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H I G H L I G H T S

→ Novel dataset of PM2.5 exposure estimates across the contiguous U.S. at census tract-level resolution.
→ Geographically weighted regression predicted and corrected biases in source-resolved chemical transport model predictions.
→ Geographically weighted regression generally outperforms ordinary least squares in bias predictions.
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A B S T R A C T

Chemical transport models (CTMs) can provide information — albeit with biases — that is lacking in observa-
tions, including PM2.5 composition and source. Correcting biases in simulated PM2.5 could facilitate their use in 
exposure assessment, environmental epidemiology, environmental justice analyses, and other applications. Here 
we develop a novel set of species- and source-resolved PM2.5 estimates across the contiguous United States for 
2001 and 2010. We use geographically weighted regressions (GWR) to predict and then correct for the bias in 
CTM PM2.5 concentration predictions for five chemical species (elemental carbon, organic aerosol, ammonium, 
nitrate, and sulfate). The GWR models are trained using speciated measurements, empirical PM2.5 exposure 
estimates, CTM predictions, and other geographic information. A 10-fold cross-validation shows minimal bias 
across each simulated PM2.5 species (↑25 to 39 % before; 0–3 % after) and improved correlations with ground- 
level monitors for elemental carbon, nitrate, and organic aerosol (R2: 0.30 to 0.53 before; 0.53 to 0.87 after). 
GWR outperforms ordinary least squares (OLS) corrections for all PM2.5 species except elemental carbon, where 
performance is comparable. Corrected fields also show improved performance in predicting fractional compo-
sition. Tract-level species- and source-resolved exposure estimates developed in this study are publicly available 
at www.caces.us.

1. Introduction

Chronic exposure to fine particulate matter (PM2.5) causes adverse 
human health outcomes, including pulmonary and cardiovascular 

disease (Pope and Dockery, 2006; Pope et al., 2020), and is the leading 
contributor to morbidity and mortality among air pollutants (Cohen 
et al., 2017; Lefler et al., 2019). Air quality management in the United 
States has reduced concentrations of PM2.5 in recent decades (Zhang 
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et al., 2018), with health benefits consistently exceeding the cost of 
regulations several-fold (U.S.E.P.A. 1999, 2011, 2012). Studies suggest 
that further reductions of PM2.5 in the United States would lead to 
improved health and increased life expectancy (Apte et al., 2018; Ben-
nett et al., 2019; Correia et al., 2013; Pope III et al., 2009). To date, air 
quality regulations have targeted PM2.5 total mass, with the implicit 
assumption that all PM2.5 is equally toxic. However, PM2.5 is a complex 
mixture with varying properties, including but not limited to size, phase, 
acidity, chemical composition, and source. Given the various patho-
physiological pathways for PM2.5-induced morbidity and mortality 
(Pope and Dockery, 2006), PM2.5 toxicity could be a function of its 
properties; however, prior work has been unable to conclusively identify 
key drivers of PM2.5 toxicity (Harrison and Yin, 2000; Kelly and Fussell, 
2012). Investigating this topic in epidemiological studies requires ac-
curate exposure estimates of PM2.5 resolved by composition, sources, 
and/or other properties.

Conventional PM2.5 exposure estimates for health studies are pri-
marily derived from observations (Diao et al., 2019; Hoek et al., 2008, 
2017). For example, data from ground-level monitors and satellites have 
been used with land-use and land-cover data to build empirical models 
that provide reliable and consistent estimates of ambient PM2.5 levels; 
those estimates have been used in epidemiological studies as measures 
of exposure. Empirical models for PM2.5 typically predict total PM2.5 
mass rather than composition and sources, reflecting in part the fact that 
observational data on PM2.5 species, sources, and other properties are 
often limited or unavailable.

In contrast, chemical transport models (CTMs) can readily provide 
information about the character of PM2.5, such as chemical composition 
and source. However, CTMs alone are unable to match the accuracy of 
empirical estimates. Several sources of errors – for example, errors in 
emission inventories and in chemical mechanisms, coarse grid resolu-
tion, large emissions gradients, complex terrain, and complex meteo-
rology – lead to error and bias in CTM predictions. Spatial biases in 
uncorrected CTM estimates can make them unsuitable for epidemio-
logical analyses. The underlying causes of CTM errors are generally non- 
random in space, resulting in different regions having different char-
acteristic biases and errors. Therefore, applying a statistical technique 
that can identify and remediate regionally varying biases in CTM esti-
mates could facilitate their use, including in epidemiological analyses, 
and provide much needed information on PM2.5 properties.

