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’ INTRODUCTION

Outdoor fine particulate matter (PM2.5) is associated with an
increased risk of chronic cough, allergic disorders, decreased lung
function, cardiopulmonary disease, and death.1�4 Health effects
of PM may occur for a range of exposure durations, from one
hour or less5�8 to more than a decade.1,3 Annual and 24-h
averages at central monitoring sites often provide little informa-
tion about spatiotemporal variability of air pollution.9�11 Much
of the research on PM2.5 has been conducted in developed
countries, yet the poorest ambient air quality is generally found in
developing-country cities.12�16

This study explores spatiotemporal variability in outdoor
PM2.5 in Bangalore, India (population 8 million; area 710
km2). Bangalore is experiencing rapid urban growth and rising
automobility: population has more than quadrupled in 40 years,
to 7.2 million in 2010; motor vehicle registration increased nearly
20-fold since 1980, to more than 3 million vehicles in 2008.15,17

With the Government of Karnataka’s regulation of vehicle
emissions and fuel quality, some areas of Bangalore have shown
a decrease of SO2 and PM10 concentrations.18,19 However,
annual average PM10 concentrations at 5 of 6 government

monitoring sites did not decrease from 1999 to 2009; 5 of 6
sites exceed national standards (120 μg m�3 in industrial areas;
60 μg m�3 elsewhere).20 For 2008�2009, monitored annual aver-
age PM10 concentrations ranged from 63 μg m�3 in a designated
sensitive area to 183 μg m�3 in a designated industrial area.20

We measured real-time, outdoor PM2.5 in two Bangalore
neighborhoods (low-income, middle-income). We selected
PM2.5 because real-time instruments are readily available, be-
cause concentrations are known to be especially high in Indian
cities, and because the health effects of PM are well studied. For
example, the World Health Organization estimates that in low-
and middle-income countries, outdoor urban PM causes ∼1.9%
of deaths (∼20% of deaths from environmental risk factors).21

PM2.5 includes primary and secondary components, and gen-
erally is not considered to be a tracer for vehicle emissions in
most urban areas.
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ABSTRACT: We measured outdoor fine particulate matter
(PM2.5) concentrations in a low- and a nearby middle-income
neighborhood in Bangalore, India. Each neighborhood included
sampling locations near and not near a major road. One-minute
average concentrations were recorded for 168 days during
September 2008 to May 2009 using a gravimetric-corrected
nephelometer. We also measured wind speed and direction, and
PM2.5 concentration as a function of distance from road.
Average concentrations are 21�46% higher in the low- than
in the middle-income neighborhood, and exhibit differing
spatiotemporal patterns. For example, in the middle-income
neighborhood, median concentrations are higher near-road than
not near-road (56 versus 50 μg m�3); in the low-income
neighborhood, the reverse holds (68 μg m�3 near-road, 74 μg
m�3 not near-road), likely because of within-neighborhood
residential emissions (e.g., cooking; trash combustion). A
moving-average subtraction method used to infer local- versus
urban-scale emissions confirms that local emissions are greater in the low-income neighborhood than in the middle-income
neighborhood; however, relative contributions from local sources vary by time-of-day. Real-time relative humidity correction factors
are important for accurately interpreting real-time nephelometer data.
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One aim of this article is to infer spatial patterns in emissions
based on concentrations’ temporal variability. A second aim is
to test the following hypothesis in Bangalore. Based on spatial
patterns in developed countries, we hypothesized that PM2.5

concentrations would decrease at increasing distance from a
road and that near-road concentrations would be greater when
the wind is blowing from the road (i.e., measurements are
downwind of the road) than the reverse (measurements are
upwind). The main contributions of this paper include devel-
oping and applying a set of analyses for real-time concentra-
tions, and reporting how air pollution concentrations differ
between low- and middle-income communities in a developing
country.

’MATERIALS AND METHODS

Field Study Setup. Equipment consisted of two optical aerosol
detectors and a weather station. The direct-reading optical
aerosol detector, a DustTrak nephelometer (model 8520, TSI
Inc., Shoreview, MN), estimates PM2.5 mass concentrations
based on light-scattering. The DustTrak provides an inexpensive
real-time estimate of PM2.5 mass, but measurements must be
corrected for humidity and local aerosol properties (see below).
The weather station (model PWS 1000 TB, Zephyr Instruments,
East Granby, CT) included an anemometer, weather vane, and
sensors for temperature and relative humidity.
Measurements were carried out in two neighborhoods in the

