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1. INTRODUCTION

Predicting spatial and temporal variability in outdoor air
pollution is an important research goal for environmental health
and air quality engineering and provides key information for
disciplines such as environmental economics, public policy, and
environmental justice. For example, national epidemiology
studies1�3 have been critically important for advancing environ-
mental regulation in the United States and globally; future
studies would benefit from a national-scale model with spatial
precision sufficient to resolve gradients in pollutant exposure
(<100 m). Here, we present such a model for outdoor NO2

pollution in the United States.
Land-use regression (LUR) is an empirical-statistical technique

that uses in situ concentrationmeasurements and information about
surrounding land-uses to estimate concentrations for nonmeasure-
ment locations.Details of LUR, including comparisons to alternative
approaches, are published elsewhere.4�7 LUR has been applied
throughout North America and Europe,8�10 typically for one city at
a time. More recently, a small number of LUR models have been
presented with broader spatial coverage.11�15 For example, Beelen
et al.11 developed a LUR for Europe at a 1 km grid. (In contrast,
continental-scale dispersion models typically use grid sizes of 12 km
or larger.16,17) Hart et al.13 developed a national-scale LUR for a
cohort dispersed throughout the contiguous United States. While
LUR is a powerful tool able to provide fine-scale estimates

of pollution concentrations, its implementation requires an exten-
sive monitoring network, and transferability among urban areas is
unclear.4,6,18,19

Satellite measurements of tropospheric nitrogen dioxide (NO2)
column abundance (units: molec cm�2) from the Ozone Monitor-
ing Instrument (OMI), aboard theAura satellite, offer powerful new
information on urban air pollution for constraining LUR
models.20,21 OMI provides near global daily coverage, passing
overhead at approximately 13:30 local time,22�24 providing data
quality that is consistent across cities, regions, and countries, and
devoid of the methodological differences and political biases some-
times observed for in situ measurements.25,26 However, OMI’s
spatial resolution (13� 24 km2 at nadir), while the best of present
space-borne NO2 sensors, cannot directly capture near-source (e.g.,
near-roadway) concentration variability.

Here, we present an LUR combining ground- and satellite-
based measurements of air pollution (NO2 columns from OMI)
and land-use. Through this combination, we seek to achieve both
the spatial resolution of urban-scale LUR and the broad coverage
provided by space-borne measurements. As shown below,
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the results offer universal spatial coverage for the contiguous
United States, at sufficient spatial precision (∼30 m) to capture
near-roadway pollution impacts (∼200�500 m).27 We aim to
advance LUR in three main ways: (1) by incorporating satellite-
based estimates of air pollution concentrations, (2) by enabling
quantitative exploration of diel and other temporal variability in
spatial patterns, and (3) by constructing and making publicly
available a national-scale model with spatial precision capable of
predicting within-urban variability. The resolution of our national-
scale model (∼30 m) is consistent with prior urban-scale LUR.

2. METHODS

As described next, we used multivariate linear regression to
predict atmospheric NO2 surface concentrations based on data
from ambient monitors, GIS land-use characteristics, and NO2

measurements from the OMI satellite sensor.
2.1. Input Data. 2.1.1. Monitor Data. We obtained hourly

NO2 concentrations from the United States Environmental
Protection Agency’s 423 ambient monitors in the contiguous
United States (AQS Datamart, year-2006; www.epa.gov/ttn/airs/
aqsdatamart). While these NO2 measurements have a known bias
due to interference from other oxidized nitrogen species,25,26,28

values reported by the EPA are used extensively in research and
practice (e.g., in determining regulatory compliance and by the
health community in epidemiological studies). For this reason, we
use available EPA data “as is”, without any interference corrections.
Using EPA’s reliability criterion, stations missing more than