Geographically weighted regression (GWR) is a local spatial analysis 
technique that models the spatially varying relationships between in-
dependent and dependent variables (Brunsdon et al., 1996). Regression 
coefficients in GWR are determined locally and can allow targeted 
identification of spatial biases in simulated PM2.5. GWR’s predictions of 
spatial biases can then be used to correct the CTM predictions 
throughout the domain. Several studies have used GWR to develop 
PM2.5 exposure estimates, primarily as a predictive tool to correct sat-
ellite Aerosol Optical Depth (AOD) measurement to ground-level mon-
itors (Franklin et al., 2017; Hammer et al., 2020; Hu, 2009; Hu et al., 
2013; Li et al., 2017a; Ma et al., 2014; Meng et al., 2019; Song et al., 
2014; van Donkelaar et al., 2015, 2016, 2019; You et al., 2016; Zhai 
et al., 2018). A subset of these studies has incorporated information from 
CTMs, such as spatiotemporal extent of PM2.5 (Hammer et al., 2020; Li 
et al., 2017b; Meng et al., 2019; van Donkelaar et al., 2015, 2016, 2019; 
Zhang et al., 2020a). Only a few studies used CTMs to predict the 
chemical composition of PM2.5 (Di et al., 2016; Geng et al., 2020; Jin 
et al., 2024; Rahman and Thurston, 2022; van Donkelaar et al., 2019). In 
the broader literature, studies using techniques other than GWR have 
also incorporated CTMs in PM2.5 exposure estimates (Berrocal et al., 
2020; Brauer et al., 2012; de Hoogh et al., 2016; Evans et al., 2013; Geng 
et al., 2015, 2017; Huang et al., 2021; Lee et al., 2012; Lyu et al., 2019; 
van Donkelaar et al., 2006, 2010; Wang et al., 2016; Zhang et al., 
2020b). However, most of these studies used CTMs to obtain spatio-
temporal estimates of total PM2.5 mass; a few used information on 
chemical composition (Di et al., 2016; Geng et al., 2017; Jin et al., 2024; 

Li et al., 2017b; Meng et al., 2018a, 2018b; Philip et al., 2014). Zhang 
et al. (2022) extended the approach of Zhang et al. (2020b) to include 
also AOD data for greater coverage in regions where ground level ob-
servations are not available. Jin et al. (2024) combined the predicted 
WRF-Chem PM2.5 composition with the AOD observations from the 
Multi-angle Imager for Aerosols (MAIA) instrument using Bayesian 
model averaging methods.

Data assimilation methods produce optimal estimates of a system 
state which is usually dynamical (e.g. temporal variation of pollutant 
concentrations), combining prior knowledge from model simulations 
with observations to produce an updated posterior estimate with tech-
niques including Kalman filtering, Ensemble Kalman filtering, etc. If 
temporal variations are not considered GWR is more efficient, since data 
assimilation methods are more computationally demanding than GWR 
models.

Moreover, other studies used observations to treat algorithms in 
order to improve gas phase species predictions like O3, using different 
methods like decision trees (Ivatt and Evans, 2020), bias correction 
(Skipper et al., 2021, 2024) or even machine learning (Keller et al., 
2021). Most of the previous studies (Meng et al., 2018b; Ivatt and Evans, 
2020; Zhang et al., 2020a, Skipper et al., 2024) rely on only one type of 
observations, usually ground-based observations for their analysis. A 
few studies (Di et al., 2016; Geng et al., 2020; Jin et al., 2024) have 
combined different types of data like ground-based observations and/or 
satellite data and/or land use data in order to improve CTM predictions 
of PM2.5 and its composition. These studies were applied to a specific 
region of US and used a limited number of land use parameters to 
describe the details of each certain point.

In this work, we propose a novel approach for correcting biases in 
species- and source-resolved CTM PM2.5 predictions by combining for 
the first time Geographically Weighted Regression (GWR) with the In-
tegrated Empirical Geographic (IEG) regression (Kim et al., 2020). The 
IEG model leverages a comprehensive dataset—including land use 
regression and satellite observations—that characterizes well each area 
within the domain, ensuring rich contextual information. While CTM 
predictions may suffer from both spatial and temporal biases, our focus 
is on correcting spatial biases in long-term predictions, which are 
particularly critical for exposure assessment. By integrating diverse data 
sources (ground-level monitors, land use information, satellite re-
trievals, and CTM predictions), the method reduces uncertainties and 
strengthens prediction reliability for spatially resolved PM2.5 sources 
and composition. A key advantage of our approach lies in the role of 
GWR, which explicitly accounts for spatial heterogeneity by performing 
local regressions around each point and weighing nearby observations. 
When local observations are unavailable, the IEG model provides robust 
fallback estimates, thereby maintaining high prediction accuracy. This 
dual mechanism offers a clear improvement over traditional machine 
learning algorithms, which are generally not inherently spatial and 
require spatial features to be added explicitly. As a result, our method 
can deliver more accurate and spatially consistent source-resolved PM2.5 
estimates. These improved predictions not only enhance the reliability 
of source apportionment analysis but also provide a strong foundation 
for epidemiological studies across large regions, such as the contiguous 
US (Pond et al., 2022). Tract-level species- and source-resolved PM2.5 
exposure estimates developed through this method are publicly acces-
sible at www.caces.us.

2. Methods

2.1. Overview

Our approach combines observations from speciated ground-level 
monitors, empirical model estimates of total PM2.5 (Kim et al., 2020), 
CTM predictions (Skyllakou et al., 2021), and other geographic infor-
mation. First, GWR is used to predict the bias in speciated CTM pre-
dictions using training data at speciated monitor locations, similar to 
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van Donkelaar et al. (2019). The bias for each species predicted by GWR 
is then used to correct annually averaged CTM simulations across the 
contiguous United States. Species included in this study are elemental 
carbon (EC), organic aerosol (OA), ammonium (NH4

↓), nitrate (NO3
↑) and 

sulfate (SO4
2↑). Since we lack national-scale observations of source 

apportionment, we hold fractional source apportionment constant as we 
correct each species.