Koramangala district of Bangalore, India. The low-income neigh-
borhood (Rajendra Nagar; population∼6500; area ∼0.15 km2)
is one of the largest slums in Bangalore.22 The site consists of
dense 1- to 5-story housing and little or no vegetation. A major
road runs to the southeast. The middle-income neighborhood
(faculty housing for St. John’s National Academy of Health
Sciences; population ∼300; area ∼0.15 km2) is characterized
by low-density 2- to 3-story housing with trees (5�10m tall) and

other vegetation. The neighborhood is bordered by a 3-m privacy
wall and a major road to the east.
In each neighborhood, two monitoring sites were established:

near a major road (<50 m) and not near a major road (>250 m)
(Figure 1). Instruments were placed on rooftops, at 7�10 m
height. This elevation, which was necessary to ensure the security
of the instruments, is consistent with U.S. EPA guidance.23

Concentrations may differ aloft versus at ground level. During
each ∼2-week monitoring period, both monitors were placed in
one neighborhood (one near-road, one not near-road). We also
conducted regular transect samples (78 in total, or roughly 2�
3 per week) to measure PM2.5 as a function of distance from the
road. Data were collected September 2008 through May 2009.
Figure S1 and Table S1 display data coverage.
Analysis.We collected 2404 h of data in which all three real-

time instruments (weather station; two nephelometers) were
operating. When the relative humidity (RH) exceeded 95%,
nephelometer data become nonsystematically distorted24 and
were excluded (<0.1% of the data).When RH is above 60%, light-
scattering devices may overestimate PM2.5 mass concentrations;
Laulainen25,26 developed a correction curve, which was empiri-
cally fit by Chakrabarti27 to yield the correction factor (CF)
applied here:

CF ¼ 1þ 0:25ðRH2Þ=ð1� RHÞ ð1Þ
This correction has been shown to be a good fit in several locations,
including Los Angeles, Minneapolis, southern Italy, and Great
Smokey Mountain National Park (USA), despite potential differ-
ences in the composition of particles measured at these sites.27�30

Light-scattering measurements have been shown to correlate
well with gravimetric sampling if a correction factor is applied to
adjust for bias.30�33 Few instrument comparisons have been
done in outdoor urban environments in India. Because calibra-
tions were unavailable for Bangalore, we employ here the
following gravimetric calibration, derived recently for another
large city in India:

G� ¼ 3:91D0:706 ð2Þ
Here, G* is the gravimetric-corrected PM2.5 concentration
(μg m�3) and D is the RH-corrected nephelometer PM2.5

reading (μg m�3). Equation 2 (R2: 0.79) was obtained by
comparing 32 paired RH-corrected nephelometer and gravi-
metric daily average concentrations in Delhi, India.34 Gravi-
metric calibration relationships vary based on PM composition.
Our approach implicitly assumes that, while PM composition
would vary between Delhi and Bangalore, sources and composi-
tion are similar enough that Delhi’s calibration provided a
reasonable proxy for calibration in Bangalore. Future work could
usefully test that hypothesis. For a linear correction factor,
relative results presented below (e.g., concentration comparisons
between neighborhoods; proportion of measured concentrations
that is attributable to local sources) would not depend on the
actual correction factor employed.
To analyze the effect of wind on PM2.5 concentration, data

were separated into five conditions: (1) toward: wind blowing
from the road toward the monitors (within a 45� range); (2)
away: wind blowing from the monitors toward the road (45�
range); (3) perpendicular: wind direction parallel to road (neither
toward nor away from the monitors; 270� range); (4) variable:
wind direction is not consistent; and (5) calm: wind speed less
than 0.3 m s�1. For example, for the low-income sites, the road

Figure 1. Study locations: (1A) low-income near-road, (1B) low-
income not near-road, (2A) middle-income near-road, (2B) middle-
income not near-road.
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was east�southeast of the monitors (bearing:∼112.5� [north =
0�]; Figure 1), so “toward” conditions were winds from the
east�southeast (bearing: 90��135�). Figure S2 displays wind
speed and direction by season. Figure S3 shows wind conditions
by time-of-day.
To discern a spatial signature from the temporal PM2.5 mass

concentrations, a moving average subtraction method developed
by Watson and Chow35 was applied to paired data in each
neighborhood. In this approach, short-duration concentration
pulses are hypothesized as attributable to local sources (<0.5 km).
Concentrations after removing the short-term spikes at the
not near-road site are interpreted as the regional contribution
(>5 km). The concentration difference between the baseline at
the near-road site and the baseline at the not near-road site is
interpreted as attributable to neighborhood sources (∼0.5�5
km). Raw data and calculated baselines for a sample day are given
in Figure S4.
The moving average subtraction method requires specifying

the “underwriting” function that mathematically identifies and
removes short-term concentration peaks. The term “underwrit-
ing” is used because the resulting time series (concentrations
with peaks removed) are less than the original time series (true
concentrations, including peaks). In our base case, we employed
the underwriting function identified by Watson and Chow:
concentrations are smoothed at multiple time scales, always
selecting the lower concentration (original measurement versus
“smoothed” time series). We separately implemented an alter-
native underwriting function that is the moving 1.5 percentile of
the surrounding 60 min (see SI). This second approach serves as
a sensitivity analysis. Because the main approach likely under-
estimates the proportion of concentrations attributable to local
emissions (see below), the second approach was designed to
yield larger estimates for that parameter.

