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’ INTRODUCTION

Urban air pollution is responsible for an estimated 1 million
deaths annually, or approximately 17% of environmentally related
deaths in low- and middle-income countries and 81% in high-
income countries.1 In 2008, for the first time in history, urban
dwellers outnumbered rural dwellers; in coming decades, urban
populations are expected to double while rural populations
remain constant or decline.2 In recent decades, urban air quality
has improved for many pollutants in developed countries, but
declined in most developing countries for reasons that include
rapid urban growth, strained transportation infrastructure, in-
creased congestion and automobile ownership, and lack of
effective emission control policies.3,4 Motor vehicles are a major
contributor to urban air pollution. For instance, motor vehicles
account for approximately half (53%) the emissions of nitrogen
oxides (NOx�NOþNO2) in U.S. urban areas (based on the U.
S. EPANational Emissions Inventory [http://www.epa.gov/ttn/
chief/emch/index.html#2005] and urban area boundary files
from the 2000 U.S. Census [http://www.census.gov/geo/
www/ua/ua_bdfile.html]). Strategies for reducing vehicular

emissions include changing vehicles, fuels, or vehicle activity
level (e.g., annual average travel-distance per vehicle). Vehicle
activity level is correlated with the size, shape, and layout of a
neighborhood or city—i.e., its urban form.5�10 For example,
evidence suggests that daily vehicle travel distances are less for
residents of denser urban areas than for residents of less dense
areas; in high-density areas, on average, origins and destinations
are closer together, mass-transit is more available, and disincen-
tives to driving, such as congestion and parking fees, are greater.11

This observation implies that increasing population density may
decrease vehicle-kilometers traveled, reduce motor vehicle emis-
sions, and consequently, improve air quality.12�14 More densely
populated and geometrically compact and contiguous cities
might therefore be expected to have reduced vehicle emissions
and cleaner air.
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ABSTRACT: Urban air pollution is among the top 15 causes of
death and disease worldwide, and a problem of growing im-
portance with a majority of the global population living in cities.
A important question for sustainable development is to what
extent urban design can improve or degrade the environment and
public health. We investigate relationships between satellite-
derived estimates of nitrogen dioxide concentration (NO2, a
key component of urban air pollution) and urban form for 83
cities globally. We find a parsimonious yet powerful relationship
(model R2 = 0.63), using as predictors population, income, urban
contiguity, and meteorology. Cities with highly contiguous built-
up areas have, on average, lower urban NO2 concentrations (a
one standard deviation increase in contiguity is associated with a
24% decrease in average NO2 concentration). More-populous
cities tend to have worse air quality, but the increase in NO2

associated with a population increase of 10% may be offset by a
moderate increase (4%) in urban contiguity. Urban circularity
(“compactness”) is not a statistically significant predictor of NO2 concentration. Although many factors contribute to urban air
pollution, our findings suggest that antileapfrogging policies may improve air quality. We find that urbanNO2 levels vary nonlinearly
with income (Gross Domestic Product), following an “environmental Kuznets curve”; we estimate that if high-income countries
followed urban pollution-per-income trends observed for low-income countries, NO2 concentrations in high-income cities would
be ∼10� larger than observed levels.



4915 dx.doi.org/10.1021/es103866b |Environ. Sci. Technol. 2011, 45, 4914–4919

Environmental Science & Technology ARTICLE

However, increasing population density with the aim of reducing
vehicle emissions creates a counterintuitive potential hazard: even if
emissions decline, air pollution concentrations and population expo-
sure may worsen since people and their vehicles’ emissions are closer
together. Shifts in urban form could thus reduce vehicle emissions yet
increase primary pollutant concentrations.15,16 The net effect of high-
versus low-density development on air quality is thus a balance of
competing changes in emissions and atmospheric dilution.15

