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ABSTRACT: The layout of an urban area can impact air
pollution via changes in emissions and their spatial distribution.
Here, we explore relationships between air quality and urban
form based on cross-sectional observations for 111 U.S. urban
areas. We employ stepwise linear regression to quantify how
long-term population-weighted outdoor concentrations of
ozone, fine particulate matter (PM,s), and other criteria
pollutants measured by the U.S. Environmental Protection
Agency depend on urban form, climate, transportation, city
size, income, and region. Aspects of urban form evaluated
here include city shape, road density, jobs-housing imbalance,

population density, and population centrality. We find that population density is associated with higher population-weighted
PM, 5 concentrations (p < 0.01); population centrality is associated with lower population-weighted ozone and PM, s con-
centrations (p < 0.01); and transit supply is associated with lower population-weighted PM, 5 concentrations (p < 0.1). Among
pollutants, interquartile range changes in urban form variables are associated with 4%-12% changes in population-weighted
concentrations—amounts comparable, for example, to changes in climatic factors. Our empirical findings are consistent with prior
modeling research and suggest that urban form could potentially play a modest but important role in achieving (or not achieving)

long-term air quality goals.

1. INTRODUCTION

We explore here the relationship between air quality and
attributes of urban form, using cross-sectional observations for
U.S. urban areas. Our investigation is motivated in part by
increasing interest in urban planning strategies to improve air
quality (e.g., “Smart Growth”; Centers for Disease Control and
Prevention recommendations') but with limited observational
evidence linking urban form and air quality at a multiurban scale.

Urban design likely influences air quality directly and indirectly
through travel behavior, land cover, and spatial distributions of land
use. Since transportation is a major source of air pollution emissions”
in the U.S, the impact of urban form on travel behavior (via, e.g,
vehicle kilometers traveled (VKT), mode share, and trip length)
may influence air quality. Research suggests that population density,
transit supply, and “traditional” (e.g, gridded) street networks are
negatively associated with VKT and positively associated with
alternative modes (transit, walking, biking).>® Other reported links
between urban form and air quality include the following: imper-
vious land cover increases photochemical ozone formation through
the urban heat island effect;”® configurations of streets and buildings
influence pollutant dispersion (“urban street-canyon effect”);” and
spatial distributions of land uses (e.g, housing, employment)
relative to pollution influence exposures.

Our analysis covers all of the EPA’s criteria pollutants
(presented in the Supporting Information [SI]) but focuses here
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on ozone and fine particulate matter (PM,s) because of their
widespread health impacts. Both pollutants are associated with
cardiovascular and respiratory morbidity and mortality."'~*?
Approximately 40% of U.S. population lives in a county that
violates National Ambient Air Quality Standards (NAAQS) for
ozone, PM, s, or both.> Given projected increases in U.S. urban
populations (+100 million by 2050),"* policies would ideally aim
to accommodate urban growth while improving air quality.
Extant modeling studies suggest that, relative to baseline or
high-density (“compact growth”) scenarios, low-density (“urban
sprawl”) scenarios may yield higher ambient concentrations but
comparable or lower average exposures."> '’ Factors influencing
these relationships include neighborhood-scale urban design
(i.e., building density and layout, street canyons),"®"? the magni-
tude of emission reductions achieved via increasing densi‘cy,20 regional
land cover-surface meteorology interactions,! and the relative trade-
off between exposures for urban-core versus u.rban—zperi hery residents.
To our knowledge, only four publications2 —2 explore these
topics empirically. Bechle et al.* used satellite-derived estimates
of urban form and NO, air pollution for 83 global cities; they
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Table 1. Air Pollution Data Inclusion Criteria and Descriptive Statistics

monitors median (AM°) number of
measure included”(of total  number of monitors UAs with at least population-weightedb
(typical sampling study monitors located in per UA (of 111 1 monitor (of 111 concentration
pollutant frequency) period 111 UAs evaluated) UAs evaluated) UAs evaluated) AM° (ASD")
ozone 8-h daytime 1990 ozone season 267 (of 281) 2 (2.4) 100 45 (8.5) ppb
(10:00—18:00) (May through
concentration (sampled September)
daily during ozone season)
particulate matter 24-h concentration 2000 (annual) 344 (of 485) 2(3.1) 107 14 (32) uygm >
(PM,5) (sampled every third day)
long-term air quality ~ sum of ozone and PM, 5 composite 585 (of the 766 4(5.1) 97 (UAs with at least 1.6 (0.28) [unitless]
index*(LAQJ; long-term concentrations (1990 ozone ozone and PM, 5 1 ozone monitor and
aggregate measure divided by respective season and monitors) 1 PM, 5 monitor)
of ozone long-term NAAQS, year-2000)
and PM, 5) population-weighted

“ Monitor inclusion criteria: (1) observations reported for at least 75% of expected sampling days in the study period and (2) not source-oriented (ie., “ambient”).

Exclusions: 8 ozone, 132 PM, s monitors failed criterion #1 (only); S ozone, 8 PM, s monitors failed criterion #2 (only); 1 ozone, 1 PM, s monitor failed both
criteria. ” Population-weighted concentration for each UA is calculated from the interpolated concentration (using inverse distance-weighting of the long-term
average concentrations from the 3 nearest monitors within S0 km) for each 1-km gridcell center within the UA and the estimated population in each 1-km gridcell
(see Equation S1 in the Supporting Information). ¢ Arithmetic Mean (Arithmetic Standard Deviation). “ LAQI” is the population-weighted sum of ozone
concentration (1990 ozone season average daily 8-h maximum concentration) divided by ozone 8-h EPA standard (7S ppb), plus PM, s concentration (2000
annual average concentration) divided by PM, 5 annual EPA standard (15 ug m™>).

found that more-contiguous cities (ie., cities with less leapfrog
development) experience lower annual-average NO, concentra-
tions (p = 0.01). Ewing et al.>® reported that residential density
(based on the Smart Growth America [SGA] composite density
index) is associated with decreased ozone concentrations
(annual fourth highest daily maximum 8-h average) in a cross-
section of 83 U.S. metropolitan regions (p < 0.001). Stone**
found that in a cross-section of 45 U.S. metropolitan areas, ozone
NAAQS exceedences increase with sprawl (based on the SGA
sprawl index; p < 0.01), after controlling for population, tem-
perature, and precursor emissions. Schweitzer and Zhou,*
studying 80 U.S. metropolitan areas, reported that peak ozone
concentrations are higher for more- than for less-sprawling areas
(p < 0.05), but ozone and PM, 5 total peak exposures are lower
for more-sprawling regions (p < 0.05).