’RESULTS AND DISCUSSION

Relative Humidity Correction. The RH correction factor
varied by time of day, averaging 1.78 during 4:00�8:00 a.m.
and 1.09 during noon�6:00 pm (Figure 2a); the overall average
is 1.35. The potential importance of using real-time RH to
correct real-time nephelometer data is illustrated in Figure 2b.

At times-of-day when RH was approximately equal to the daily
average RH (e.g., 10:00 in Figure 2b), the real-time approach and
the time-invariant (i.e., 24-h average) approach yielded similar
results. At other times, however, the two approaches diverged.
For example, at 8:00 in Figure 2b, concentration estimates were
68% higher using the time-invariant RH-correction than for the
real-time approach; here, use of time-invariant (24-h average)
corrections would have dramatically overestimated the size of
morning concentration peaks.
PM2.5 Measurements. Figure 3 displays the typical daily

patterns of PM2.5 at each monitoring location. Concentrations
were∼33% higher in the low-income than in the middle-income
neighborhood. In the middle-income neighborhood, concentra-
tions were ∼11% higher near-road than not near-road. Concen-
trations were ∼36% and ∼43% higher during the morning
(7:00�9:00) and evening (18:00�21:00) peaks, respectively,
than during other times. The two neighborhoods are similar in
land area, but because of the ∼20� difference in population
density, many more people breathe the more-polluted air (low-
income neighborhood) than the comparatively “cleaner” air
(middle-income neighborhood).
Two aspects of Figure 3 merit highlighting. First, the degree of

spatial variability changes strongly by time of day. During after-
noons (12:00�16:00), concentrations were similar among the
four locations (spatial coefficient of variability [CV]: 12%);
during morning peaks (7:00�9:00), the four locations were
most variable (CV: 51%). At night (midnight�6:00 a.m.),
concentrations differed by ∼60% between neighborhoods, but
exhibited near-zero within-neighborhood difference (CV:∼5%).
This finding is consistent with a recent report from Southern
California that spatial impacts of road PM vary by time-of-day.36

A second noteworthy feature is that for the low-income neigh-
borhood, morning concentrations were generally greater not
near-road than near-road, a finding that differs from nearly all
published results.37,38 This result is likely because of within-
neighborhood sources (e.g., cooking; trash combustion), a
hypothesis supported by diurnal trends mentioned above and
by the spatial contributions analysis below. The effect of local
emission sources on ambient PM2.5 was similarly seen in low-
income neighborhoods in Accra, Ghana, where biomass fuels are
also extensively used.39 In general, trends in Figure 3 reflect

Figure 2. (a) Mean relative humidity (RH) and nephelometer correction factor by time of day. Error bars indicate 1 standard deviation over the 168
days of measurement. (b) Sample comparison of RH correction techniques for real-time PM2.5 concentration. Data are for Sept. 18, 2008, middle-
income, near-road location. The solid black line is nephelometer output (uncorrected). The gray line uses real-time RH correction and reflects our best
estimate for the true concentration. The dashed line reflects a single RH correction factor based on that day’s average RH. Results from the time-invariant
correction overestimated morning peak concentrations by 68%.



5632 dx.doi.org/10.1021/es104331w |Environ. Sci. Technol. 2011, 45, 5629–5636

Environmental Science & Technology ARTICLE

temporal patterns in emissions (e.g., morning and evening
cooking) and meteorology (see below).
Paired and unpaired t tests (see SI) indicated modest week-

end/weekday differences. In the middle-income neighborhood,
mean concentrations were 6�8% lower on weekends (p < 0.05).
In the low-income near-road site, concentrations were 10%
higher on weekends (p < 0.01). In the low-income not near-
road site, weekend and weekday concentrations were nearly
identical (<1% difference). Weekend�weekday comparisons
vary by hour-of-day (see SI); during mornings (2:00�10:00)

and evenings (19:00�24:00), weekend�weekday differences
were statistically significant at three or more of the four locations.
Wind Effects. Calm conditions resulted in high PM2.5 con-

centrations in all locations (Figure 4). In the low-income
neighborhood, results suggested significant sources within-
neighborhood: during the morning peak at the near-road loca-
tion, the highest concentrations occurred when the wind was
blowing away or variably, indicating a significant PM2.5 source
located within the neighborhood; at the not near-road location,
the highest concentrations occurred when the wind was blowing

Figure 4. Median PM2.5 concentrations by location, time-of-day, and wind condition.