In addition to the emission�dilution trade-off, the wealth of a
city may influence its air quality. The environmental Kuznets

curve (EKC) suggests that rising income increases pollution when
per capita gross domestic product (GDP) is low, but decreases
pollution when per capita GDP is high.17�19 This relationship is
often attributed to the transition of a society from agrarian to
industrialized and finally to a service economy.20 A related explana-
tion involves the competing effects of scale and technology:17 as a
developing economy experiences rapid growth, it increases out-
put and consequently increases emissions; economic growth
leads to technological progress, which allows cleaner new technol-
ogies to replace dirtier obsolete technologies, thus improving
environmental quality. This phenomenon occurs over long periods
of time for a single country, but it is also observed inmulticountry
cross-sectional analyses.17,18 The EKC hypothesis holds in many
cases (especially for urban air pollution) but it is not universal.18,21,22

Here we employ satellite measurements of nitrogen dioxide
(NO2, a key component of urban air pollution) from the Ozone
Monitoring Instrument (OMI23) and a global data set of 83
urban areas (Figure 1A) to explore the relationship between urban
form and air pollution concentrations. We also examine relation-
ships between income and satellite-estimated air pollution con-
centrations. Most prior investigations exploring the relationship
between urban form and air quality have been modeling studies,
relying on projected growth and land use scenarios to model air
quality outcomes for specific cities.24�28 The few prior empirical
studies generally focus on a single country and are limited to
developed countries where high quality atmospheric and land
use data are available.14,16,29 We present the first study using
satellite measurements to explore the urban form�air pollution
relationship for a stratified global sample of cities.

Although NO2 is mainly produced in the atmosphere from
photochemical oxidation of directly emitted nitric oxide (NO),
the time scale for that transformation is short (minutes), so that
NO2 concentrations are essentially a marker for combustion-
related emissions.Major sources of combustion-related emissions in
urban areas are transportation, power generation, and industrial
processes. Biomass burning can also contribute significantly to
combustion emissions in nonurban regions (e.g., wildfires and
human-initiated burning for land clearing) and developing coun-
tries (e.g., cooking and heating). NO2 is linked to numerous
adverse health effects30�33 including lung cancer,34 cardiopulmon-
ary mortality,35 and type 2 diabetes.36 NO2 is environmentally
important as a marker for combustion emissions, as a precursor
to the formation of ground-level ozone and particulate matter,
because it has direct health effects, and as a cause of acid rain.
NO2 is a criteria pollutant regulated in the U.S. Clean Air Act.
Here we show quantitatively that urban design can influence
NO2 concentrations, and demonstrate that urban NO2 levels
around the world track the wealth of the city in a nonlinear way
and according to an EKC.

’METHODS

While high quality, in situ measurements of urban air pollution
are conducted regularly and are publicly available for many
developed countries, such data are lacking for most developing
countries. In contrast, satellite measurements offer near-global
coverage using a uniformmethodology.37�39Data quality is con-
sistent across cities, regions, and countries, and devoid of the
political biases sometimes observed for in situ measurements.40�42

OMI provides daily measurements of NO2 atmospheric column
abundance. We derive daily surface concentrations using NO2

surface-to-column ratios from a global chemical transport model

Figure 1. Global and urban-scale NO2 concentrations in surface air. (A)
Three-year average NO2 concentrations for the world at 0.1� � 0.1�
resolution derived from satellite measurements. Circles indicate the 83
global cities included in this study. (B) Contiguity (urban patchiness)
and compactness (circularity of the main built-up area) illustrated by (a)
Changzhi, China (0.33, 0.45 for contiguity and compactness re-
spectively); (b) Ibadan, Nigeria (0.94, 0.47); (c) Malatya, Turkey
(0.36, 0.22); (d) Jequi�e, Brazil (0.98, 0.25). For one of the urban areas
(Minneapolis-St. Paul, Minnesota, USA), (C) built-up areas (resolution:
0.1 � 0.1 km2), (D) three-year average surface NO2 concentration
(resolution: 0.1� � 0.1�, or about 8 � 11 km2), and (E) three-year
average NO2 concentrations, formed by combining and interpolating
(C) and (D) (resolution: 0.1 � 0.1 km2). Non built-up areas are not
considered in the analyses.
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[GEOS-Chem,43 see Supporting Information (SI) for details] for
a 3-h window (12:00�15:00 local time) corresponding to
satellite overpass time. Figure 1A shows global NO2 surface
concentrations derived in this way from the OMI measurements,
averaged over three years (2005�2007) and for visual display
gridded to 0.1�� 0.1� (∼11� 11 km2 at the equator) resolution.
OMI-derived NO2 surface estimates are typically lower than 24-h
average in situ measurements; reasons include spatial averaging
from the satellite pixel and GEOS-Chem model, chemical inter-
ferences for certain in situ NO2measurements,40 and the diurnal
cycle of NO2 in surface air. Lamsal et al.40 demonstrated that the
approach employed here to derive surface NO2 concentrations
from the satellite data gives values that are well-correlated with
in situ observations.