25% of the hourly values were excluded. Our primary model
considers annual-mean concentrations at each monitor. To
explore temporal variability, we also consider means by season,
hour-of-day, and day-type (weekday, weekend) for a total of 126
temporally explicit models (4 seasonal, 24 hourly annual, 96
hourly seasonal, and 2 day-type [weekend/weekday] models).
To explore spatial variability, we grouped stations by region (four
quadrants of the United States: East Coast, Midwest, Mountain
West, West Coast), by three EPA-designated location types
(urban, suburban, rural), and by distance to major roadway;
see Figure S1 in the Supporting Information.
2.1.2. Land-Use.Table 1 lists land-use characteristics serving as

independent variables in the model. For several variables
(impervious surface, tree canopy, population density), we com-
pare two available data sources. Our main model employs
globally available data (“global” data; 500�1000 m spatial
resolution).29�31 As a sensitivity analysis, we employ finer-
resolution data (as fine as 30 m) covering only the contiguous

United States (“United States only” data).32�34 Both models
employ year-2009 United States Census (Tiger) road networks,35

which we divide into major roads (motorway, primary, second-
ary, trunk), minor roads (residential, track, tertiary), and total
(major plus minor roads). Our distance-to-coast measure
excludes the Great Lakes. Independent variables were analyzed
either as buffer or as point estimates. A buffer estimate is an
average value over a specified length scale (i.e., circular radius)
from a location, while a point estimate is the specific value at that
location.
2.1.3. NO2 Column Measurements from the OMI Satellite

Sensor.We employOMI troposphericNO2 column data from the
DOMINOproduct (version 1.0.2, collection 3; available at http://
www.temis.nl). Following Lamsal et al.25,26 and Bechle et al.,37 we
derived estimates of ground-level NO2 concentrations using
tropospheric NO2 column measurements from OMI and local
surface-to-column ratios from a global three-dimensional atmo-
spheric model (GEOS-Chem; www.geos-chem.org38). Specifi-
cally, we generate year-2006 daily estimates of surface NO2

concentration using 3 h average surface-to-column ratios for
12:00�15:00 local time, corresponding with Aura overpass. This
approach has been shown to give surface NO2 concentrations in
urban areas that are well-correlated with corrected in situ observa-
tions, and with <30% bias that does not vary strongly throughout
the year.25,26We calculated seasonal mean NO2 abundance in the
case of the seasonal LUR, and annual means for all other cases.
Satellite-based NO2 estimates reflect contributions from all
sources, including emissions from sources (e.g., industry, airports,
harbors) not explicitly included in our land-use data set.
2.2. LUR Model Formation. The LUR incorporates six land-

use characteristics calculated for 22 radial buffer lengths (between
100 m and 10 km; see Table 1) and three point-derived land-use
and satellite-based values for a total of 135 candidate independent
variables. We tested independent variables from global and
United States data sets (impervious surfaces, tree cover, popula-
tion; Table 1) to determine if the higher resolution United States
only data set improved model performance.
We employed the stepwise multivariate regression technique

of Su et al.39 The independent variable most correlated with the
dependent variable is added to the model first. The parameter
most correlated with model residuals is then selected as the next
independent variable, and the process repeats. Each independent
variable stays in the model if the significance level is less than 0.05
and the variance inflation factor (VIF, a check for multi-
collinearity) with parameters already in the model is less than 5.
Following Henderson et al.,40 when an independent variable at a

Table 1. Independent Variables

parameter units spatial resolution buffera or point estimate

impervious surface % 30 m (United States only32); 1000 m (global29) buffer

tree canopy % 30 m (United States only33); 500 m (global30) buffer

population no. Census block (United States only34); 1 km (global31) buffer

major road length35 km NA buffer

minor road length35 km NA buffer

total road length35 km NA buffer

elevation36 km 90 m point

distance to coast km NA point

OMI NO2
25,26 ppb 13 � 24 km2 at nadir point

aBuffers employed (m): 100; 200; 300; 400; 500; 600; 700; 800; 1000; 1200; 1500; 1800; 2000; 2500; 3000; 3500; 4000; 5000; 6000; 7000, 8000;
10000.
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specific buffer length enters the model, other buffer lengths of
that variable are still allowed as possible candidates, subject to the
VIF and significance level requirements. We stop when the next
added independent variable would not be statistically significant
or would fail the VIF multicollinearity check. Separate NO2

models were created using this approach for each dependent
variable: annual-mean concentration (main model) plus the 126
temporal summaries mentioned above.
2.3. Model Evaluation.We quantified model performance on

the basis of correlation, error, and bias between predictions and
observations, and evaluated spatial autocorrelation among the
model residuals. We tested model robustness using Monte Carlo
random sampling as follows. We conducted model-building
using 90% of the monitoring data and tested the model’s ability
to predict the remaining 10%. We then calculated R2, error, and
bias for all 500 iterations. We further evaluated model robustness
using spatial characteristics, temporally specific models, and by
comparing United States only versus global data. Finally, we
developedmodels with and without the OMI data to quantify the
information value of the satellite-derivedNO2 estimates for LUR.