2.2. PMCAMx chemical transport model

PMCAMx (Karydis et al., 2010; Murphy and Pandis, 2010; Posner 
et al., 2019; Tsimpidi et al., 2010) is used to simulate PM2.5 over the 
contiguous United States for 2001 and 2010 using a methodologically 
consistent set of emissions inventories (Xing et al., 2013). The Particu-
late Source Apportionment Technology (PSAT) algorithm (Skyllakou 
et al., 2014, 2017, 2021; Wagstrom et al., 2008, Wagstrom and Pandis, 
2011a,b) is used to track the apportionment of emissions sources in a 
computationally efficient manner. The model domain covers the 
contiguous United States, portions of Canada and Mexico, and nearby 
offshore regions. The horizontal resolution is 36 km. Six source cate-
gories are resolved here: electricity-generating units (EGUs; industrial 
point sources included in EPA’s Integrated Planning Model), other in-
dustrial point sources (non-EGU), on-road mobile, off-road mobile, 
biogenic volatile organic compounds (VOCs) from vegetation, and 
“other” which includes on-road emissions from Canada and Mexico, 
wildfire emissions, and all other emissions. This work is based on the 
results of Skyllakou et al. (2021). In Skyllakou et al. (2021) the wildfires 
were included into the “other” source category. The PM emissions from 
biomass burning were similar for 2001 and 2010. Wildfires were the 
dominant PM source of the “other” category, contributing 80 % in 2001 
and 83 % in 2010 to the total emissions of this category. PM2.5 con-
centrations attributed to the model’s boundary and initial conditions are 
tracked as separate categories. Species predicted by the model and used 
in this work include sulfate, nitrate, ammonium, EC, primary organic 
aerosol (POA) and secondary organic aerosol (SOA). The apportionment 
of secondary PM components is based on the apportionment of their 
precursors. As a result, the apportionment of sulfate, nitrate, ammo-
nium, and SOA is based on the apportionment of SO2, NOx, NH3, and 
VOCs respectively. PMCAMx uses an advanced treatment of OA (using 
the “volatility basis set”) that accounts for the semi-volatile nature of 
primary organic emissions and recent advances in our understanding of 
SOA chemistry (Donahue et al., 2006; Murphy and Pandis, 2009; Rob-
inson et al., 2007). Model predictions of sodium, chloride, and mineral 
dust are excluded from this analysis due to large uncertainties in their 
emissions and because there are no direct measurements of ambient dust 
concentrations. Meteorological data input to PMCAMx are taken from 
simulations performed using the Weather Research Forecasting model 
(WRF v3.6.1) for these time periods. Initial and boundary conditions 
were generated from the ERA-Interim global climate re-analysis data-
base. The CTM simulations are described further in Skyllakou et al. 
(2021).

2.3. Ground-level speciated PM2.5 observations

Observations of PM2.5 species (EC, OC, NH4
↓, NO3

↑, SO4
2↑) from the 

EPA Chemical Speciation Network (CSN) and the IMPROVE monitoring 
network for 2001 and 2010 were downloaded from the Federal Land 
Manager Environmental Database (http://views.cira.colostate.edu/fed/
). Prior to the CSN transition period from 2007 to 2009, CSN and 
IMPROVE used different analytical and sampling protocols for carbon 
measurements, requiring harmonization across the datasets (Malm 
et al., 2011; Solomon et al., 2014; Spada and Hyslop, 2018). Most 
notably, pre-transition CSN monitors used the thermal optical trans-
mittance (TOT) analytical protocol for carbon measurements, while 
IMPROVE and post-transition CSN monitors use the thermal optical 
reflectance (TOR) protocol. We adjust 2001 CSN carbon measurements 

to match post-transition CSN protocols following the approach in Lordo 
et al. (2016). Additionally, a filter blank correction of 0.4 μg m↑3 is 
applied to organic carbon (OC) measurements in 2010. To account for 
differences in the aging of organic aerosol in urban and rural areas, an 
OA:OC ratio of 1.4 and 1.8 was applied to OC measurements collected at 
CSN and IMPROVE sites, respectively. There are uncertainties in the 
estimation of these constants, especially about the one used for 
IMPROVE sites because it could be higher or lower if the OA is very aged 
or not (El-Zanan et al., 2005; Ruthenburg et al., 2014). The value of 1.8 
applied for IMPROVE sites is an assumption for the regulatory sites 
based on Pitchford et al. (2007). On average, 23 CSN and 92 IMPROVE 
monitors were used in 2001, and 165 CSN and 146 IMPROVE monitors 
were used in 2010 (Table 1).

2.4. Geographically weighted regression

We use GWR to correct bias in speciated PMCAMx predictions. Here, 
GWR is a spatial extension of ordinary least squares (OLS) regression. In 
GWR, regression coefficients vary in space, and observations are 
weighted in the regression according to their proximity to a desired 
prediction point in space. A consequence of this formulation is that there 
is no global model. Instead, the model is solved locally for every pre-
diction point in space such that: 

XTW↔i↗Xβ↔i↗↘XTW↔i↗Y (1) 

where X is a matrix containing predictor variables, W is a weighting 
matrix (kernel) at location i, β is a vector of regression coefficients at 
location i, and Y is the dependent variable. The weighting matrix is a 
diagonal matrix, where each diagonal element is the weight assigned to 
an observation and is calculated by a user-defined weighting function 
(Eq. (2)). Selection of the weighting function depends largely on the 
nature of the dataset. Weighting functions are typically calibrated to an 
optimal bandwidth, which controls the rate observations are down-
weighed with distance. Weighting functions can also have cut-offs, 
which exclude observations past a certain distance threshold. Com-
mon weighting functions include inverse distance weighting and a 
Gaussian function. Several weighting functions were considered and are 
discussed in the Supporting Information (SI). The primary results pre-
sented in this paper use a Gaussian weighting function: 

wij ↘ exp
)
↑αd2

ij

[
(2) 

where wij is the weight assigned to an observation in location j for pre-
dictions in location i, α is the decay coefficient or bandwidth, and d is the 
distance between location i and j. The bandwidth (α) is calibrated by 
minimizing the root mean square error in the GWR model. In Eq. (2), a 

Table 1 
Number of speciated monitors used in observational data by year, PM2.5 species, 
and monitoring network. The number of co-located monitors reflects the in-
stances where all 5 species are measured at the same monitoring location.