Our main research questions are (1) is measured ambient air
pollution in a cross-section of U.S. cities correlated with urban
form, after accounting for other common explanatory variables,
and (2) if so, at what magnitude? We build on the limited prior
measurement-based research by (A) evaluating all EPA criteria
pollutants plus a summary metric, (B) employing a more nuanced
evaluation of urban form (we consider five urban attributes at
the urban area scale; prior U.S.-focused empirical investigations
employ composite measures of urban sprawl at the metropolitan
statistical area scale) and urban meteorology (e.g, including
atmospheric dilution rates), and (C) considering a wider cross-
section of U.S. cities. While previous studies have considered
NAAQS exceedences or peak concentrations, we focus on long-
term average population-weighted concentrations; for some
pollutants, epidemiological evidence suggests there may be dif-
ferent, potentially more severe, health outcomes associated with
chronic rather than acute exposures.

2. METHODS

We use stepwise linear regression to quantify relationships
between urban form and measured population-weighted air
pollutant concentrations for a cross-section of 111 U.S. urban
areas (UAs). Explanatory variables include measures of urban
form, climate, transportation, land area, income, and region. We

analyze eight pollutants (EPA’s criteria pollutants: carbon monoxide,
lead, nitrogen dioxide, ozone, particulate matter (fine particulate
matter [PM, ], coarse particulate matter [PM,,], and total sus-
pended particulates [TSP]), and sulfur dioxide) plus a summary
metric (long-term air quality index [LAQI], defined below). For
concision, descriptions below focus on ozone and PM, s; details for
the remaining pollutants are in Table S1. Figures S1-S2 provide
boxplots for dependent and independent variables.

2.1. Urban Areas. We identified ten available data sets on
urban form in the U.S. (Table S2). We selected the Bento et al.>
data set based on number of urban form metrics reported
(4 metrics: population centrality, road density, jobs-housing
imbalance, city shape), spatial scale considered (UAs), and
number of cities included (114 U.S. cities). The Bento data are
the basis for our sample selection and primary year of analysis
(1990). Of the 114 UAs in the Bento data set, we eliminated two
population-outliers (New York; Los Angeles) and one incomplete-
data UA (San Francisco), yielding the 111 UAs evaluated here.
These 111 UAs accounted for 38% of U.S. population (59% of U.S.
urban population) and 1.2% of U.S. continental land area in 1990.

2.2. Dependent Variables. Dependent variables are population-
weighted long-term average concentrations derived from U.S.
Environmental Protection Agency (U.S. EPA) Air Quality Sys-
tem daily monitor data.’® Analyses are based on spatial inter-
polation of EPA monitors that meet the following inclusion
criteria: (1) located within the UA, (2) designated as nonsource-
oriented (ie., “ambient”), and (3) reported observations for
at least 75% of expected sampling days in the study period. In
total, 267 ozone monitors (in 100 of the UAs) and 344 PM, g
monitors (in 107 of the UAs) meet the inclusion criteria. The
median (arithmetic mean) number of monitors per UA for the
sample of 111 UAs is 2 (2.4) for ozone and 2 (3.1) for PM, 5. For
ozone, 11 UAs (10%) have 0 monitors, 41 (37%) 1 monitor,
45 (41%) 2 to 4 monitors, 14 (13%) S or more monitors. For
PM, s, 4 (4%) have 0 monitors, 25 (23%) 1 monitor, 59 (53%) 2
to 4 monitors, 23 (21%) S or more monitors. Table 1 describes
the EPA monitor data included in the study. Figure S3 maps the
UAs and the associated number of monitors.
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Table 2. Description of Explanatory Variables

variable

city shape

jobs-housing imbalance

population centrality

population

density
road density

heating degree days (HDD)

ozone season
temperature

dilution rate

description

Urban Form
ratio of minor to major axis of ellipse representing
city shape (circular city = 1; long, narrow city ~ 0)
measure of spatial distribution of population relative to
employment (larger values indicate greater spatial
imbalance between jobs and housing)
measure of spatial distribution of
population relative to
Central Business District (CBD) (larger
values indicate a greater percentage of population
lives near the CBD)
persons per square kilometer

percent of the urban land area
devoted to roads

Climate

annual heating degree days

(base 18.3 °C [65 °F])

from weather station within (or near to)

UA for year-2000
average daily maximum temperature

from weather station within (or near to)

UA for ozone season (May through September) 1990

harmonic mean dilution rate

source

Bento et al., 2005

Bento et al,, 2005

Bento et al., 2005

U.S. Census

Bento et al., 2005

National Climatic
Data Center

National Climatic
Data Center

derived

AM* (ASD?)

0.65 (0.19) [unitless]

—0.02 (1.00) [unitless]

—0.03 (0.99) [unitless]

910 (300) persons km 2

43 (1.5) %

1930 (1100) °C days

28 (3.9) °C

687 (432) m*s ™!

(product of mixing height and wind speed)

from NASA GMAO
meteorological data

[summer 1990]
702 (382) m*s ™!
[annual 2000]

Transportation Infrastructure

transit supply rail and nonrail transit annual route
kilometers per square kilometer
vehicle kilometers

traveled (VKT)

average annual vehicle
kilometers traveled per household

Bento et al.,, 2005 18,000 (16,000) route-km km >

National Personal 31,200 (8630) VKT

Transportation Survey

Other Urban Characteristics

income average income per person
land area UA land area
region binary variable

(1 = east of Mississippi River; 0 = otherwise)

U.S. Census $14,540 ($2060)
U.S. Census 860 (785) km*
U.S. Census 0.73 (0.45) [unitless]

? Arithmetic Mean (Arithmetic Standard Deviation) for the n = 111 Urban Areas.