3. RESULTS

3.1. Monitor Data.Of the 423 stations in year-2006, 369 met
the reliability criterion and were therefore employed in the model.
Figure S2 in the Supporting Information summarizes monitor data
used here. The median (mean) annual mean NO2 concentration
from these data was 11.4 (12.0) ppb. Median concentrations
(ppb) at monitoring stations were higher for winter (14.0) and fall
(12.0) than for spring (9.8) and summer (8.3). Median concen-
trations at monitoring stations were higher during weekdays than
weekends (12.0 versus 9.3) and higher in urban and suburban
areas (15.2 and 13.1, respectively) than in rural areas (6.2).
3.2. Annual Models. Table 2 shows model performance for

the four annual-mean LUR models (United States only versus
global data, and including versus excluding OMI-derived NO2

concentrations).Model performance is nearly identical for the global
versus US-only data sets, supporting the robustness of the overall
LUR. This finding also suggests that the global data could be used to
develop high-fidelity LURs for other world regions, where higher
resolution inputs may not be available. In contrast, the OMI-based
surface NO2 estimates provide a significant improvement (∼0.1
increase in R2) in model performance, demonstrating the utility of
satellite-derived air pollution data for continental-scale models.
The model with the highest R2 in Table 2 (global, with OMI

NO2) is shown in Table 3, with variables listed in the order they
were accepted into the model. Corresponding information for
the remaining three Table 2models is provided in the Supporting
Information (Table S1). Signs and magnitudes for coefficients
are listed in Table 3. Roads have a positive coefficient (more
roads = higher NO2 concentrations), reflecting NOx emissions
from motor vehicles. Tree canopy has a negative coefficient
(more tree-cover = lower NO2 concentrations), likely reflecting
reduced combustion sources for locations with greater tree
cover.41 The satellite-based estimate of NO2 concentration is
the second variable selected by the model (after impervious
surfaces, 6 km buffer), and with a coefficient (β) of 1.0, indicating
the importance and direct utility of OMI estimates for the LUR
presented here. The first four parameters in Table 3 contribute
97% of the model predictive power (partial R2 = 0.76). We
employ the model in Table 3 for the analyses that follow.
3.3. Model Evaluation. Mean bias, absolute bias, error, and

absolute error for the core model (Table 3; equations S1�S4)
are 22%, 39%, 0.0 ppb, and 2.4 ppb, respectively.
Results from the Monte Carlo simulations indicate that the

model is robust and not sensitive to the population of EPA
monitors used to develop the LUR. Test models built using 90%
of the data (model-building) perform nearly as well at predicting
the remaining 10% of the data (model-testing) as at predicting
the 90% used in their construction: among the 500 iterations,
median R2 values are 0.78 for the model-building data and 0.76
for themodel-testing data (Figure S3). Othermetrics (error, bias)