Year Species CSN IMPROVE Total

2001 EC 28 92 120
2010 EC 151 147 298
2001 OM 27 92 119
2010 OM 153 145 298
2001 NH4

↓ 20 91a 111
2010 NH4

↓ 174 146a 320
2001 NO3

↑ 20 91 111
2010 NO3

↑ 168 145 313
2001 SO4

2- 21 91 112
2010 SO4

2- 175 146 321
2001 Co-located 18 91 109
2010 Co-located 140 144 284

a Ammonium values from IMPROVE monitors are not directly measured and 
are instead inferred assuming full neutralization of sulfate and nitrate.
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bandwidth of zero would lead to equal weighting for all observations, 
making the GWR model equivalent to OLS. The decay coefficient de-
scribes how the influence of nearby data points decreases with distance 
in the model. Variations in dispersion characteristics and atmospheric 
lifetimes across PM2.5 components can result in differing estimated 
decay coefficients.

GWR is used to predict the bias in simulated PM2.5 species, with GWR 
models being trained for each species and simulation year. Bias pre-
dictions are made at the centroids of U.S. census tracts and used to 
correct CTM simulations projected to census tracts. Bias predictions 
were performed at monthly and annual resolutions and are evaluated in 
the SI. However, the primary results of this paper are corrected with 
annually averaged bias predictions due to generally better performance. 
The GWR model form, modified from the model form used in van 
Donkelaar et al. (2019) is: 

↔sim SPEC↑ obs SPEC↗↘ βEDED ↓ βIDUIDU ↓ βIEGbIEGb ↓
]

c
βc sim SPECc

(3) 

The left side of Eq. (3) represents the CTM bias relative to speciated 
ground-level monitors (i.e., the outcome variable); the right side con-
tains predictor variables and regression coefficients. SPEC represents 
PM2.5 species (EC, OA, NH4

↓, NO3
↑, SO4

2↑). ED represents the sub-grid 
elevation difference, which is the difference between the elevation of 
a prediction point and the mean elevation of the overlying CTM grid cell 
and is used to represent topographic effects unresolved by the CTM. 
Elevation is taken from the NOAA ETOP1 global relief model (Amante 
and Eakins, 2009; NOAA, 2009). IDU is the inverse distance to the 
nearest urban land cover as determined by using year-specific MODIS 
MCD12Q1 land cover data (Friedl and Sulla-Menashe, 2019). Higher 
spatial variability is expected in urban areas, potentially contributing to 
model error given the relatively coarse horizontal resolution of 36 km in 
the CTM. A maximum limit of 2 km↑1 is set for IDU (i.e., when the 
distance to the nearest land cover is less than 0.5 km, the distance is 
replaced with the value 0.5 km prior to calculating the inverse distance) 
to avoid excessively high values for IDU. IEGb is the bias in total PM2.5 
concentration from the CTM relative to predictions of the Integrated 
Empirical Geographic (IEG) model by Kim et al. (2020). The IEG model 
is considered reliable, since it estimates annual averages of total PM2.5 
based on ground-level monitors, universal kriging and partial least 
squares of many geographic variables including land use variables and 
satellite-derived estimates of pollution levels and land-cover. IEGb 
serves as a useful initial guess of the bias, which we hypothesize is useful 
especially in locations that are far from an ambient monitor. The final 
predictor variables, SPECc, are a subset of simulated species from the 
CTM: when predicting the bias of carbonaceous species, SPECc repre-
sents carbonaceous species (EC, POA, SOA); when predicting the bias of 
a non-carbonaceous species, SPECc represents non-carbonaceous species 
(NH4

↓, NO3
↑, SO4

2↑). This specification for SPECc is meant to limit the 
number of predictor variables in the model and avoid model over-fitting. 
While the CTM provides predictions of POA and SOA, observations do 
not, so it is not possible to separately model biases in POA and SOA 
directly. Instead, the GWR is trained to model biases in total OA; after 
total OA is corrected, primary and secondary fractions as predicted by 
the CTM are applied proportionally to corrected OA. While corrected 
estimates of OA, POA and SOA are generated by this method, only those 
for total OA are evaluated here. The impact of individual regressors on 
the predicted bias for all simulation years and species is shown in 
Figs. S2–S11 in the SI. Each term of equation (3) can be a different 
physical quantity, but similar scales are ensured by the definition of the 
different coefficients β. Because the regression coefficients β are calcu-
lated locally and for each type of regression those values are a function 
also of the selection of the bandwidth (equation (2)).

The density of census tracts varies: smaller (denser) tracts in urban 
areas, larger (less dense) tracts in rural and remote areas. Predicting 
CTM biases at a census tract resolution accomplishes several objectives. 

Predicted biases can be used to downscale (i.e., to the tract level) the 36 
km -resolution CTM estimates, including in urban and population-dense 
areas, where PM2.5 experiences often greater spatial variability. 
Conversely, rural and low-populations areas are given lower resolution 
corrections. Finally, using tracts facilitates population-weighted aver-
aging to coarser census geographies, such as counties or metropolitan 
statistical areas (MSAs). This aspect allows GWR predictions and 
therefore epidemiological analyses to be easily performed at the desired 
spatial resolution (if they are tract or coarser). GWR-corrected estimates 
at various census geographies are evaluated in the SI.