For each included monitor, we calculated the long-term
arithmetic average of daily (24-h) summary data, except for
ozone, where we calculated the S-month summer (i.e., ozone
season) average of daytime (10:00—18:00) concentrations. We
consider daytime-only concentrations for ozone to control for
the effect of NO, titration at night. (Table S3 presents results for
two alternate ozone metrics: nighttime-only and 24-h con-
centrations.) For PM, s only, we use year-2000 instead of year-
1990 measurements. PM, s monitors were not widespread in
1990; we selected year-2000 as the first year of EPA regulation
and nation-wide daily sampling of PM, 5 and supplemented our
data set with an alternative PM metric widely recorded in 1990:
total suspended particulates (TSP). In addition to the individual
pollutants, we assess the influence of urban form on an aggregate
measure of air pollution using the long-term air quality index
(LAQI; Table 1).*” For comparison, we also generated a year-
2000 ozone model; results are consistent with the year-1990
ozone model (see SI) and so are omitted here.

Our comparison metric for each UA is the long-term popula-
tion-weighted concentration, calculated using inverse distance-
weighted interpolation of the three nearest monitors within
50 km®® and population density on a 1-km grid (year-1990).>
We employ population-weighting within each UA to obtain a

spatial average that incorporates within-urban spatial variations
in concentrations and population.

2.3. Independent Variables. Independent variables in the model
include five urban form metrics, plus measures of climate, transporta-
tion infrastructure, land area, income, and region (Table 2).

2.3.1. Urban Form. Bento et al.* provide four urban form metrics
per UA (population centrality, road density, jobs-housing imbalance,
city shape [a measure of circularity]; see Table 2). Using year-1990
Census data, we added average population density as a fifth metric.

2.3.2. Climate. Climate influences pollution formation and dis-
persion.*® To account for differences in climate across UAs, we
include in the model temperature and dilution rate for time periods
matching the air pollution data. Temperature data are from the
National Climatic Data Center.”' We tested multiple temperature
metrics (see SI) in preliminary regressions, and then in the final
models employed the metric with highest predictive power for each
pollutant: 5-month summer average daily maximum temperature
(ozone) and annual heating degree days (HDD; PM, ). We cal-
culate dilution rate (product of mixing height and wind speed
averaged over the mixing height) from National Aeronautics and
Space Administration (GMAO/MERRA) hourly data, interpo-
lated to 0.1 h on a 1-km grid in each UA.** We use a power law to
calculate average wind speed from the surface to the top of the
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Table 3. Standardized Coefficients” for Stepwise Linear
Regression Models

long-term air

fine particulate quality index

variable ozone® matter (PM,s)° (LAQD)?

intercept 0.68 277" 21"
Urban Form
city shape - -
jobs-housing imbalance - -
population centrality —029"" —0317" —030""
population density - 036" 020"
road density - - -
Climate
dilution rate —0.32"" —027" —033""
temperature 062" - 0.26"
Transportation
transit supply - —0.14’
VKT - -
Other Urban Characteristics
income - -
land area - - -
region 034" 067" 065"
Model Performance

model adjusted R> 0.34 0.27 0.29
model p-value 0.0000"" 0.0000"" 0.0000""

sample (n) 100 107 97
? Coefficient standardized to interquartile ranges (IQR) of dependent
and independent variables. For example, a standardized coefficient of 0.2
would mean that a 1-IQR increase in the independent variable is associated
with a 0.2-IQR increase in the dependent variable (population-weighted air
pollution concentration). ” Population-weighted year-1990 ozone season
(May through September) average daytime only (10:00—18:00) ozone
concentrations. Temperature is the 1990 ozone season daily maximum.
Dilution Rate is the 1990 ozone season harmonic mean. ‘Population-
weighted year-2000 annual average PM, s concentration. Dilution Rate is the
2000 annual harmonic mean. “Population-weighted sum of ozone
concentration (1990 ozone season average daily 8-h maximum con-
centration) divided by ozone 8-h EPA standard (7S ppb), plus PM, 5
concentration (2000 annual average concentration) divided by PM, 5
annual EPA standard (15 ug m™).  Statistical significance: p < 0.1. p < 0.05.

p < 00L

mixed layer.”> We temporally summarize dilution rates using
harmonic mean®*
using arithmetic mean.

2.3.3. Transportation. Transportation networks may affect con-
centrations of traffic-related pollutants by influencing mode share, trip
length, and number of trips. We include in the model transit supply
(rail and nonrail transit route-kilometers per square kilometer) from
Bento et al.* and annual household VKT from national surveys.**

2.34. Other Urban Characteristics. Additional explanatory
variables included here are land area as a measure of city size, average
income per person (U.S. Census Bureau) as a measure of wealth,
and U.S. region (binary variable indicating a location east versus
west of the Mississippi River) to control for west-east transport of
ozone and PM. We tested income and income-squared in the
regression models as previous studies have found nonlinear
(parabolic) relationships between air pollution and wealth.*®

2.4. Stepwise Linear Regression Models. We use forward
stepwise linear regression, accepting new independent variables if
they are statistically significant (p < 0.1) and avoiding multicollinearity
(variance inflation factor [VIF] <S; Tables $4-SS provide multi-
collinearity analyses).

and then spatially summarize for each UA

1ok Fodrn el Teamsgeo natss ClirgE (1T
Popiiloionl - Popaibsen raamil Hiam TiTa peTRinr: LT
gy Lrasay Sepply Haic i

iiP

TN N1,

"N

i 4 e

temz [ [

Figure 1. Percent change in population-weighted air pollution levels
(ozone, PM, s, long-term air quality index [LAQI]) associated with
increasing the independent variable across the interquartile range,
holding all other variables constant at the arithmetic mean value.
Statistical significance: *p < 0.1; **p < 0.05; **p < 0.01.

3. RESULTS AND DISCUSSION

Model results for all criteria pollutants are presented in the SI
(Figures S4—S8, Tables S6—S16). For concision, we present
here three models: ozone, PM, 5, and the aggregate long-term air
quality index (LAQI). Results (Table 3, Figure 1) indicate that
urban form is associated with air quality, even after accounting for
other common explanatory variables. The magnitude of impact
is comparable to those for climatic factors, which are widely
considered to be important for air pollution. Model adjusted-R>
values (0.27 to 0.34) suggest limited model predictive power,
but the model p-values (p < 0.0001) indicate that the models have
strong statistical significance in illustrating trends in the data.