To understand and quantify the impact of urban form and
income on air pollution, we use data from the World Bank’s
Urban GrowthManagement Initiative to define urban extent and
characteristics for a stratified global sample of 83 cities (Fig-
ure 1A). All cities with available data were used for this analysis.
The data set is based on Landsat satellite imagery and land use
classification, and provides estimates of population, built-up area,
per capita GDP (income), contiguity, and compactness44 for me-
tropolitan areas. Urban extent is defined by built-up area deter-
mined from land use classification of Landsat images, rather than
administrative borders. Using this definition, built-up area and
urban extent excludes some areas (e.g., parks and other green
spaces) that might often be considered part of the city. As emp-
loyed in this paper, the terms “compactness” and “contiguity”
refer to the geometric shape of a city and have a more precise
meaning than in common usage. Contiguity is ameasure of urban
patchiness (degree of “leapfrog” development), calculated as the
ratio of the main contiguous built-up area to the total built-up
area of the city. Compactness is a measure of the circularity of the
main built-up area of a city, calculated as the ratio of built-up area
to total buildable area (areas without bodies of water or extreme

slopes) within a circle surrounding the main built-up area of the
city. The urban form characteristics we use from this data set
represent a subset of the dimensions typically used to classify
urban form; other urban form characteristics (e.g., land use mix,
road network density, and centrality with respect to population
and/or employment) are not included in this analysis because
they are not available at a global scale. For a recent discussion of
satellite-based estimates of land use, see Potere et al.45 Figure 1B
illustrates contiguity and compactness using four cities in the study.
We employ a meteorology metric (harmonic mean of the
dilution rate at overpass time; dilution rate is the product of
wind-speed and mixing height) to account for the influence of
atmospheric dilution on pollution concentrations in each city.

Three-year annual-average surface mixing ratios for NO2 derived
from the OMI satellite measurements were interpolated to a
0.1 � 0.1 km2 grid of built-up area for each city. We computed
four measures (arithmetic mean, median, 90th percentile, and
concentration-weighted mean) of NO2 in each urban area; in
each case, concentrations were log-normally distributed among
cities. Arithmetic mean NO2 mixing ratios vary from 0.07 to
16 ppb for the 83 cities, with an overall mean (standard deviation)
of 2.0 (2.6) ppb and geometric mean (geometric standard
deviation) of 1.0 ppb (3.4). Figure 1C�E illustrates built-up area
and NO2 concentrations for one of the 83 cities. Summary
statistics for variables in the core model are provided in Table 1;
summary statistics for all variables are provided in Table S1.

’RESULTS AND DISCUSSION

We constructed a linear regression model (Table 2) for the
logarithm of arithmetic mean NO2 concentration in each city to
determine its dependence on the urban characteristics. The
resulting model captures more than 60% of the variability in
the dependent variable (R2 = 0.63, see Figure S1). Given the
small number of parameters in the model and the variability in air

Table 1. Summary Statistics among the 83 Cities

mean SDa GMb GSDc interquartile range

arithmetic mean NO2 (ppb) 2.0 2.6 1.0 3.4 0.41�3.0

population (million) 2.7 3.8 1.3 3.0 0.56�2.8

income (US$) $9,600 $10,000 $5,400 3.3 $2,300�$18,000

contiguity index 0.71 0.20 0.67 1.4 0.59�0.89

compactness index 0.35 0.10 0.33 1.4 0.27�0.43

harmonic mean dilution rate (m2 s�1) 2,600 2,600 1,500 3.1 520�4,300
a Standard deviation. bGeometric mean. cGeometric standard deviation, unitless.