Table 2. Model Performance for the Four Annual-Mean NO2 LURs

R2 adj. R2 mean absolute error (ppb) mean bias (%) mean absolute bias (%) p

global with OMI NO2 0.78 0.77 2.4 22 39 <0.001

United States with OMI NO2 0.77 0.76 2.4 24 41 <0.001

global without OMI NO2 0.66 0.66 2.9 28 46 <0.001

United States without OMI NO2 0.68 0.67 2.9 28 47 <0.001

Table 3. Annual Mean Model Using Global Data Sets and OMI NO2
a

parameter units β std. err. p > |t| partial R2 IQR β*IQR VIF

intercept ppb 4.5 0.49 <0.01

impervious (6000 m) % 0.12 0.01 <0.01 0.55 35 8.6 1.9

annual OMI NO2 ppb 1.0 0.06 <0.01 0.70 3.3 3.2 1.5

tree canopy (1000 m) % �0.09 0.02 <0.01 0.74 8.4 �0.91 1.2

major roads (800 m) km 0.20 0.08 0.01 0.76 3.2 0.97 2.8

minor roads (100 m) km 3.7 1.1 <0.01 0.76 0.27 0.82 1.2

elevation km 2.0 0.47 <0.01 0.77 0.27 0.31 1.5

distance to coast km �1.5� 10�3 3.9� 10�4 <0.01 0.77 630 �0.86 1.6

major roads (200 m) km 1.3 0.67 <0.05 0.78 0.19 0.25 2.4
a Parameters are listed in the order in which they were added to the model. Distance in parentheses is the buffer radius. Parameters without a buffer
distance were taken at the station locations. IQR is the inter-quartile range for the given parameter at EPA monitor sites. β*IQR is the β coefficient
multiplied by the IQR. VIF (variance inflation factor) is a check for multicollinearity.
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are given in Table S2 in the Supporting Information. For 86% of
the 500 models, the first four parameters selected for the model
were, in order, impervious surfaces (buffer distance between 3000
and 8000m), satelliteNO2, tree canopy (buffer distances between
800 and 3000 m), and major roads (buffer distances between 200
and 800 m), that is, the same variables and inclusion order as in
the core model (Table 3).
We tested spatial autocorrelation of the model residuals by

calculating Moran’s I, a local indicator of spatial association
(LISA), at the 95% confidence interval42 using ArcGIS. Through
this process, 66 monitor outliers were suggested for removal. We
created an LUR model using this new data set and compared it to
the existing model. Predicted concentrations are nearly identical
between the core and test models (see Figure S4; R2 = 0.97),
suggesting that spatial autocorrelation does not have a major impact
on our model results.
We also investigated the extent to which monitor locations

span the (independent) variable space, an important issue for any
LUR. For example, monitors shouldmeasure near and away from
roadways, and in more and less populated locations. As shown in
Table S3, station locations range from 1 to 41 000m from amajor
road. Of the EPA monitors used here, 24 are within 50 m of a
major road, 31 are 50�100 m from a major road, and 51 are
100�200 m from a major road. Similar findings hold for other
independent variables: the EPA monitors generally span the
variable space. Among monitoring locations, impervious surface
within 6000 m ranges from 0 to 74%, length of major roads
within 800 m ranges from 0 to 22 km, and percent tree canopy
within 1000 m ranges from 0 to 77%. Monitors are roughly
evenly divided between urban (34%), suburban (39%), and rural
(27%) locations.
3.4. Application of the Model. To provide visual representa-

tion of the LUR, we applied the core model (Table 2) to the
centroid locations for all ∼8 million Census blocks in the
contiguous United States (blocks are the smallest area enumer-
ated by the United States Census; average population per block:
∼35 people) and to 30m grids for metropolitanMinneapolis/St.
Paul, MN and Los Angeles, CA (Figure 1). For visual depiction
on these maps, modeled values between 0 and 1 ppb were
rounded to 1 ppb. Highest concentrations are near roadways and

in more populated areas, with peak (median) concentrations of
22 (4.9) ppb in Minneapolis and 43 (20) ppb in Los Angeles.
The predictedmean population-weighted (unweighted) outdoor

concentration for the contiguous United States is 10.7 (4.8) ppb.
Figure 1 also showsNO2 concentration estimates along urban cross
sections for the same two cities. Concentrations exhibit urban-to-
rural and near-roadway concentration gradients,43�46 with simu-
lated concentration spikes nearmajor highways∼200�500mwide,
broadly consistent with available estimates.27,47