Of the urban form variables tested, those describing spatial
distributions of population (population centrality, population
density) were the strongest predictors of air quality, and in
opposing directions: population centrality is associated with
lower population-weighted ozone, PM, 5 and aggregate pollutant
levels (p < 0.01), whereas population density is associated with
higher population-weighted PM, 5 (p < 0.01) and aggregate
pollutant levels (p < 0.05). (Population centrality is not highly
correlated with population density; R* = 0.008; Table S4.
Figures 2 and S9 illustrate population centrality versus density.)
Transit supply is associated with lower population-weighted
PM, 5 concentrations (p < 0.1). Results and discussion regarding
the other criteria pollutants are in the SI. For example, road
density is associated with higher population-weighted concen-
trations of PM;, (p < 0.05) and TSP (p < 0.01).

Climatic factors are statistically significant predictors of concen-
trations, and in the expected direction: dilution is negatively
associated with concentrations (p < 0.01; more dilution yields lower
concentrations), and temperature is positively associated with ozone
concentrations (p < 0.01; high temperatures yield increased ozone
formation). The eastern region variable is positively associated with
ozone (p < 0.05) and with PM, 5 (p < 0.01), probably reflecting
west-east pollution transport, plus other regional differences affect-
ing pollution levels (e.g, biogenic emissions, environmental policy,
types and locations of industrial emissions).

Our finding that concentrations decrease with population
centrality is consistent with Stone** (who finds a negative, but
not statistically significant at p < 0.10, relationship between
ozone exceedences and the SGA composite centeredness index)
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Figure 2. Four urban areas (each with population 1.5—2.2 million persons in year-1990) illustrating high- and low-population density and centrality. Maps show the
1990 Census Tract population density (data and boundary files from the U.S. Census Bureau). See also Figure S9, which presents a similar illustration for 4 smaller UAs.

and is likely attributable in part to differences in population
distributions in relation to air pollution. Ozone concentrations
typically peak at distance from urban centers; in a more decen-
tralized urban area, population is likely to be relatively greater in
these high-ozone areas. Population centrality may also relate to
air pollution through travel demand management; Bento et al®
report that annual VKT decreases with population centrality.
The finding that population-weighted air pollutant concentra-
tions increase with population density is consistent with model-
ing studies.'®*° The finding that PM, 5 concentrations decrease
with transit supply perhaps reflects the net impact of vehicle
travel-distance (and emissions) increasing for public transit but
decreasing for private vehicles.

The predicted magnitude of air quality impacts associated with
changes in urban form is comparable to impacts for climatic
factors. Figure 1 shows percent changes in air pollution levels
associated with interquartile range (IQR) changes in urban form
and climatic factors, holding all other variables constant at their
arithmetic average value. Models predict 4% to 12% changes in
population-weighted air pollutant levels for IQR changes in
urban form variables, compared to the 7% to 15% changes
in population-weighted air pollutant levels for IQR changes in
climatic factors. (Impacts of climate on air pollution may differ
for long-term averages versus short-term peaks.) Table 4 shows
predicted changes in population-weighted air pollutant levels
associated with IQR increases in urban form variables and then
lists sample cities (with similar population size and located in the
same U.S. region) that reflect an IQR change in that variable.
For example, increasing population centrality by the IQR

(for example, from Toledo, OH levels to Albany, NY levels) is
associated with a 2.9 ppb (on average, 6.4%) decrease in population-
weighted ozone concentration and a 1.3 g m > (on average, 9.3%)
decrease in population-weighted PM, 5 concentration. These esti-
mates for changes in air pollution concentration associated with
moderate changes in urban form are of the same magnitude as
predictions from modeling studies [ ~4% change in 0zone and PM,
concentrations;15 ~20% change in PM, 5 concentrations;16 ~2%-
10% change in ozone concentrations®'] and also are of the same
magnitude as observed concentration changes in U.S. nonattainment
areas between 2000 and 2008 [-7% change in ozone 8-h concentra-
tions, —11% change in PM , 5 annual average concentrations’].

To put the results in Table 4 into perspective, consider the
estimated health benefit from the decrease in population-
weighted PM, 5 concentrations associated with an IQR change
in population centrality. Assuming a 4% change in mortality rate
per 10 ug m > PM,5*” and U.S.-average mortality rates [804
deaths annually per 100,000 persons**], a reduction of 1.3 ug m >
PM,,s would reduce annual mortality rates by ~40 deaths per year
in a city with 1 million people. Employing EPA’s central estimate
for Value of a Statistical Life ($9 million®”) yields a financial value
to those health improvements, ~$400 million per year. This back-
of-the-envelope calculation highlights the potential importance of
changes in air pollution, even for the modest shifts (e.g,, 1.3 ug
m > PM,5) given in Table 4.

Air quality strategies that involve changes in one urban form
attribute likely impact other attributes, potentially including
attributes not evaluated in our study. For example, changes in
population distributions may impact the demand for transit
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Table 4. Changes in Population-Weighted Air Pollution Concentrations Associated with Increasing the Independent Variable
Across the Interquartile Range (IQR) (Which Reflects a Change in Urban Form from UAL1 to UA2), Holding All Other Variables

Constant at Arithmetic Mean

example of IQR change
(from UALI to UA2) in

independent variable®

ozone A per IQR! in

independent variable

PM, 5 A per IQR! in

independent variable

independent

variable
—2.9 ppb (—6.2%)
population density -

—13ugm > (—8.9%)
+1.6 ug m > (+12%)
—0.6 ug m—> (—4.1%)

population centrality

transit supply -

Toledo, OH (489,000)
Austin, TX (562,000)
West Palm Beach, FL (795,000)

urban area 1 urban area 2 IQR in independent

(population) (population) variable

Albany, NY (509,000)

Las Vegas, NV (697,000)
Orlando, FL (887,000)

1.3 [unitless]
390 persons km >
13,000 route-km km™*

“ For example, population centrality is 1.3 units greater for Albany as for Toledo, approximately an IQR difference. Modeling results indicate that this
population centrality increase is associated with a 1.3 4g m > decrease in annual average population-weighted PM, 5 concentration (9% of average

population-weighted PM, 5 concentrations).

supply and/or feasibility of transit supply. Alternately, changes in
transit supply may change population distributions through shifts
in relative accessibility and/or desirability of locations. Such
patterns, though important, are difficult to discern via a cross-
sectional study such as the one presented here. Changes in urban
form likely have cobenefits or trade-offs among environmental,
health, and other goals. For example, steps to reduce urban air
pollutants from motor vehicles may prove beneficial for physical
activity levels**~* and transportation-CO, emissions.*”