Table 2. Linear Regression Model for Logarithm of Mean Urban NO2

coefficient std. error P < |t| Δ (1 � SD v)a Δ(1 � SD V)a

_constant_ �2.4 0.47 <0.001 -- --

income (US$) 6.5 � 10�5 1.7 � 10�5 <0.001
�22% �22%

(income)2 �1.1 � 10�9 5.5 � 10�10 0.05

log (population) 0.41 0.074 <0.001 62% �38%

contiguity �0.58 0.19 0.004 �24% 31%

compactness 0.19 0.37 0.62 4.6% �4.4%

harmonic mean dilution rate (m2 s�1) �4.6 � 10�5 1.5 � 10�5 0.003 �24% 31%
aChange in surface NO2 concentration for a one standard deviation increase/decrease frommean value while all other independent variables are held at
mean values. For income: percent change for a one standard deviation increase/decrease from the peak NO2 value (income = $29,600) while all other
independent variables are held at mean values.
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pollution levels, the model offers a simple yet powerful description
of underlying trends in the data. Figure 2 presents model-
derived relationships between the dependent and independent
variables. Employing mean values for all parameters (geometric
mean for population) yields a concentration of 1.0 ppb.

We find that population has the single strongest effect on urban
NO2 levels and their differences among cities. Usingmean values for
the independent variables, a one geometric standard deviation
population increase, 3.1 million people, would raise NO2 concen-
trations by 62% (Figure 2B). The next largest effect in the model
(aside from meteorology) is urban contiguity, with leapfrog devel-
opment associated with higher NO2 concentrations (a one standard
deviation contiguity decrease yields a 31% increase in surface NO2;
p = 0.004. The results suggest that the average increase in NO2

concentration associated with a population increase of 10% could
be offset by a more contiguous urban landscape (specifically, by a
0.03-unit [on average 4%], increase in contiguity). Stated differently,
the results suggest that a 3� increase (i.e., a one geometric standard
deviation [GSD] increase) in population would yield a 62% (0.4-
GSD) increase in NO2 concentration, an amount that our model
suggests could be offset by a 1.8-SD (0.34-unit; on average, 48%)
increase in contiguity.

In contrast, the compactness index has no statistically sig-
nificant impact on urban NO2 levels. This finding may reflect a
dilution/emissions trade-off, i.e., the degree to which emission
reductions caused by the city’s geometric compactness are masked
by the increased proximity.15 In addition, the compactness index is
based on the circularity of the city; circular citiesmay ormay not be

the most energy-efficient, or pollution-efficient, urban form. Con-
tiguity and compactness are not well correlated (in our data set,
R2 = 0.03). Employing instead a multiple linear regression that
excludes contiguity degrades the overall model performance (to
R2 = 0.59) and the significance of the compactness index (to p =
0.99), further indicating that compactness is not a proxy for
contiguity. Likewise, population density was not identified in the
model as statistically significant (p = 0.12), nor as providing an
improvement to model performance (R2).

We find a strong relation between income and air pollution
across the 83 global cities (Figure 2A), consistent with the inverse
“U” shape of the EKC. The peak occurs at approximately US
$30,000 per capita GDP. Starting at this peak and employing
mean values for all other independent variables, a 1-SD increase
or decrease in per capita GDP yields a 22% reduction in NO2

concentrations. This finding suggests a nonlinear relationship
between pollution concentrations and urban economic develop-
ment. The NO2�income curve in Figure 2A can also be
interpreted to define, in a globally integrated sense, a transition
point in advanced urban development when cities start to
become less polluting with increased economic growth. The
∼$30,000 peak, derived here based on NO2 concentrations, is
broadly consistent with reported transition points derived using
per capita NOx emission estimates, but higher than for other air
pollutants previously studied (see Table 3).