Figure 3. Median PM2.5 concentration by time of day for the four locations, based on all data (2404 h). For the middle-income neighborhood,
concentrations are higher near-road than not near-road; for the low-income neighborhood, the reverse pattern holds.



5633 dx.doi.org/10.1021/es104331w |Environ. Sci. Technol. 2011, 45, 5629–5636

Environmental Science & Technology ARTICLE

toward or variably, further emphasizing a significant PM2.5 source
located between the two monitoring sites. Differences in con-
centration based on wind condition primarily happened during
the diurnal peaks, when a higher amount of PM2.5 sources were
local (see below). Not during the peaks, when PM2.5 concentra-
tions were likely near urban background levels (see below), the
concentrationswere similar near- and not near-road. Overall, these
findings provide strong evidence that in the low-income area,
within-neighborhood emissions have a greater impact than traffic
emissions. Methodologically, the findings support the idea that
temporal patterns in real-time measurements can yield insights
into the spatial patterns of emissions.
In contrast to the low-income neighborhood, the middle-

income neighborhood exhibited highest concentrations during
calm and “toward” conditions and lowest when the wind was
blowing away or perpendicular, all of which suggests the road as
the main local source of emissions.
Local- and Urban-Scale Contributions. Figure 5 presents

findings from themoving-average subtractionmethod.35 Average
contributions from local sources were 5�13% among the four
locations. Average absolute contributions from local sources
were 1.7� higher in the low-income than in the high-income
neighborhood (9.7 versus 5.8 μg m�3). In the low-income
neighborhood, local source contributions occurred throughout
the day, but were ∼1.7� higher during morning and evening
peaks than during other times of day. In the middle-income
neighborhood, local source contributions occurred primarily during

the evening peak: local source contributions were ∼1.8� higher
during evening peaks than during other times of day. The 2-h
period with the overall highest contribution from local sources
(∼19%) occurred during 16:00�18:00 at the not near-road low-
income location, which is consistent with a strong local nonroad
source such as cooking or trash burning.
Comparison between Figures 3 and 5 suggests that, as applied

here, the moving average subtraction method may be a lower-
bound estimate of contributions from local sources. Specifically,
a portion of the baseline concentrations (concentrations after
removing peaks; see Figure S4) likely were attributable to local
emissions. If correct, local contributions were underestimated
while urban contributions were overestimated, and results from
the moving average subtraction are more applicable as a relative
metric (e.g., comparisons among locations or times) than as an
absolute metric.
As expected, in our sensitivity analysis, results from the

alternative underwriting function indicate larger values for local
contribution. For example, for the low-income not near-road
location, the average local contribution increased from 11%
(main approach) to 25% (sensitivity analysis). However, several
core conclusions remain unchanged in the sensitivity analysis.
For example, local sources remained predominant during peak
commuting hours; and, in the low-income neighborhood (but
not in the middle-income neighborhood), the concentration
attributable to local sources is higher not near-road than near-
road. Further details are in the SI.

Figure 5. Median PM2.5 concentration by local- and urban-scale contributions, by time of day and location using the moving-average subtraction
method.
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Mid-Day Transects. Transect measurements, which recorded
concentration versus distance from road, were combined into
5-m bins and normalized to the median value for that transect.
The overall median values for all 78 transects are in Figure 6. In
both neighborhoods, little signature from the road was seen. In
the low-income neighborhood, normalized concentrations in-
creased to 1.4 on-road, with an impact distance of∼50 m. In the
middle-income neighborhood, concentrations were at or near
the normalized concentration of 1 for all distances, indicating
near-zero spatial variability in these transects. The factor of 1.4
reported for a low-income Bangalore neighborhood (on-road
versus in-neighborhood; Figure 6) is similar to the factor of∼1.5
reported for New Delhi, India, by Apte et al. for PM2.5 concen-
tration differences between inside an unenclosed vehicle versus
on a residential rooftop.34 Transects typically occurred between
11:00 and 18:00. As seen in Figure 3, concentrations were
relatively spatially homogeneous during that time; thus, concen-
trations in Figure 6 likely were dominated by regional PM2.5. The
impact of being near-road (Figure 6) was likely greater at other
times-of-day; for further exploration see Hu et al.’s recent
findings from Los Angeles.36