Our use of regulatory data to estimate long-term population-
weighted ambient pollution concentrations at the urban scale is
both a strength and a limitation of this study. It is a strength
because the data represent widely accepted “gold standard”
measurements of air pollution and because our results are based
on empirical evidence rather than models or theory. However,
monitors are spatially sparse, which may introduce error in
estimating population-weighted concentrations.*> Of the 111
UAs in our sample, only 3 UAs (Chicago, IL; Phoenix, AZ;
Washington, DC) have more than 10 monitors for ozone, and
3 UAs (Chicago, IL; Dallas, TX; Philadelphia, PA) for PM, s.
Most UAs have fewer than 3 monitors per pollutant (Figure S3).
If concentration estimates with better spatial precision were
available across a wide section of UAs, we would be able to
incorporate those estimates in our approach. As a second
limitation, because monitoring stations are sparse, we are unable
to explore here research questions related to the distribution of
exposures among the population (e.g., high- versus low-income
neighborhoods). As a third limitation of our method, we studied
population-weighted ambient concentrations only and did not
investigate exposures indoors or in vehicles. Finally, as with any
cross-sectional analysis, our results demonstrate correlation, not
causation. Future observational studies could usefully employ
longitudinal designs to better explore causality between changes
in the built environment and changes in air quality. The
consistency between empirical results presented here and mod-
eling studies (see above) gives weight to the hypothesis that
trends observed here reflect a causal relationship.

A contribution of this work to previous empirical studies is
that the individual urban form metrics at the UA scale more
clearly elucidate relationships with urban air quality compared to
metropolitan-scale composite indices (e.g., SGA sprawl indices).
For example, although population density and population cen-
trality are both associated with regional compactness (as

measured by SGA composite index, the urban form metric used
by Schweitzer and Zhou™), we find that these two attributes
relate to pollution concentrations in opposing directions. This
finding highlights the importance of considering urban form
metrics separately.

Our results indicate that the statistical power in predicting
long-term urban air quality is similar for urban form as for local
climate. Research on the latter issue dwarfs research on the
former issue. For example, Web of Knowledge identified 671
articles on ambient air pollution and meteorology versus 24
articles on air pollution and urban form (see the SI). While our
specific findings are useful, an important take-away message is
the need for greater understanding on how urban form impacts
air quality.

In our analysis, the urban form variables with the strongest
statistical power for predicting air pollution concentrations are
population centrality (correlated with lower concentrations) and
population density (correlated with higher concentrations); their
magnitude of impact is comparable to climatic factors and also to
concentration changes observed in U.S. cities during the 2000s.
Thus, at a systems-level scale (UAs), spatial distributions of
population are a significant predictor of observed air quality.
Effective physical planning approaches to improve air quality and
exposures might consider spatial distributions of population and
in particular potential air quality trade-offs between population
centrality and population density.
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1. Methods Supporting Information

In addition to the core models for ozone and PM; s in the main paper, here we present details for the
stepwise linear regression models for the remaining criteria pollutants (and alternate measures of ozone
and of the long-term air quality index).

1.1. Dependent Variables. As described in Table S1, EPA monitor data are for year-1990 for the six
criteria pollutants reported in that year. For the two criteria pollutants (PM;y and PM,s) not reported in
1990, EPA data are for year-1995 (PM;y) and year-2000 (PM,s). For the six criteria pollutants
monitored year-round, we calculate annual average concentrations. For the two criteria pollutants
(ozone and carbon monoxide) monitored seasonally, we calculate the 5-month seasonal average
concentrations (5-month summer average for ozone; 5-month winter average for carbon monoxide).
Models for lead and for PM predict the natural log of population-weighted concentrations because lead
and PM;y concentration data are log-normally distributed. The remaining models predict population-
weighted concentrations. Additionally, we present stepwise linear regression models for 4 alternate
population-weighted summer ozone concentration metrics ([1] 24-hour average; [2] 8-hour nighttime
average (22:00-06:00); [3] 8-hour maximum average, which is the EPA’s regulatory metric; [4] year-
2000 8-hour daytime average) and 2 alternate population-weighted long-term air quality indices ([1]
LAQI of two priority pollutants: ozone and PM; s; and [2] LAQI of 8 pollutants: carbon monoxide, lead,
nitrogen dioxide, ozone, PM o, PM; s, sulfur dioxide, total suspended particulates).

Equation S1 presents the calculation of population-weighted air pollutant concentration (C) for each
UA, where ¢; is the interpolated concentration (using inverse distance-weighting of the long-term
average concentrations from the 3 nearest monitors within 50 km) for each 1-km gridcell center, i,
within the UA; p; is the estimated population in each 1-km gridcell, i, within the UA; and n is the
number of 1-km gridcell centers within the UA. Figure S2 presents boxplots of the population-weighted

pollutant concentrations.
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1.2. Independent Variables. Figure S3 presents boxplots of the independent variables, including
measures of urban form, transportation infrastructure, climate, region, income and land area.

1.2.1. Urban form datasets. Table S2 summarizes ten published datasets of empirical measures of
urban form for US cities.

1.2.2. Temperature metrics. We tested the following temperature metrics in preliminary regressions
for time periods matching the air pollution data: Heating Degree Days (HDD; base 18.3°C [65 °F]),
Cooling Degree Days (CDD; base 18.3°C [65 °F]), average daily temperature, average maximum daily
temperature, average minimum daily temperature. In the final regression models, we employed the
temperature metric with highest predictive power for each pollutant: 5-month summer average daily
maximum temperature (ozone) and annual HDD (NO;; SO;). (CDD, HDD and average daily
temperature have similar predictive power for NO; and SO,. Models for NO, and SO, employing CDD,
HDD, or average daily temperature yield consistent results. None of the temperature metrics tested were
statistically significant predictors of CO, lead, PM; s, PM;, or TSP.)

1.3. Stepwise Linear Regression Models. This analysis focused on daytime only concentrations of
ozone to control for the effect of NOy titration at night. Table S3 illustrates the effect of including
nighttime ozone concentrations by comparing models for alternate population-weighted ozone
concentration metrics: daytime only, nighttime only, and 24-hour concentrations. The two ozone metrics
that include night hours (24-hour average and nighttime only average) are negatively associated
(p<0.05) with annual VKT (i.e., UAs with higher VKT have lower population-weighted ozone
concentrations), whereas the metrics that do not include night hours show no association with VKT.