Figure 2F shows a linear projection based on the model
relationship between income and surface NO2 concentrations
for the lowest 50th percentiles of cities by income. This
projection represents the hypothetical pollution penalty that
would be associated with increased income if wealthy cities
were to pollute at the same rate-per-income as poor cities. If
the wealthiest cities in the model (Springfield, MA; Pittsburgh,
PA; Minneapolis, MN) polluted at this projected rate, their
NO2 concentrations would be∼10� higher than modeled and
observed levels.

To explore further the differences between developed and
developing countries, we create “dummy” variables to define two
income groupings using theWorld Bank’s economic classification
(based on GDP per capita): a four-level grouping (low, middle-low,
middle-high, and high income) and a two-level grouping (high
income; not high income). Neither grouping was selected using a
backward stepwise multiple linear regression (p < 0.1) suggesting

Figure 2. Unique effect of independent variables for the linear regres-
sion model (log�linear plots). (A�E) NO2 concentration response for
each independent variable while other independent variables are held at
mean values. Shaded blue regions indicate 95% confidence intervals.
Hashmarks along the x-axes indicate independent variable value for each
of the 83 cities. (F) Linear projection of predicted NO2 concentration
based on the lowest 50th percentiles of cities by income. Actual NO2

concentrations in cities toward the upper end of the income distribution
are an order of magnitude lower than the linear projection we show here.

Table 3. Transition Points for Air Pollution Environmental
Kuznets Curve Studiesa

sulfur dioxide

suspended

particulate

matter

carbon

monoxide

nitrogen

oxides

emission-based studies

ref 47 9,100 9,700 13,100 19,500

ref 48 14,200 12,700 25,300 28,900

concentration-based studies

ref 17 5,400

ref 49 5,400

ref 50 6,600

ref 51 4,900 4,900

this work $29,600
aAdapted from Barbier.46Values are in year-1995 US dollars using GDP
implicit price deflator method.



4918 dx.doi.org/10.1021/es103866b |Environ. Sci. Technol. 2011, 45, 4914–4919

Environmental Science & Technology ARTICLE

that the income variable employed in the main results above
provides a reasonable measure of income/development.

Daytime chemical removal of atmospheric NO2 is governed
by sunlight, yielding a latitudinal gradient in NO2 concentrations.
The absolute value of latitude is correlated with the logarithm of
NO2 (R2 = 0.37) for the cities in our analysis. However, the
latitudinal dependence is complicated by the fact that the majority
of developed countries are located in Northern midlatitudes. To
explore the effect of latitude on our results we first calculate the
NO2 latitudinal gradient over the open ocean (method: long-
itudinally averaged surface NO2 using the 0.1� gridded estimates,
over oceans). This gradient reaches its peak in the Northern
midlatitudes, with NO2 concentrations that are 0.3 ppb greater
than in low latitudes. The standard deviation of NO2 concentra-
tions for the cities in our analysis is almost an order of magnitude
greater (2.6 ppb), suggesting that the NO2 differences seen
among cities are much larger than those associated with latitude.

We consider three additional models using the logarithm
of median, 90th percentile, and concentration-weighted mean
NO2 concentrations for the dependent variable. Model R2 and
p-values for independent variables are similar to results for the
core model (see Table S2) indicating that our results are robust
to the method chosen to spatially summarize urban NO2

concentrations. Results using the 90th percentile of surface
NO2 concentration imply that population and urban contiguity
have slightly greater importance (by 5�10%) for extreme NO2

concentrations, i.e., pollution hot-spots, than for central-ten-
dency NO2 concentrations (see Table S2).

