autocor-
relation is exhibited for EC and OA, however this is due to a monitoring
network that is dominated by rural IMPROVE monitors in the Western
U.S. The increase of urban CSN monitors from 2001 to 2010 likely
increased the degree of dissimilarity in GWR residual biases for EC and
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Fig. 4. Bias of uncorrected CTM PM, 5 species relative to observations at speciated ground-level monitors (observed bias) expressed as (uncorrected CTM prediction —

observation).

OA. The analysis of spatial autocorrelation, therefore, presents strong
evidence that OLS alone leaves regionally specific biases that are
problematic for use in epidemiological analysis, but that GWR is able to
address.

3.4. Compositional evaluation

Some applications of the predicted composition fields may use the
fractional composition of PMj 5 rather than the speciated concentrations
themselves (Pond et al., 2022). Therefore, as an additional point of

evaluation, the fractional composition of simulated PMj 5 is compared to
that observed in speciated ground-level monitors. Here, we are inter-
ested in examining the CTM’s performance in predicting species mix-
tures on a fractional basis and improvements made by GWR corrections.
Fractional composition can be represented as a vector, where each
vector component corresponds to the fractional contribution of a spe-
cies. The degree of dissimilarity between species mixtures can be
quantified by calculating the angle between their corresponding vectors.
For reference, Fig. S29 compares example monitor and CTM species
mixtures with vector angles of 5, 10, 20 and 30° between them. A vector
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Fig. 5. Bias of CTM PM; s species as predicted by GWR models (predicted bias) expressed as (uncorrected CTM - corrected CTM prediction). Results are displayed

here at the tract level.

angle below 10° is classified as showing good agreement between
simulated and observed species mixtures. Changes in vector angles
before and after GWR corrections are shown in Fig. 7, with 10-fold CV
results being presented. Fig. 7 highlights a clear shift in the distribution
of vector angles, with an average decrease of 2.3 and 5.5° in 2001 and
2010, respectively. In 2001, the number of monitor locations with vector
angles under 10° increases from 56 to 70 % as a result of GWR correc-
tions. In 2010, the increase is greater, from 32 to 80 %. In general,
corrected estimates in eastern locations agree better with monitors than
those in western locations. GWR corrections improve agreement

between CTM and CSN monitors. However, there appears to be a
degradation in performance at some western IMPROVE locations. This is
consistent with earlier results showing persistent error after corrections
are applied to western OA and NO3 estimates, and regional holdout CV
results that suggest weaker predictive ability in remote regions.

3.5. Species- and source-resolution in four metropolitan areas

GWR corrections improve the spatial consistency and performance of
CTM simulations by leveraging valuable information from monitors,



K. Skyllakou et al.

Atmospheric Environment 364 (2026) 121637

_ 2001 2010
- L = 1050 km L = 1580 km
001 -Hii—iiii—t—%iimzz- {Hm e ©
o_o--"“‘Hi—%—““-ﬂ“%—ﬂ”- . Hﬁ”*ﬁ-ﬂﬁﬂn o
051
1.0
—(_n ol L =542 km L =341 km Vodel
§ } Z| - os
2 oo W%iiié:;;@;;z:; ST o e
M
050 L = 559 km ]HH L = 395 km
ozs L b i44 55004000 Hbbiniee| g
LRI i
0.251

Lag Distance (km)

Fig. 6. Spatial autocorrelation (Moran'’s I) of residual biases in OLS and GWR models across cumulatively increasing lag distances. Error bars correspond to the 95 %

confidence interval. For reference the calibrated e-folding length (L = ,/1/(1), the distance at which observation points are weighted e

GWR model.

empirical model estimates, and other geographic information. With
these corrections, the species- and source-resolution of the PM; 5 expo-
sure estimates provided by the CTM greatly enriches their utility in
exposure assessment and environmental epidemiology. The impact of
the GWR corrections (Fig. 8) illustrates the absolute and compositional
changes in population-weighted PM; 5 for four metropolitan statistical

10

~1, is shown for each

areas. The greatest changes are observed in the western metropolitan
areas, where corrections to OA and NOs3 result in large increases to
PM; 5. In the Los Angeles metropolitan area, PM; 5 increases by 76-82
%, with OA increasing by 2.9 and 2.2 pg m 3, in 2001 and 2010
respectively, and NO3 increasing 3.4 and 2.1 pg m~3, in 2001 and 2010
respectively. In the Denver metropolitan area, PMj 5 increases by 43-46
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estimates are shown for each metropolitan statistical area and simulation year.

%, with OA increasing 1.6 pg m~> in 2001, and NO3 increasing 1.0 pg
m~2in 2010. For eastern metro areas, the changes are relatively modest,
since CTM predictions generally perform better in this region. Unlike the
Western U.S., PM; 5 changes in the Eastern U.S. are not always driven by
corrections to a consistent set of species. In the Houston metropolitan
area, PMys decreases by 2.0 and 1.1 pg m 3, in 2001 and 2010
respectively. In the Pittsburgh metropolitan area, PMj 5 increases by 1.0
and 0.9 pg m~3, in 2001 and 2010 respectively.

While the dataset presented here was generated with exposure
assessment in mind, researchers and others may find the national-scale
source resolution useful for other applications. Fig. 9 illustrates the
source apportionment of corrected PMj 5 predictions for the same set of
metropolitan statistical areas discussed previously. Mobile sources tend
to be most significant in western metros, while industrial sources tend to
be most significant in eastern metros. Additionally, the contribution
from these traditional emissions sources has decreased from 2001 to
2010. The fraction of total PMj 5 coming from mobile sources decreased
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from 35 % (in 2001) to 30 % (in 2010) in Los Angeles and from 25 % (in
2001) to 20 % (in 2010) in Denver. The proportion of total PM; 5 from
industrial sources (i.e., EGU plus non-EGU) decreased during
2001-2010, from 30 % to 27 % in Houston and from 37 % to 30 % in
Pittsburgh. As air quality regulations in the United States continue to
target traditional industrial and mobile sources, contributions from
long-range transport and “other” sources — which include emissions
from Canada and Mexico, agriculture, and wildfires — are rising in
prominence. Sources previously unresolved in emissions inventories will
likely require greater attention.

4. Conclusions

In this study, the GWR method was extended using a tailored
formulation that incorporated both available observational data and
Integrated Empirical Geographic (IEG) estimates. The extended GWR
was applied to a large dataset of PMCAMx-PSAT CTM predictions for the
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contiguous United States for the years 2001 and 2010. The integration of
GWR and IEG is a key advantage of the proposed approach, as it allows
multiple data sources to be combined to improve CTM predictions. The
approach resulted in substantial improvements in predictive accuracy
R%= 0.53-0.97), with notable increases in Rz, and reductions in RMSE
and NMB for all PMy 5 components. The most significant gains were
observed for OA and nitrate, with up to a 77 % increase in R? and close to
a 100 % reduction in NMB.

Going forward, we hope the approach developed and applied here
enables CTM results to be more widely used for predictions, such as
PM; 5 source apportionment, that are unavailable elsewhere at the same
scale. This method is flexible and transparent as the user can define each
parameter separately and may add more parameters to achieve better
performance. The use of geostatistical methods, including but not
limited to GWR, should also be considered when processing CTM sim-
ulations, with the aim of improving and further evaluating those
estimates.
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