3.5. Temporal Variability. Seasonal and day-type (weekends,
weekdays) models, given in the Supporting Information (Table
S4), exhibit only minor differences in performance as compared
to the core model. For example, R2 values are 0.74 versus 0.76 for
summer and winter models, respectively, and 0.78 versus 0.75 for
weekday and weekend models, respectively.
Diel annual models (24 models: one per hour-of-day) and hourly

seasonal models (96 models: one per hour-of-day for each season)
showedmodest variability inmodel performance.ModelR2 values are
higher around midday than at night (Figure 2A). Diel patterns in R2

values depend on the inclusion ofOMINO2 satellite data in the LUR
(Figure 2B); including the OMI data provides the greatest perfor-
mance enhancement during mid-day, around the time of the Aura
satellite overpass.
3.6. Spatial Variability.The core model performs moderately

better for urban and suburban areas (R2 = 0.72 and 0.68,
respectively) than for rural areas (0.60). This finding supports
the use of our LUR for exposure assessment and environmental
epidemiology, because most people (∼80%48) in the United
States live in urban or suburban areas. On the other hand, it also
indicates that the model is less reliable for predicting NO2 levels
in low-population areas. NO2 sources (e.g., motor vehicles,
electricity generation) may be more directly correlated with
land-use for urban than for rural areas. Results by geographic
region show that model performance is highest for the East Coast
domain (R2 = 0.83) and is similar among the remaining three
regions (R2≈ 0.75). The East Coast region is themost populated
of the four areas, with ∼37% of the United States population.48

Comparing model performance based on station distance from a
major roadway yielded the following R2 values: 0.74 (comparing
only to stations 0�200 m from major road; n = 106), 0.71

Figure 1. Modeled ground-level year-2006 annual-average NO2 concentrations for all U.S. Census Blocks in the contiguous United States. Zoom-in
panels show concentrations in Los Angeles (LA) and Minneapolis/St. Paul (MSP), employing a 30 m grid for display purposes. Line plots provide
concentration estimates along the cross sections shown in the zoom-in plots for LA and MSP.
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(200�400 m; n = 70), 0.64 (400�600 m; n = 55), 0.75
(600�800 m; n = 29), 0.68 (800�1000 m; n = 20), and 0.74
(>1000 m; n = 89). Additional details, including modeled versus
observed NO2 by location type and region, and location-specific
models (urban, suburban, rural) are in the Supporting Informa-
tion (Figure S5; Table S5).
We calculate the length scale of spatial variability, defined as

the distance where the mean concentration difference between
points is equal to one-half the overall spatial standard deviation of
all concentrations, as 2.4 km for Minneapolis and 4.5 km for Los
Angeles. These values are slightly larger than the corresponding
value (1.0 km) for Vancouver, Canada, based on a prior NO2

LUR.5,40 We examined spatial and temporal variability for one
urban area (Minneapolis/St Paul; Figure 3). Concentrations are
highest near major roadways and close to the city center in
mornings (6:00�7:00) and at night (20:00�22:00) (Figure 3A,C).
Relative to on-roadway, annual mean concentrations are 35%
lower 1 km from a roadway (Figure 3B) and 50% lower 2.5 km
from amajor roadway (not shown). A recent literature review for
multiple cities47 reported that NO2 concentrations 550 m from
a major roadway are on average 42% lower than on-roadway;
Figure 3B suggests, for Minneapolis, a 28% decline at 550 m.
Concentration differences are larger for urban gradients than
for near-roadway gradients (i.e., 55�70% differences in
Figure 3C versus 10�35% differences in Figure 3A). Concentra-
tions decrease sharply at close distances from major roadways
(within ∼30 m) and the city center (within ∼5 km) and more
gradually at larger distances.

4. DISCUSSION

We developed and implemented an LUR for the contiguous
United States using fixed-site ambient monitoring station data,
land-use data (including satellite-derived land-use data), and
satellite-derived ground-level NO2 concentrations. The model

exhibits good predictive power [R2 = 0.78, absolute error = 2.4
ppb], at similar spatial resolution as prior urban-scale LUR
models. Our model improves on prior LUR via temporal
precision (hour-of-day, day-of-week) and input data (use of
satellite-derived estimates of ground-level air pollution).