As another sensitivity analysis, we evaluated a model similar to
Table 2 but with the dependent variable as the logarithm of
arithmetic mean column (rather than surface) NO2. Results are
in Table S2. Model performance is good (R2 = 0.70), and the
unique effect of each independent variable (i.e., a plot analogous
to Figure 2; not shown) is consistent with the core model. Thus,
the modeled surface-to-column ratios do not appear to introduce
differential bias into our core model.

Our findings indicate that cities with highly contiguous built-up
areas have, on average, lower NO2 concentrations. All else being
equal, urban areas with large amounts of development detached
from main built-up areas will tend to have higher NO2 concentra-
tions. The urban form metrics employed here do not allow us to
distinguish among types of isolated development (e.g., residential-
only subdivisions, versus satellite cities, versus business/industrial
development) or their differential effect on NO2. It is possible, for
example, that self-sufficient isolated satellite cities might reduce travel
and/or NO2 concentrations. More work is needed in this regard.
Overall our findings suggest that policies encouraging contiguous
rather than isolated development may be an effective part of urban
design strategies seeking to minimize NO2 air pollution.
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Methods 

Satellite data. The Ozone Monitoring Instrument (OMI) onboard the Earth Observing 

System (EOS) Aura satellite (1) provides daily global measurements of total 

tropospheric NO2 abundance. Aura's sun-synchronous orbit passes over the equator at 

~13:45 local time (1). The OMI instrument has a 114° viewing angle (~2600 km wide 

swath) with 60 cross track measurements along the swath; resolution at nadir is up to 

13×24 km2. We employed the DOMINO standard product (Version 1.0.3, Collection 3) 

from the TEMIS project website (http://temis.nl). Errors in the tropospheric NO2 

product are mainly associated with uncertainties in surface albedo, aerosols, cloud 

parameters, and NO2 profile (2). Additional uncertainty results from the separation of 

stratospheric and tropospheric NO2, resulting in an overall error of up to 5% for clear 

scenes and up to 30-60% for scenes in the presence of clouds and pollution (2). To 

minimize errors associated with cloud cover, we used only cloud-free scenes (cloud 

radiance fraction < 0.3). To reduce spatial averaging near the swath edge, scenes are 

limited by pixel area (maximum: 50×24 km2) and solar zenith angle (maximum: 85°). 

We eliminated measurements with a root mean square error of fit greater than 0.0003 

and according to data-quality flags provided with the retrieval.  

 Previous work by Lamsal et al. (3) developed a method for inferring surface 

NO2 concentrations from OMI column measurements, on the basis of local NO2 vertical 

profiles simulated using a three-dimensional atmospheric model. We apply this 

approach here, using the GEOS-Chem chemical transport model (CTM) to simulate 

global NO2 abundance and surface-to-column ratios for a 3-hour window (12:00-15:00 

local time) corresponding to satellite overpass time for each city in the analysis. GEOS-

Chem (version 8, http://www.geos-chem.org) uses GEOS-5 assimilated meteorological 

data from the NASA Goddard Earth Observing System, which have 6-h temporal 

resolution (3-h for surface variables and mixing depths), 0.5°×0.667° horizontal 

resolution, and 72 vertical layers. For computational expediency we degrade the 
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horizontal resolution here to 2°×2.5° and the vertical resolution to 47 vertical layers. 

The model includes detailed ozone-NOx-VOC chemistry coupled to aerosols, with 120 

species simulated explicitly. Further details regarding the model simulation for NO2 and 

related species, including evaluation against aircraft and surface data, are provided 

elsewhere (4).  The satellite-based NO2 estimates employed here reflect ambient, not 

exposure, concentrations. 

Lamsal et al. (3) demonstrated that the approach employed here to derive surface 

NO2 concentrations from the satellite data gives values that are well-correlated with in-

situ observations, and with <30% bias. Our own (unpublished) comparisons indicate 

that urban-scale NO2 variability across the South Coast Air Basin in California is well-

resolved using surface concentrations estimated in this way from the OMI data and 

GEOS-Chem (r = 0.74 versus in-situ monitors). Both of these findings provide support 

for our use of OMI in combination with GEOS-Chem to examine differences in average 

NO2 among cities.  