This apparently reflects NOx titration of ozone at night.
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For comparison, we generated a year-2000 5-month summer daytime only ozone model (Table S3).
The year-2000 ozone model results are consistent with the year-1990 ozone model results (positive
association with temperature [p<0.01]; negative association with population centrality [p<0.01] and
dilution rate [p<0.01]), and with the year-2000 PM,s results (positive association with population
density [p<0.05]; negative association with transit supply [p<0.05]).

As part of a multicollinearity analysis, Table S4 presents a correlation matrix of independent
variables. The highest correlation between independent variables included in models is for transit supply
and population density in the PM; 5 model. As shown in Table S5, multicollinearity is avoided (variance
inflation factor <5) for the PM;,s model including both transit supply and population density, with
consistent results (and variance inflation factor <2) for alternate PM, s models including either transit

supply or population density (but not both metrics).

2. Results and Discussion Supporting Information

As discussed for ozone and PM;s in the main paper, our results for the additional six criteria
pollutants (Figure 4; Tables S6-S16) support the findings that: (1) urban form is associated with air
quality, even after accounting for other common explanatory variables, and (2) the magnitude of impact
is significant compared to climatic factors widely considered to be important for air pollution. Although
the range of model adjusted R (0.06 to 0.51) suggests limited model predictive power across criteria
pollutants, the model p-values (p<0.001 for all pollutants except lead (In) [p<0.05] and the LAQI of the
8 pollutants [p<0.05]) indicate that the models illustrate underlying trends in the datasets with statistical
significance. Figures S5-S8 present regression model residual plots, which illustrate that the model
residuals are approximately normally distributed.

Considering all pollutants (Figure S4; Table S6) the most robust urban form findings are for
population density, road density, and population centrality. For those three metrics, results are
statistically significant for two or more pollutants, with all regression coefficients in the same direction.

Greater density of people, and of roads, is associated with higher levels of population-weighted air
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pollutant concentrations, whereas greater population centrality is associated with lower levels.
Population density is associated with increased levels of population-weighted carbon monoxide (p<0.1),
nitrogen dioxide (p<0.01), PM;,s (p<0.01) and PM;o (p<0.05), and road density is associated with
increased levels of population-weighted PM;y (p<0.05) and total suspended particulates (p<0.01).
Greater population centrality (i.e., greater share of population living close to the urban core) is
associated with lower levels of population-weighted ozone (p<0.01), PM,s (p<0.01), and PMjg
(p<0.01). Additionally, transit supply and city shape (i.e., circularity of urban form) are associated with
lower levels of population-weighted air pollutants, but results are statistically significant for only one
pollutant. Transit supply is associated with decreased levels of population-weighted PM; s (p<0.1) and
city shape is associated with decreased levels of population-weighted carbon monoxide (p<0.01).

Climatic factors are statistically significant predictors of air pollution, and in the expected direction.
Dilution rate is associated with decreased levels of population-weighted carbon monoxide (p<0.01),
lead (p<0.05), nitrogen dioxide (p<0.01), ozone (p<0.01), PM, 5 (p<0.01), PM; (p<0.01), and sulfur
dioxide (p<0.05). Average daily maximum temperature is associated with increased levels of
population-weighted ozone (p<0.01) (i.e., higher temperatures yield higher daytime ozone
concentrations), and annual heating degree days are associated with increased levels of population-
weighted nitrogen dioxide (p<0.05) and sulfur dioxide (p<0.05) (i.e., increased need for heating of
buildings [i.e., lower temperature] is associated with increased population-weighted air pollutant
concentrations; perhaps a reflection of greater fuel-use for winter heating or more frequent inversions in
colder climates).

The predicted magnitude of impact of urban form on air pollution is significant compared to the
predicted magnitude of impact of climatic factors. Figure S4 shows the percent change in population-
weighted air pollutant levels associated with increasing the independent variables across the
interquartile range (IQR), holding all other variables constant at arithmetic mean value. Increasing

individual urban form factors by 1-IQR is associated with 4% to 27% changes in population-weighted
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air pollutant levels, and increasing individual climate factors by 1-IQR 1is associated with 7% to 30%

changes in population-weighted air pollutant levels.

Here, we provide details for the Web of Knowledge search results presented in the main text. Web of

Knowledge identified 24 articles on ambient air pollution and air quality [topic search terms: (“air

quality” OR “air pollution””) AND (“ambient” OR “outdoor’”) AND (“urban form” OR “‘urban design”

OR “urban planning” OR “city form” OR “city design” OR “city planning”)] compared to 671 articles

on ambient air pollution and meteorology [topic search terms: (“air quality” OR “air pollution”) AND

(“ambient” OR “outdoor””) AND (“meteorology” OR “climate’)] on June 11, 2011. The 24 articles

identified with the urban form search terms are listed below.
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Binns, H.J.; Forman, J.A.; Karr, C.J.; Osterhoudt, K.; Paulson, J.A.; Roberts, J.R.; Sandel,
M.T.; Seltzer, J.M.; Wright, R.O.; Comm Environm Hlth The Built Environment: Designing
Communities to Promote Physical Activity in Children. Pediatrics 2009, 123, 1591-1598.
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Table S2. Summary of urban form datasets for United States cities