Several limitations of our studymerit highlighting. First, similar to
prior LUR, we focus mainly on population- and traffic-related
variables; we do not investigate sources such as industry, airports,
or harbors. OMI-based estimates of surface NO2 provide back-
ground concentration (incorporating emissions from all sources),
but prior research49 indicates that traffic-focused LURs perform
poorly in areas with significant nontraffic sources (e.g., industrial
hot-spots). Second, because traffic data are not available over the
entire United States, our model is derived from road length rather
than traffic volumes. Third, as is common with empirical models,
our model performance evaluations employ the data used to derive
the model. The 90%/10% Monte Carlo approach aims to mitigate
this limitation, but we believe that future research could usefully
compare our model results against independent concentration
measurements or against available urban LUR models. Fourth,
because no existing LUR explores time-of-day variability in con-
centrations (most urban-scale LUR models evaluate annual-mean
concentrations, or in some cases monthly concentrations), we are
unable to corroborate this aspect of ourmodel. Further research into
temporal aspects of spatial patterns in ambient concentrations is
needed. Finally, our model only predicts outdoor concentrations;
indoor sources such as natural-gas stoves can also contribute to total
air pollutant exposure.50

Despite these limitations, our model captures 78% of the
variability in EPA-measured ambient NO2 throughout the
contiguous United States. An urban-only model performed
slightly better (R2 = 0.80; Table S5 in the Supporting
Information). We found that increased spatial precision in
the land-use input data did not improve model performance,
whereas including OMI NO2 data did yield a significant
improvement. The model coefficient for OMI NO2

(Table 3) is 1.0, emphasizing the direct utility of satellite data
for questions considered here; its status as the second variable
selected in the model further underscores its utility. The
regression approach accounts implicitly for many potential
biases in the independent variables. For example, a bias in the
OMI-derived NO2 estimates would simply result in a different
regression coefficient for this parameter; model predictions
and model performance would remain unchanged.

Independent variables employed here (except the road
network) are available globally. Thus, our approach could
readily be applied to other countries or regions given sufficient
ambient monitoring and road network data. Prior research
demonstrates the critical need to have a sufficient number of
monitoring stations to obtain a robust LUR.4 For example,
Hystad et al. demonstrate that Canadian ambient monitors are
too sparse to derive a straightforward national-scale LUR.15

For several pollutants, they combine regional concentration
estimates, derived from LUR and satellite data, with literature-
derived assumptions about near-roadway trends to predict
concentrations throughout Canada.

We hope that our model results will be useful for epide-
miological studies and other investigations seeking national-
scale, spatially precise estimates of air pollution. To facilitate
such research, concentration estimates for all Census blocks in
the contiguous United States (Figure 1) are publicly available
via the Supporting Information.

Figure 2. (A) Model performance for the 96 hourly seasonal models.
(B) Model performance for hourly models with and without satellite-
derived estimates of NO2 concentrations.
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U.S. Census Block NO2 Data 
Three data files provide LUR-derived NO2 concentration estimates (ppb): one file (“Read me”) 

describes the data, another file (“Preview”) illustrates the semicolon-separated format for the 

database by providing data for the first 100 Census Blocks in the database, and the last file 

(“NO2_ByCensusBlock”; file size:  810 MB) provides estimates for all Census blocks in the 

contiguous United States. All files can be downloaded here 

http://personal.ce.umn.edu/~marshall/data.php 

Equations 
Equations for mean error (ME), absolute error (AE), mean bias (MB) and absolute bias (AB):
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where Cm is the modeled average concentration for station i, Co is the average observed 

concentration for station i, and N is the number of monitoring stations. 
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Figure S1. Station locations by region and type. 
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Figure S2. Box plots of year-2006 average NO2 concentration among the EPA monitors.  Inter-

quartile ranges are given by the blue boxes; red lines indicate median values. Red lines show 

median values. Box is the IQR. Black lines outside box are 10
th

 and 90
th

 percentile. 
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Table S1. Stepwise multiple linear regression analysis for US dataset with OMI NO2, global 

dataset without OMI NO2 and US dataset without OMI NO2. Parameters are listed in the order in 

which they were added to the model.