Three years (2005-2007) of daily estimated ground-level NO2 concentration was 

binned to a 0.1°×0.1° global grid (~11×11 km2 at the equator), resulting in a spatial 

resolution smaller than that of the nadir scenes. All grid cells falling within an OMI 

pixel were assigned the measured tropospheric abundance for that pixel. In the case of 

overlapping OMI scenes for one day, a weighted average was taken; the weighting 

factor (w), adopted from Wenig et al. (5), takes into account the fractional cloud cover 

(C) and pixel area (A):  

 

2)31(

1

CA
w

+

=

         (1) 

Meteorological data. Meteorological data were obtained from the Modern Era 

Retrospective-analysis for Research Application (MERRA) provided by NASA’s 



4 

Global Modeling and Assimilation Office (GMAO) (publicly available at 

http://disc.sci.gsfc.nasa.gov/daac-bin/DataHoldings.pl). Horizontal components of wind 

speed (u) and mixing height (H) were obtained at 0.5°×0.667° for the study period 

(2005-2007). The average wind speed over the mixed layer was calculated using a 

power-law wind velocity profile. Hourly-average data were linearly interpolated to 0.1 

hour increments for the overpass time (12:00-15:00 local time), with data selected for 

each built-up area pixel (0.1×0.1 km2) using the nearest grid cell. The harmonic 

temporal mean of the dilution rate (uH) for the overpass time (12:00-15:00 local time) 

was determined for each built-up area pixel, and the spatial mean of that quantity over 

all built-up pixels used as a meteorology metric for each city.  

Urban-level NO2 and regression analysis. We interpolated ground-level NO2 

estimates (0.1°×0.1°) derived from the satellite data to a 0.1×0.1 km2 grid of built-up 

land for each urban area via inverse distance-weighting of the three nearest grid cells. 

Three-year annual average mixing ratios were then computed for each metropolitan area 

using four spatial summaries (arithmetic mean, median, 90th percentile, and 

concentration-weighted mean); in each case, NO2 concentrations are log-normally 

distributed among cities (basis: Shapiro-Wilks test; Shapiro-Francia test). Linear 

regression hypothesis-testing and confidence interval derivation both assume normality 

and homoscedacity in the dependent variable (6), assumptions which are violated with 

the non-transformed urban NO2 concentrations but satisfied with the log-transformed 

data. We accordingly used the base-10 logarithm of NO2 concentration as the dependent 

variable in the models. (A model developed using mean NO2 concentrations rather than 

log-transformed values [not shown] exhibits poorer performance than other models 

[R2=0.36, adj-R2=0.31] and violates homoscedacity requirements.) The primary linear 

regression model given in the main text, which is for the arithmetic mean concentration, 

is shown in Fig. S1. That model plus four other models (dependent variables: median 
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concentration, 90th percentile concentration, concentration-weighted mean, arithmetic 

mean column abundance) are in Table S2.  
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Figures 

 

Figure S1. Core linear regression model for predicting logarithm of arithmetic mean 

NO2 concentration. (A) Predicted vs. observed concentrations. (B) Model residuals. 
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Tables 

Table S1: Summary Statistics among the 83 Cities 

 Mean SD
a
 GM

b
 GSD

c
 Interquartile range 

Arithmetic mean NO2 (ppb) 2.0 2.6 1.0 3.4 0.41 – 3.0 

Median NO2 (ppb) 2.1 2.8 1.0 3.5 0.42 – 3.1 

90th percentile NO2 (ppb) 2.4 3.2 1.1 3.5 0.43 – 3.5 

Conc.-weighted NO2 (ppb) 2.1 2.7 1.0 3.4 0.42 – 3.2 

Arithmetic mean column NO2 (1015 

molec cm-2) 
5.2 5.1 3.5 2.4 1.7 – 7.5  

Population (million) 2.7 3.8 1.3 3.0 0.56 – 2.8 

Income (US$) $9,600 $10,000 $5,400 3.3 $2,300 - $18,000 

Contiguity index 0.71 0.20 0.67 1.4 0.59 – 0.89 

Compactness index 0.35 0.10 0.33 1.4 0.27 – 0.43 

Harmonic mean dilution rate (m2 s-1) 2,600 2,600 1,500 3.1 520 – 4,300 

a Standard deviation. b Geometric mean. c Geometric standard deviation, unitless. 
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Table S2: Linear Regression Model Results 

Dependent 

variable 

Independent 

variable 
Coeff. 