GWR models are evaluated here using three cross-validation 
methods: 1) leave-one-out, 2) 10-fold cross-validation (CV), and 3) a 
regional holdout CV. The regional holdout CV is designed to inform 
model errors in regions far from monitors, where performance is likely 
to be worse than that suggested by 10-fold CV. It functions similarly to 
the leave-one-out CV except that all monitors within a 400 km radius are 
also excluded from model training. Model training, prediction and 
evaluation are performed on the R open-source software with 
community-developed packages (R Core Team, 2022).

3. Results and discussion

3.1. CTM and GWR evaluation

We compared estimates of total uncorrected PM2.5 from the CTM to 
those from the IEG model (Kim et al., 2020) and found significant 
regional biases in the raw CTM predictions (Fig. 1). Spatial trends in 
biases are problematic for long-term epidemiological studies because 
differences in health responses cannot be properly related to differences 
in chronic PM2.5 exposures. This underscores the importance of cor-
recting biases in CTM estimates with the GWR model.

In the Eastern U.S., CTM estimates are on average (population- 
weighted) 4.2 and 2.9 μg m↑3 higher – in 2001 and 2010, respectively – 
when compared to the IEG model (Fig. 1, top panel). In the Western U.S., 
CTM estimates are on average 3.4 and 1.5 μg m↑3 lower – in 2001 and 
2010, respectively – when compared to the IEG model. We observed that 
much of the CTM’s over-prediction in the Eastern U.S. could be attrib-
uted to high concentrations of crustal and sea salt PM. On average, 
crustal PM accounts for 6.1 and 5.4 μg m↑3 in the Eastern U.S., in 2001 
and 2010, respectively. In the Western U.S., crustal PM accounts for 3.0 
and 2.0 μg m↑3, in 2001 and 2010, respectively. Previous studies have 
noted large uncertainties associated with crustal PM in emission in-
ventories (Appel et al., 2013; Xu et al., 2019), making their predicted 
source mixtures potentially unreliable. Due to the fact that crustal and 
sea salt mostly exist in the coarse mode we make the assumption of 
removing them from our analysis. However, different regional biases 
persist after removing crustal PM and sea salt (Fig. 1, middle panel). In 
2001, the bias is on average ↑1.7 μg m↑3 in the Eastern U.S. and ↑6.3 μg 
m↑3 in the Western U.S. In 2010, the bias is ↑1.9 μg m↑3 in the Eastern 
U.S. and ↑3.6 μg m↑3 in the Western U.S. In California, where CTM 
underpredictions are most severe, biases are on average ↑9.0 and ↑4.3 
μg m↑3, in 2001 and 2010, respectively. Underlying CTM predictions 
corresponding to panels in Fig. 1 are illustrated in Fig. S1 in the SI.

GWR corrections address spatial patterns in total PM2.5 bias and 
improve the performance of all species against available observations 
across several evaluation metrics (Fig. 1, bottoms panel). GWR correc-
tions improve performance of all species, reducing overall bias and 
improving the predicted spatial pattern as measured by the R2 (Fig. 2). 
Reducing bias improves predictions, lowers systematic residual error, 
and thereby decreases the unexplained variance. This directly translates 
into a higher R2 because more of the variance in the data is now being 
accounted for by the model. Uncorrected OA and NO3

↑ tend to be 
severely underpredicted in the West, often by a factor of 2 or more. OA 
in the East tends to be slightly overpredicted, particularly in the 
Southeast. GWR corrections significantly improve R2 coefficients for 
simulated OA and NO3

↑ from 0.30 to 0.50 (without GWR) to 0.53–0.87 
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(with GWR). While overall error and bias are improved for OA and NO3
↑, 

GWR is unable to reduce the error in Western concentrations, particu-
larly for OA. A combination of lower monitor density, complex meteo-
rology and terrain, and high spatial variability in urban areas could be 
responsible for the difficulty in correcting biases in the Western U.S. 
Additionally, this could reflect a need to find predictor variables that 
spatially correlate with the bias for OA and NO3

↑ in the Western U.S. For 
NH4

↓ and SO4
2↑, GWR corrections improve upon the already good per-

formance of the original CTM results. In the West, NH4
↓ tends to be 

underpredicted while SO4
2↑ is slightly overpredicted. GWR addresses 

both biases and improves R2 coefficients from 0.70 to 0.97 (without 
GWR) to 0.84–0.97 (with GWR). Successfully modeling EC is chal-
lenging due to its high spatial variability and the CTM’s coarse resolu-
tion. However, GWR corrections make significant improvements to 
simulated EC: uncorrected EC simulations tend to be noisy and correlate 
poorly with monitors, with R2 coefficients of 0.38 (in 2001) and 0.52 (in 
2010). GWR corrections significantly reduce error and bias and increase 
R2 coefficients to 0.62 (2001) and 0.71 (2010). GWR-corrected estimates 
of PM2.5 species are mapped in Figs. S12–S19. Despite geographic dif-
ferences in the biases, GWR models successfully improve model per-
formance in regionally specific ways.