Parameter Unit  Std. Err. p>|t| R
2

IQR

 * 

IQR VIF

US Dataset with OMI NO2

Intercept -- 3.94 0.47 <0.01

Impervious (7000m) % 0.12 0.01 <0.01 0.58 31.2 8.48 2.5

OMI NO2 ppb 0.92 0.07 <0.01 0.70 3.3 2.89 1.6

Tree canopy (600m) % -0.47 0.01 <0.01 0.72 15.1 -1.09 1.2

Major roads (700m) km 0.30 0.07 <0.01 0.74 2.60 0.85 1.4

Impervious (100m) % 0.03 8.83E-03 <0.01 0.75 53.7 1.91 2.4

Elevation km 2.36 0.47 <0.01 0.76 0.27 0.42 1.5

Distance to coast km -1.17E-03 3.95E-04 <0.01 0.77 630 -0.73 1.5

Minor roads (100m) km 2.53 1.14 0.03 0.77 0.27 0.68 1.3

Global Dataset without OMI NO2

Intercept 7.2 0.54 <0.01

Impervious (6000m) % 0.12 0.02 <0.01 0.55 35.1 8.61 3.8

Major roads (800m) km 0.23 0.07 <0.01 0.58 3.20 1.17 1.4

Population (10000m) # 7.54E-04 1.69E-04 <0.01 0.61 1100 1.05 1.8

Tree canopy (1800m) % -0.09 0.02 <0.01 0.63 11.1 -0.85 1.2

Distance to coast km -2.2E-03 7.73E-04 <0.01 0.64 630 -1.01 1.5

Elevation km 1.81 0.57 <0.01 0.65 0.27 0.5 1.5

Major roads (10000m) km 6.16E-03 2.17E-03 <0.01 0.66 270 1.66 4.3

US dataset without OMI NO2

Intercept 5.70 0.51 <0.01

Impervious (7000m) % 0.13 0.02 <0.01 0.58 31.2 8.48 4.7

Population (700m) # 4.26E-04 1.15E-04 <0.01 0.61 2000 1.21 1.7

Major roads (300m) km 0.76 0.27 <0.01 0.63 0.53 0.59 1.2

Tree canopy (500m) % -0.04 0.02 <0.01 0.64 14.7 -0.77 1.2

Distance to coast km -1.78E-03 4.68E-04 <0.01 0.65 630 -0.72 1.6

Elevation km 2.24 0.55 <0.01 0.66 0.27 0.60 1.5

Impervious (100m) % 0.03 9.87E-03 <0.01 0.67 53.7 1.38 2.2

Major roads (10000m) km 7.35E-03 1.99E-03 <0.01 0.68 270 1.98 3.8

Distance in () is the buffer radius, parameters without a buffer distance were taken at the 

station locations. IQR is the inter-quartile range for the given parameter,  * IQR is the 

coefficient multiplied by the IQR, and VIF is the variance inflation factor to check for 

multicollinearity. 
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2
 values between observed and modeled data, for the 90% of data 

used to create the model (model-building data) and for the remaining 10% (model-testing data) 

for 500 Monte Carlo simulations. Red lines show median values. Box is the IQR. Black lines 

outside box are 10
th

 and 90
th

 percentile. 

Table S2. Error and bias between the measured values and the model-building and model-testing 

datasets for the 500 Monte Carlo simulations. 

Model-building Model-testing

Mean error (ppb) 0 0.08

Mean absolute error (ppb) 2.4 2.55

Mean bias (%) 23 25

Mean absolute bias (%) 40 42
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Figure S4. Comparison between the core model (Table 3 in main text) and the autocorrelation-

corrected model (same as the core model, but omits 66 stations where the residuals of the models 

have a statistically significant spatial autocorrelation at the 95% level). We tested spatial 

autocorrelation of the model residuals by calculating Moran’s I using ArcGIS, more information 

on this topic can be found here: 

http://webhelp.esri.com/arcgisdesktop/9.3/index.cfm?TopicName=Cluster_and_Outlier_Analysis

:_Anselin_Local_Moran%27s_I_(Spatial_Statistics) 

Table S3: Range of values for station parameters and independent variables.