Std. 

error 
P<|t| Δ

 
(1-SD↑)

a 
Δ(1-SD↓)

a 

Log of arithmetic 

mean NO2
b 

R2 = 0.63 

Adj. R2 = 0.60 

_constant_ -2.4 0.47 <0.001  -- -- 

Income (US$) 6.5e-05 1.7e-05 <0.001 

} -22% -22% 

(Income)2 -1.1e-09 5.5e-10 0.05 

Log(population) 0.41 0.074 <0.001  62% -38% 

Contiguity -0.58 0.19 0.004  -24% 31% 

Compactness 0.19 0.37 0.62  4.6% -4.4% 

Dilution rate 

(m2 s-1) 
-4.6e-05 1.5e-05 0.003  -24% 31% 

Log of median 

NO2 

R2 = 0.63 

Adj. R2 = 0.60 

_constant_ -2.5 0.48 <0.001  -- -- 

Income (US$) 6.5e-05 1.7e-05 <0.001 

} -23% -23% 

(Income)2 -1.1e-9 5.5e-10 0.05 

Log(population) 0.42 0.075 <0.001  64% -39% 

Contiguity -0.58 0.20 0.004  -24% 31% 

Compactness 0.16 0..38 0.66  4.1% -3.9% 

Dilution rate 

(m2 s-1) 
-4.6e-05 1.5e-05 0.003  -24% 31% 

Log of 90th 

percentile NO2 

R2 = 0.64 

Adj. R2 = 0.62 

_constant_ -2.5 0.48 <0.001  -- -- 

Income (US$) 6.4e-05 1.7e-05 <0.001 

} -22% -22% 

(Income)2 -1.1e-09 5.5e-10 0.06 

Log(population) 0.43 0.074 <0.001  67% -40% 
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Contiguity -0.63 0.19 0.002  -26% -34% 

Compactness 0.12 0.37 0.75  3.0% -2.9% 

Dilution rate 

(m2 s-1) 
-4.7e-05 1.5e-05 0.002  -24% 32% 

Log of 

concentration-

weighted NO2 

R2 = 0.63 

Adj. R2 = 0.61 

_constant_ -2.5 0.47 <0.001  -- -- 

Income (US$) 6.5e-05 1.7e-05 <0.001 

} -22% -22% 

(Income)2 -1.1e-09 5.5e-10 0.05 

Log(population) 0.41 0.074 <0.001  64% -39% 

Contiguity -0.58 0.19 0.003  -24% 31% 

Compactness 0.16 0.37 0.37  3.9% -3.9% 

Dilution rate 

(m2 s-1) 
-4.7e-05 1.5e-05 0.003  -24% 32% 

Log of arithmetic 

mean column 

NO2 

R2 = 0.70 

Adj. R2 = 0.68 

_constant_ -1.7 0.31 <0.001  -- -- 

Income (US$) 4.5e-05 1.1e-05 <0.001 

} -17% -17% 

(Income)2 -7.9e-10 3.6e-10 0.03 

Log(population) 0.38 0.05 <0.001  58% -37% 

Contiguity -0.41 0.13 0.002  -17% 21% 

Compactness 0.04 0.24 0.87  1.0% -1.0% 

Dilution rate 

(m2 s-1) 
-3.3e-05 9.8e-06 0.001  -18% 21% 

a Percent change for a one standard deviation increase/decrease from mean value while all other 

independent variables are held at mean value. For income, percent change for a one standard deviation 

increase/decrease from peak NO2 value while all other independent variables are held at mean value.        

b Core model.  
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