GWR corrections are largely robust across the three cross-validation 
methods used. Evaluation metrics like fractional error and fractional 
bias were calculated for the evaluation of the CTM’s predictions against 
observations. All three CV results show significant reductions in frac-
tional bias, moderate reductions in fractional error, and improved 

correlations for all species (Fig. 3). Results from leave-one-out (LOO) 
and 10-fold CV are nearly identical. Random folding may not provide 
additional insights beyond the LOO CV, because ground-level monitors 
tend to be clustered. In contrast, the regional holdout CV is helpful in 
evaluating model performance in locations far from a monitor, which 
tend to be remote. As expected, GWR performance is lower for regional 
holdout CV than for LOO or 10-fold CV. However, the regional holdout 
CV still yields significant improvements over the uncorrected CTM 
despite the 400 km radius holdout. In general, the regional holdout CV 
shows a fair bit of robustness of the improvements despite the chal-
lenging nature of the test. Of the models trained, the GWR performance 
for NO3

↑ in 2001 is the most sensitive to having nearby monitors.
In general, the spatial patterns of observed biases (Fig. 4) are repli-

cated by the GWR models (Fig. 5). For reference, uncorrected speciated 
CTM predictions are illustrated in Fig. S20 in the SI. Biases for EC are 
generally small and tend to be positive. In 2001, select metropolitan 
biases exhibit a stronger positive bias, while in 2010 the bias does not 
exhibit a clear spatial pattern. Biases for OA are negative in the Western 
U.S., particularly in the California Central Valley, and positive in the 
East Coast. For 2010, OA is overpredicted in the Southeastern U.S., 
where biogenic emissions contribute significantly to OA production. The 
biogenic emissions are in general higher in the Southeastern part 
compared to the other parts of US (Dinkelacker et al., 2024; Murphy and 
Pandis, 2010; Sindelarova et al., 2014; Skyllakou et al., 2021). In 2001, 
the OA bias in the Southeast may not be as severe in part because of 
higher anthropogenic emissions that partially offset the bias, or in part 

Fig. 1. Bias of CTM-predicted PM2.5 relative to IEG-predicted PM2.5 (i.e., CTM – IEG). Top row: uncorrected CTM predictions. Middle row: uncorrected CTM 
predictions with crustal PM (CRST) and sea salt (SS) removed. Bottom row: corrected CTM predictions without crustal PM and sea salt. Left and right columns show 
annually averaged biases for 2001 and 2010 predictions, respectively. Results are displayed here at the tract level.
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because of the relatively few monitors available. Biases for NO3
↑ are 

negative in the Western U.S., particularly in California, and positive in 
the Eastern U.S. In the Midwest, biases for NO3

↑ tend to be positive in 
2001, except for some urban areas, and tend to be negative in 2010. The 
change in sign may reflect the lack of monitors in the Midwest in 2001, 
which causes GWR to rely heavily on positively biased eastern monitors. 
A similar pattern in the Midwest, although opposite in sign, is also 
observed for SO4

2↑. Biases of SO4
2↑ are overall relatively small but tend to 

be negative in the Eastern U.S. and California Central Valley, and pos-
itive in the Western U.S. Likewise, biases for NH4

↓ are relatively small 
and tend to mirror the patterns observed for SO4

2↑, except in the 
Southeast. Since NH4

↓ neutralizes both NO3
↑ and SO4

2↑, positive biases for 
NO3

↑ in the Southeast likely lead to positive biases for NH4
↓. Un-

certainties based on the size distributions of the inorganic species arise 
because the semivolatile nature of ammonium nitrate increases the 
complexity (Bauer et al., 2007; Seinfeld and Pandis, 2016). Corrected 
species are reconstructed in the bottom panel of Fig. 1, with crustal PM 

and sea salt still omitted. For both simulation years, the bias-corrected 
CTM estimates continue to be biased low, by approximately 2 and 1.5 
μg m↑3 in 2001 and 2010, respectively. However, this is likely due to the 
omission of crustal PM and sea salt as residual biases in species treated 
here are too small to account for this remaining bias. Additionally, the 
bias is relatively uniform and no longer characterized by severe regional 
variations. GWR corrections improve the spatial consistency of CTM 
estimates and make them viable for exposure assignment in epidemio-
logical studies.

3.2. Changes to source mixtures

The nation-wide network of speciated ground-level PM2.5 monitors 
provide critical information on chemical composition, which is the basis 
for the corrections performed in this study. However, there are no 
observational data for source apportionment of PM2.5 on a national 
scale. Therefore, analogous corrections to the source-resolution of PM2.5 

Fig. 2. Evaluation of CTM-predicted PM2.5 species against observations from speciated ground-level monitors for simulation years a) 2001 and b) 2010. Values 
shown are annual averages at monitor locations. RMSE represents the root mean square error. NMB represents the normalized mean bias. Solid lines denote a 1:1 
slope. Dashed lines denote a 1:2 or 2:1 slope. Points are color-coded by longitude to illustrate potentially differing biases in Eastern (color: yellow) versus Western 
(color: blue) U.S. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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are not possible. Instead, as described above, for each species, we pre-
serve the original source mixture, as predicted by the CTM, in our cor-
rected estimates. The fractional source mixture is calculated for each 
simulated PM2.5 species and then re-applied to the corrected estimates. 

fiωs ↘
Ciωs

Ciωtot
(4) 

Cʹ
iωs ↘ fiωsCʹ

iωtot (5) 

where fi,s is the fractional source mixture for species i and source s, Ci,s is 
the uncorrected concentration of species i and source s, Ci,tot is the total 
uncorrected concentration of species i, Ci

’
,s is the corrected concentration 

of species i and source s, and Ci
’
,tot is the total corrected concentration of 

species i. Because the quantity of each species has been adjusted, the 
source mixture for total PM2.5 is altered by GWR corrections (Fig. S21). 
In general, the changes to source mixture are minimal, except for the on- 
road and off-road source categories. GWR correction increases the 
contribution from on-road and off-road emissions in the West by 
approximately 50 %. This outcome is primarily due to the increase in 
NO3

↑ in corrected CTM simulations. On-road and off-road emissions tend 
to be concentrated near specific locations (e.g., roadways). Coupled with 
complex terrain in the Western U.S., NO3

↑ emissions gradients tend to be 
large and poorly represented in coarse 36 km resolution grids. As a 
result, NO3

↑ from mobile sources are under-predicted by the CTM, an 
error that is indirectly adjusted by GWR corrections. GWR-corrected 
estimates of source-specific PM2.5 are mapped in Figs. S22–S27.