Units Min Max Median (IQR) 

Station Parameters 

Distance to major road km 0.001 40.9 0.44 (0.18 - 1.04)

Annual measured NO2 ppb 0.3 34.2 11.4 (7.2 - 15.6) 

Latitude 25.73 48.64 37.14 (33.55 - 40.61) 

Longitude -124.18 -68.03 -95.08 (-115.34 to -81.16) 

Independent Variables 

Impervious (6000m) % 0 74 22.7 (5.8 - 40.9) 

OMI NO2 ppb 0.2 17.5 2.9 (1.5 - 4.8) 

Tree canopy (1000m) % 0 77 5.4 (2.4 - 10.8) 

Major roads (800m) km 0 22.4 1.56 (0 - 3.18) 

Minor roads (100m) km 0 .77 0.16 (0 - 0.27) 

Elevation km 0 2.36 0.15 (0.03 - 0.30) 

Distance to coast km 0 2,100 156 (29.1 - 651) 

Major roads (200m) km 0 2.84 0 (0 - 0.19) 
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Table S4. Model results for seasonal regression analysis 

R
2

Adj. R
2

N SSE SSR DFR F p 

Fall 0.74 0.73 358 4966 14030 6 169 <0.001

Spring 0.74 0.73 366 3737 10578 8 129 <0.001

Summer 0.76 0.75 385 3473 10736 5 238 <0.001

Winter 0.76 0.76 345 5047 16206 8 138 <0.001

Weekday 0.78 0.77 361 4010 13973 7 180 <0.001

Weekend 0.75 0.74 363 2856 8373 7 152 <0.001

N is the number of stations used in the analysis, SSE is the sum of squared error, SSR is the 

sum of squared residuals, DFR is the degrees of freedom, F is the F ratio and P is the 

significance level of the F ratio. 
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Figure S5. Modeled vs observed results for the annual average model with satellite 

measurements.  Panel A shows the values divided into rural, urban and suburban categories and 

panel B is divided by regions (Figure S1). 

S8



S9

Table S5. Stepwise multiple linear regression for urban, suburban and rural areas. Parameters are 

listed in the order in which they were added to the model.

Parameter Unit  std. err. p>|t| 

Parti

al R
2

IQR

 * 

IQR VIF

Model: Urban 

Intercept -- 5.75 1.15 <0.01

Annual OMI NO2 ppb 1.31 0.09 <0.01 0.57 3.8 5.48 1.3

Impervious (1800m) % 0.11 0.02 <0.01 0.68 23.8 2.63 2.4

Elevation km 3.75 0.77 <0.01 0.74 0.22 0.89 1.2

Major roads (800m) km 0.19 6.84E-02 0.01 0.76 3.56 0.74 1.2

Tree canopy (6000m) % -0.10 0.03 <0.01 0.77 8.77 -0.79 1.3

Minor roads (3000m) km -1.59E-02 5.07E-03 <0.01 0.79 80.0 -1.08 2.0

Minor roads (100m) km 3.94 1.52 0.01 0.80 0.26 1.04 1.1

Model: Suburban

Intercept 5.55 0.80 <0.01

Annual OMI NO2 ppb 0.82 0.09 <0.01 0.49 3.37 3.82 1.4

Impervious (800m) % 0.05 0.02 0.01 0.60 26.8 3.34 1.7

Major roads (200m) km 3.50 0.81 <0.01 0.65 0.17 0.64 1.1

Tree canopy (8000m) % -0.07 0.02 <0.01 0.68 16.0 -1.46 1.1

Elevation km 2.96 0.91 <0.01 0.70 0.25 0.61 1.1

Major roads (10000m) km 7.97E-03 2.36E-03 <0.01 0.72 221 1.76 1.8

Model: Rural

Intercept 3.17 0.46 <0.01

Impervious (200m) % 0.10 0.04 0.03 0.45 8.00 2.71 1.7

Annual OMI NO2 ppb 1.01 0.22 <0.01 0.52 1.61 1.37 1.9

Canopy (1000m) % -0.06 0.02 <0.01 0.60 22.2 -1.59 1.2

Major roads (400m) km 1.76 0.45 <0.01 0.64 0.14 0.21 1.1

Population (10000m) # 4.80 1.45 <0.01 0.68 0.13 0.61 2.1

Distance in () is the buffer radius; parameters without a buffer distance were taken at the 

station locations. IQR is the inter-quartile range for the given parameter,  * IQR is the 

coefficient multiplied by the IQR. VIF is the variance inflation factor to check for 

multicollinearity. 