The midday trough (Figure 3) and the comparatively low
degree of spatial variability midday (Figure 6) were associated
with increases in atmospheric mixing height in the late
morning.40,41 Available data from the Modern Era Retrospec-
tive-analysis for Research Application (MERRA) provided by
NASA’s Global Modeling and Assimilation Office (GMAO)
indicate that the surface boundary layer in Bangalore is, on
average, ∼6� greater in the afternoon (1120 m during
14:00�16:00 for 2005�2007) than in the morning (180 m
during 5:00�9:00).
For developing countries, almost no information currently

exists about spatiotemporal variability in air pollution concentra-
tions, or about differences between high- and low-income
neighborhoods.39,42 We found that concentrations were
∼21�46% higher in the low- than in the middle-income
neighborhood, a value within the range seen in Accra, Ghana.39

Approaches developed here, which employed time-resolved
measurements to discern spatial patterns in emissions, could
usefully be applied elsewhere, especially if colocated real-time
RH measurements are available. We observed that “rules of
thumb” from developed country contexts may or may not apply

in Bangalore. For example, we observed at least one pattern that
differs significantly from published results for developed countries:
in the low-income neighborhood, average concentrations were
lower near-road than in-neighborhood (Figure 3). The likely
cause for that trend was within-neighborhood emissions (e.g.,
residential cooking using solid fuels, combustion of household
waste) in the low-income area.
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The following information is below: Data coverage timeline (Figure S1) and table with hours of data per 

neighborhood (Table S1); wind-rose plots by seasons (Figure S2) and graphs showing wind 

classification by time of day (Figure S3); a sample of raw data with baselines (Figure S4); results from 

the alternative underwriting function analysis (Figure S5); and, weekend/weekday effect at each 

monitoring location with statistical analysis (Figure S6; Table S2). 
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FIGURE S1. Days for which data was collected. Times without coverage are the result of equipment 

downtime or power outages. 

 

Table S1. Hours of data in which all three instruments were operating 

low-income neighborhood 883 

middle-income neighborhood 1521 

total 2404 
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FIGURE S2. Wind roses showing wind speed and direction for the monsoon season (July-September) (left 

panel) and post-monsoon (October-April) (right panel). 
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FIGURE S3. Wind classification by time of day for low-income (left panel) and middle-income (right 

panel) neighborhood. 
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FIGURE S4a. Sample of raw data, plus moving-average-subtraction-method baselines, for one 24-h 

period (October 16, 2008) at the middle-income neighborhood. Inset box provides example zoom-in. 

FIGURE S4b. Sample of raw data, plus moving 1.5 percentile method baselines, for one 24-h period 

(October 16, 2008) at the middle-income neighborhood. Inset box provides example zoom-in. 
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FIGURE S1a. Median PM2.5 concentration by local- and urban-scale contributions, by time of day 

and location using the alternative underwriting function (see Figure S4b). 
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FIGURE S2b. Change in local contribution ([alternate % local]/[mean of alternate % local and 

original % local]), for the sensitivity analysis versus the base case underwriting function. 

Variations by time-of-day and location are modest. 
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Table S2a. Loc 1A weekend effect 

 Weekday Weekend 
Mean  66.89 73.56 
Standard Dev. 15.92 13.77 

paired t-test p(2-tail) = 2.0E-9 
unpaired t-test p(2-tail) = 0.0022 

 

 

  

 

Table S2b. Loc 1B weekend effect 

 Weekday Weekend 
Mean  74.00 73.90 
Standard Dev. 19.17 18.11 

paired t-test p(2-tail) = 0.92 
unpaired t-test p(2-tail) = 0.97 

 

 

  

 

 
Table S2c. Loc 2A weekend effect 

 Weekday Weekend 
Mean  55.94 52.61 
Standard Dev. 13.99 9.08 

paired t-test p(2-tail) = 0.0011 
unpaired t-test p(2-tail) = 0.052 

 

 

  

 

Table S2d. Loc 2B weekend effect 

 Weekday Weekend 
Mean  50.42 46.53 
Standard Dev. 10.68 6.98 

paired t-test p(2-tail) = 3.6E-6 
unpaired t-test p(2-tail) = 0.0032 

 

 

 

FIGURE S6. Weekend/weekday effect (panels from top to bottom: locations 1A, 1B, 2A and 2B; see 

Figure 1 in the main text). Asterisks (*) identify hours with a statistically significant difference using 

matched-hour, unpaired t-tests (p<0.05). 