3.3. OLS and GWR comparison

We compare the performance of GWR versus OLS at predicting CTM 
biases by (1) comparing evaluation metrics for GWR- and OLS-corrected 
estimates and (2) quantifying the spatial autocorrelation in GWR and 
OLS residual biases. In the latter evaluation, the model that is best suited 
to addresses region-specific biases should exhibit the least spatial 
autocorrelation in their respective residual biases.

Those results (Fig. S28) indicate that model performance is better for 
OLS than uncorrected CTM output; GWR-corrected estimates modestly 

outperform than OLS-corrected estimates across all these evaluation 
metrics, except for EC, where the performance for both models is com-
parable. That result reflects that EC is primary and lacks speciated 
monitors needed to fully characterize the high intra-urban variability of 
EC. Based on this evaluation, GWR does provide appreciable improve-
ments over OLS, given that spatial patterns of PM2.5 species are 
adequately characterized in the training data.

To further evaluate GWR improvements over OLS, residual biases are 
calculated at each monitor location as the difference between the 
observed and predicted CTM bias. Moran’s I is used to quantify the 
spatial autocorrelation in the models’ residual biases. A Moran’s I 
greater than 0 indicates positive autocorrelation (i.e., clustered values), 
a Moran’s I less than 0 indicates negative autocorrelation (i.e., dispersed 
values), and a Moran’s I equal to 0 indicates no autocorrelation (i.e., 
randomized values). Positive autocorrelation values are undesirable 
here because they indicate spatially coherent – rather than random – 
biases remaining in the corrected estimates, which could bias subse-
quent epidemiological work. Moran’s I is calculated at cumulatively 
increasing lag distances of 100–2000 km from monitor locations. 
Calculation of Moran’s I is discussed in greater detail in the SI. For NH4

↓, 
NO3

↑ and SO4
2↑, residual biases from the OLS model exhibit a statistically 

significant positive autocorrelation across all lag distances (Fig. 6). Re-
sidual biases that are spatially autocorrelated suggest that region- 
specific CTM biases are unidentified and untreated in the subsequent 
corrections. In contrast, residual biases for NH4

↓, NO3
↑, and SO4

2↑ from 
the GWR show no statistically significant autocorrelation, highlighting 
the value added from the GWR model. In 2010, residual biases for OA 
from the GWR-model exhibit a statistically significant negative auto-
correlation across all lag distances. Likewise, residual biases from EC 
tend to be negatively autocorrelated, although not statistically signifi-
cant. This negative autocorrelation (i.e., dissimilarity between nearby 
data points) is likely attributable to the high spatial variability of EC and 
OA and the lack of monitors needed to fully characterize said spatial 
variability in urban areas. In 2001, no statistically significant autocor-
relation is exhibited for EC and OA, however this is due to a monitoring 
network that is dominated by rural IMPROVE monitors in the Western 
U.S. The increase of urban CSN monitors from 2001 to 2010 likely 
increased the degree of dissimilarity in GWR residual biases for EC and 

Fig. 3. CTM evaluations for uncorrected and GWR-corrected simulations trained under leave-one-out (LOO), 10-fold and regional cross-validation (CV) methods. 
Evaluation metrics are calculated for individual PM2.5 species across the contiguous United States.
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OA. The analysis of spatial autocorrelation, therefore, presents strong 
evidence that OLS alone leaves regionally specific biases that are 
problematic for use in epidemiological analysis, but that GWR is able to 
address.

3.4. Compositional evaluation

Some applications of the predicted composition fields may use the 
fractional composition of PM2.5 rather than the speciated concentrations 
themselves (Pond et al., 2022). Therefore, as an additional point of 

evaluation, the fractional composition of simulated PM2.5 is compared to 
that observed in speciated ground-level monitors. Here, we are inter-
ested in examining the CTM’s performance in predicting species mix-
tures on a fractional basis and improvements made by GWR corrections. 
Fractional composition can be represented as a vector, where each 
vector component corresponds to the fractional contribution of a spe-
cies. The degree of dissimilarity between species mixtures can be 
quantified by calculating the angle between their corresponding vectors. 
For reference, Fig. S29 compares example monitor and CTM species 
mixtures with vector angles of 5, 10, 20 and 30≃ between them. A vector 

Fig. 4. Bias of uncorrected CTM PM2.5 species relative to observations at speciated ground-level monitors (observed bias) expressed as (uncorrected CTM prediction – 
observation).
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angle below 10≃ is classified as showing good agreement between 
simulated and observed species mixtures. Changes in vector angles 
before and after GWR corrections are shown in Fig. 7, with 10-fold CV 
results being presented. Fig. 7 highlights a clear shift in the distribution 
of vector angles, with an average decrease of 2.3 and 5.5≃ in 2001 and 
2010, respectively. In 2001, the number of monitor locations with vector 
angles under 10≃ increases from 56 to 70 % as a result of GWR correc-
tions. In 2010, the increase is greater, from 32 to 80 %. In general, 
corrected estimates in eastern locations agree better with monitors than 
those in western locations. GWR corrections improve agreement 

between CTM and CSN monitors. However, there appears to be a 
degradation in performance at some western IMPROVE locations. This is 
consistent with earlier results showing persistent error after corrections 
are applied to western OA and NO3

↑ estimates, and regional holdout CV 
results that suggest weaker predictive ability in remote regions.