Publication Sample” Urban Form Metrics Primary Data Sources
Bento et al. 114 UA Urban form is measured in a set of 4 metrics: US Census (1990)
(2005)Sl (1) population centrality, (2) road network Nationwide Personal
density, (3) jobs-housing imbalance, and (4) Transportation Survey
city shape (1990), Zip Codes
Business Patterns
Burchfieldet 275 MSA  The percentage of undeveloped land in the National Land Cover
al. (2006) square kilometer surrounding an average Data Set (1992), Land
residential development Use and Land Cover
aerial photographs
(1976)
Cutsingeret 50 EUA Urban form is measured in a set of 7 metrics: National Land Use Cover
al. (2005)SS (1) density/continuity, (2) proximity, (3) job Data Base (1992, 1993),
distribution, (4) mixed use, (5) housing Census Transportation
centrality, (6) nuclearity, (7) housing unit Planning Package (1990)
concentration
Eid et al. 6,111 Neighborhood-level urban form is measured in Landsat Data (1992), Zip
(2008)%* neighbor- 2 metrics: (1) residential sprawl, as defined by Code Business Patterns
hoods Burchfield et al. (2006), (2) land use mix, (1994)
measured as the count of retail shops and
churches
Ewingetal. 83 MSA Composite sprawl index, based on linear Census Transportation
(2003)* combination of 22 variables describing Planning Package,
residential density, land use mix, degree of American Housing
centering, and street accessibility Survey, Zip Code
Business Patterns,
National Resources
Inventory (1990, 2000)
Fultonetal. 281 MSA Change in population and urbanized land US Census (1980, 1990),
(2001)*° (1982 to 1997), measured as population National Resource
divided by urbanized land area (as defined by Inventory (1982, 1997)
National Resource Inventory)
Glaeser et al. 106 MSA  Job decentralization, measured as (1) share of Zip Code Business
(2001)S7 jobs within 3, 10, and 35 miles of Central Patterns (1996)
Business District (CBD), (2) median employee
distance from CBD, (3) job density gradient
Huang and 12 MSA Metropolitan urban form is measured in a set Global Land Cover
Sellers of 7 metrics: 6 metrics describing physical Facility satellite
(2007)® characteristics of landscape (derived from photographs (1999, 2000,

satellite images) and 1 metric describing
population density

or 2001), United Nations
Revision Population
Database (2000)
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Lopez and 330 MSA  Relative share of metropolitan population

Hynes living in US Census tracts with low population

(2003)%° density (defined as 200 to 3,500 persons per
square mile)

Tsai 291 MSA  Metropolitan urban form is measured in 4

(2005)%"° metrics of population and employment: counts,

density, degree of equal distribution, clustering

US Census (1990, 2000)

1995 Census
Transportation Planning
Package (CTPP)

“MSA = Metropolitan Statistical Areas, as defined by US Census; UA = Urban Area, as defined by

US Census, EUA = Extended Urban Area, as defined by Cutsinger et al.>?

Jaret et al.>'! provides a recent review of empirical measures of urban sprawl.
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Table S3. Analysis of alternate summer ozone metrics. Standardized coefficients” for stepwise linear

regression models predicting population-weighted ozone concentrations (S-month summer 1990; 5-

month summer 2000).

Independent Variable 8-hour 8-hour 24-hour 8-hour 8-hour
daytime maximum average nighttime daytime
average average (1990) average average
(10:00- (EPA (22:00- (10:00-
18:00) regulatory 06:00) 18:00)
(1990) metric) (1990) (2000)

(1990)
Intercept 0.68 0.49 4. 1%*% 4.0%%* 0.21
Urban Form
City Shape - - - .29 -
Jobs-Housing Imbalance - - - - -
Population Centrality -0.20%%* -0.34%%* -0.29%* - -0.307%**
Population Density - 0.22* - -0.31%** 0.23%#%*
Road Density - - - - -
Climate
Dilution Rate -0.32%%* -0.44 %% -0.25%%* 0.18%* -0.30%**
Temperature 0.62%%%* 0.70%** 0.45%* - 0.60%**
Transportation
Transit Supply - - - - -0.12%*
VKT - - -0.16%* -0.16%* -
Other Urban
Income - - - - -
Land Area - - - - -
Region 0.34%*%* 0.56%#%* - - -

Model adjusted R’ 0.34 0.35 0.15 0.13 0.43

Model p-value 0.0000%%*%* 0.00007%#* 0.0004##% 0.0015%*%* 0.0000%*%*

Sample (n)” 100 100 99 100 100

“Coefficient standardized to interquartile ranges (IQR) of dependent and independent variables. For
example, a standardized coefficient of 0.2 would mean that a 1-IQR increase in the independent variable
is associated with a 0.2-IQR increase in the dependent variable (population-weighted ozone

concentration).

"The sample size (number of UAs with at least 1 monitor) differs across ozone metrics because there
are 9 more EPA monitors with complete data (at least 75% of expected observations) for the 8-hour
averages than for the 24-hour averages.

*Statistical significance: * p<0.1; ** p<0.05; *** p<0.01.
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Table S5. Multicollinearity analysis for PM» 5" models. Standardized coefficients” and variance inflation

factors (VIF) with and without transit supply and population density (r=0.69) included as independent

variables.
Standardized coefficient” (VIF)
Independent Variable Model 1: stepwise Model 2: stepwise Model 3: stepwise
regression with 11 regression without regression without
independent population density (10 transit supply (10
variables (core PM,s independent variables) independent
model) variables)
Intercept 2.7k 3. 3wk 2.9k
Urban Form
City Shape - - -
Jobs-Housing Imbalance - - -
Population Centrality -0.31%%* (1.1) -0.27%%* (1.1) -0.31%%* (1.1)
Population Density 0.36*** (2.4) - 0.21%* (1.3)
Road Density - - -
Climate
Dilution Rate -0.28%%* (1.2) -0.21%%* (1.0) -0.26%%* (1.2)
Temperature - - -
Transportation
Transit Supply -0.14%* (2.0) - -
VKT -

Other Urban Characteristics
Income

Land Area - - -
Region 0.67*** (1.2) 0.55%** (1.1) 0.65%** (1.2)
Model adjusted R 0.29 0.22 0.25
Model p-value 0.0000%%*%* 0.0000%*%** 0.00007%#*

“Models predict population-weighted year-2000 annual average PM, s concentrations (ug m™).

PCoefficient standardized to interquartile range (IQR) of dependent and independent variables. For
example, a standardized coefficient of 0.2 would mean that a 1-IQR increase in the independent variable
is associated with a 0.2-IQR increase in the dependent variable (population-weighted year-2000 annual

average PM, s concentration).

“Variance inflation factor

*Statistical significance: * p<0.1; ** p<0.05; *** p<0.01
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Table S7. Stepwise linear regression model results for carbon monoxide® (n = 90)

Variable Coefficient Standardized A (ppm) A (%) per  p-value VIF
Coefficient’ per IQRT™  IQRTY

(Intercept) 2.16 3.52 - - 0.0000%** -
City Shape (unitless) -0.609 -0.248 -0.15 -11% 0.0065%** 1.13
Dilution Rate (m” s™) -5.84e-4 -0.287 -0.18 -12% 0.0001#** 1.25
Land Area (km?®) -1.11e-4 -0.144 -0.088 -6.4% 0.0185**  1.05
Population Density 2.84e-4 0.167 0.10 8.2% 0.0568* 1.32
(persons km'z)

Region (binary) -0.283 -0.462 -0.28 -19% 0.0016%*** 1.12

Model adjusted R”=0.36  Model p-value = 0.0000%*

“Population-weighted 1990 5-month winter (November through March) average carbon monoxide
concentration (ppm). Dilution Rate is the 1990 5-month winter harmonic mean.