3.5. Species- and source-resolution in four metropolitan areas

GWR corrections improve the spatial consistency and performance of 
CTM simulations by leveraging valuable information from monitors, 

Fig. 5. Bias of CTM PM2.5 species as predicted by GWR models (predicted bias) expressed as (uncorrected CTM – corrected CTM prediction). Results are displayed 
here at the tract level.
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empirical model estimates, and other geographic information. With 
these corrections, the species- and source-resolution of the PM2.5 expo-
sure estimates provided by the CTM greatly enriches their utility in 
exposure assessment and environmental epidemiology. The impact of 
the GWR corrections (Fig. 8) illustrates the absolute and compositional 
changes in population-weighted PM2.5 for four metropolitan statistical 

areas. The greatest changes are observed in the western metropolitan 
areas, where corrections to OA and NO3

↑ result in large increases to 
PM2.5. In the Los Angeles metropolitan area, PM2.5 increases by 76–82 
%, with OA increasing by 2.9 and 2.2 μg m↑3, in 2001 and 2010 
respectively, and NO3

↑ increasing 3.4 and 2.1 μg m↑3, in 2001 and 2010 
respectively. In the Denver metropolitan area, PM2.5 increases by 43–46 

Fig. 6. Spatial autocorrelation (Moran’s I) of residual biases in OLS and GWR models across cumulatively increasing lag distances. Error bars correspond to the 95 % 

confidence interval. For reference the calibrated e-folding length (L ↘
⌊⌊⌊⌊⌊⌊
1
εα

⌋
), the distance at which observation points are weighted e↑1, is shown for each 

GWR model.
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%, with OA increasing 1.6 μg m↑3 in 2001, and NO3
↑ increasing 1.0 μg 

m↑3 in 2010. For eastern metro areas, the changes are relatively modest, 
since CTM predictions generally perform better in this region. Unlike the 
Western U.S., PM2.5 changes in the Eastern U.S. are not always driven by 
corrections to a consistent set of species. In the Houston metropolitan 
area, PM2.5 decreases by 2.0 and 1.1 μg m↑3, in 2001 and 2010 
respectively. In the Pittsburgh metropolitan area, PM2.5 increases by 1.0 
and 0.9 μg m↑3, in 2001 and 2010 respectively.

While the dataset presented here was generated with exposure 
assessment in mind, researchers and others may find the national-scale 
source resolution useful for other applications. Fig. 9 illustrates the 
source apportionment of corrected PM2.5 predictions for the same set of 
metropolitan statistical areas discussed previously. Mobile sources tend 
to be most significant in western metros, while industrial sources tend to 
be most significant in eastern metros. Additionally, the contribution 
from these traditional emissions sources has decreased from 2001 to 
2010. The fraction of total PM2.5 coming from mobile sources decreased 

from 35 % (in 2001) to 30 % (in 2010) in Los Angeles and from 25 % (in 
2001) to 20 % (in 2010) in Denver. The proportion of total PM2.5 from 
industrial sources (i.e., EGU plus non-EGU) decreased during 
2001–2010, from 30 % to 27 % in Houston and from 37 % to 30 % in 
Pittsburgh. As air quality regulations in the United States continue to 
target traditional industrial and mobile sources, contributions from 
long-range transport and “other” sources – which include emissions 
from Canada and Mexico, agriculture, and wildfires – are rising in 
prominence. Sources previously unresolved in emissions inventories will 
likely require greater attention.

4. Conclusions

In this study, the GWR method was extended using a tailored 
formulation that incorporated both available observational data and 
Integrated Empirical Geographic (IEG) estimates. The extended GWR 
was applied to a large dataset of PMCAMx-PSAT CTM predictions for the 

Fig. 7. Change in vector angle distributions before and after GWR correction. Vector angles are calculated when speciated monitors for EC, OC, NH4
↓, NO3

↑, and SO4
2↑

are all present. Corrected vector angles are based on results from the 10-fold cross-validation.

Fig. 8. Comparison of compositional changes to population-weighted PM2.5 across four representative metropolitan statistical areas. Uncorrected and corrected CTM 
estimates are shown for each metropolitan statistical area and simulation year.
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contiguous United States for the years 2001 and 2010. The integration of 
GWR and IEG is a key advantage of the proposed approach, as it allows 
multiple data sources to be combined to improve CTM predictions. The 
approach resulted in substantial improvements in predictive accuracy 
(R2 ↘ 0.53–0.97), with notable increases in R2, and reductions in RMSE 
and NMB for all PM2.5 components. The most significant gains were 
observed for OA and nitrate, with up to a 77 % increase in R2 and close to 
a 100 % reduction in NMB.

Going forward, we hope the approach developed and applied here 
enables CTM results to be more widely used for predictions, such as 
PM2.5 source apportionment, that are unavailable elsewhere at the same 
scale. This method is flexible and transparent as the user can define each 
parameter separately and may add more parameters to achieve better 
performance. The use of geostatistical methods, including but not 
limited to GWR, should also be considered when processing CTM sim-
ulations, with the aim of improving and further evaluating those 
estimates.
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