Table S8. Stepwise linear regression model results for lead [ln]h (n=152)

Variable Coefficient Standardized A (ugm™) A (%) per  p-value VIF
Coefficient’  per IQRTY  IQRTY

(Intercept) -2.95 -2.99 0.0000%** -

Dilution Rate (m”s™) -5.43e-4  -0.187 -0.0067 -17% 0.0485%* -

Model adjusted R°=0.06 Model p-value = 0.0485%*

’Natural log of population-weighted 1990 annual average lead concentration (ug m™). Dilution rate is
the year-1990 harmonic mean.

Table S9. Stepwise linear regression model results for nitrogen dioxide® (n = 55)

Variable Coefficient Standardized A (ppm) A (%) per  p-value VIF
Coefficient’ per IQRTY  IQRTY

(Intercept) 0.0115 1.31 - - 0.0000%** -

Dilution Rate (m” s™) -7.39e-6 -0.206 -0.0018 -8.0% 0.0002%** 1.48

Population Density 1.13e-5 0.562 0.0049 27% 0.0000*** 1.36

(persons km'z)

Temperature (°C days) 1.54e-6 0.251 0.0022 11% 0.0202%*  1.11

Model adjusted R”=0.42 Model p-value = 0.0000%*

“Population-weighted 1990 annual average nitrogen dioxide concentration (ppm). Dilution Rate is
1990 annual harmonic mean. Temperature is 1990 annual heating degree days (base 18.3°C [65 °F]).

!Coefficient standardized to the interquartile range (IQR) of dependent and independent variables. For
example, a standardized coefficient of 0.2 would mean that a 1-IQR increase in the independent variable
is associated with a 0.2-IQR increase in the dependent variable (population-weighted air pollutant
levels).

¥Predicted change (or predicted percent change) in population-weighted air pollutant levels associated
with increasing the independent variable across the interquartile range, holding all other variables
constant at arithmetic mean value.

*Statistical significance: * p<0.1; ** p<0.05; *** p<0.01
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Table S10. Stepwise linear regression model results for daytime ozone ? (n = 100)

Variable Coefficient Standardized A (ppm) A (%) per  p-value VIF
Coefficient’ per IQRT™  IQR™MY

(Intercept) 6.79e-3 0.683 - - 0.5061 -
Dilution Rate (m” s™) -8.12e-6 -0.316 -0.0031 -6.6% 0.0000%**  1.06
Population Centrality -2.37e-3 -0.290 -0.0029 -6.2% 0.0035*** 1.19
(unitless)

Region (binary) 3.41e-3 0.343 0.0034 8.0% 0.0482**  1.18
Temperature (°C) 8.98e-4 0.618 0.0061 15% 0.0001*** 1.40

Model adjusted R”=0.35 Model p-value = 0.0000%*

“Population-weighted 1990 5-month summer (May through September) average daytime ozone
concentration (10:00-18:00) (ppm). Temperature is the 1990 5-month summer average daily maximum.
Dilution Rate is the 1990 5-month summer harmonic mean.

Table S11. Stepwise linear regression model results for fine particulate matter (PM,5)° (n = 107)

Variable Coefficient Standardized A (ugm™) A (%)per  p-value VIF
Coefficient’ per IQRT™  IQR™MY

(Intercept) 11.6 2.68 - - 0.0000%** -

Dilution Rate (m” s™) 3.73e3  -0.274 1.2 -7.9% 0.0000%** 1.25

Population Centrality -1.10 -0.308 -1.3 -8.9% 0.0001*** 1.10

(unitless)

Population Density 4.08e-3 0.360 1.6 12% 0.0030%**  2.37

(persons km'z)

Region (binary) 2.88 0.669 2.9 24% 0.0000%** 1.17

Transit Supply (route-km -4.36e-5 -0.138 -0.60 -4.1% 0.0580* 1.96

km'z)

Model adjusted R”=0.27 Model p-value = 0.0000%*

“Population-weighted 2000 annual average PM, s concentration (ug rn'3). Dilution Rate is 2000 annual
harmonic mean.

!Coefficient standardized to the interquartile range (IQR) of dependent and independent variables. For
example, a standardized coefficient of 0.2 would mean that a 1-IQR increase in the independent variable
is associated with a 0.2-IQR increase in the dependent variable (population-weighted air pollutant
levels).

$Predicted change (or predicted percent change) in population-weighted air pollutant levels associated
with increasing the independent variable across the interquartile range, holding all other variables
constant at arithmetic mean value.

*Statistical significance: * p<0.1; ** p<0.05; *** p<0.01
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Table S12. Stepwise linear regression model results for coarse particulate matter (PM;) [In} (n=104)

Variable Coefficient Standardized A (ugm™) A (%)per p-value VIF
Coefficient’ per IQRT™  IQRTY

(Intercept) 3.25 10.9 - - 0.0000%** -

Dilution Rate (m” s™) -2.49¢-4 -0.221 -1.7 -6.4% 0.0003*** 1.31

[Income]” ($) -1.309e-9  -0.321 2.4 -9.1% 0.0001*** 1.27

Land Area (km?) 9.25e-5 0.201 1.5 6.2% 0.0006*** 1.21

Population Centrality -0.0549 -0.233 -1.7 -6.7% 0.0089*** 1.16

(unitless)

Population Density 1.97e-4 0.244 1.8 7.5% 0.0174**  1.68

(persons km'z)

Road Density (%) 0.0339 0.173 1.3 5.3% 0.0191** 1.23

Model adjusted R“= 0.36  Model p-value = 0.0000%*

/Natural log of population-weighted 1995 annual average PM, concentration (ug m™). Dilution Rate is
the 1995 harmonic mean. Income is mean annual household income squared.

Table S13. Stepwise linear regression model results for sulfur dioxide® (n = 72)

Variable Coefficient Standardized A (ppm) A (%) per  p-value VIF
Coefficient’ per IQRT™  IQRTY

(Intercept) 4.43e-3 0.759 - - 0.0060*** -

Dilution Rate (m” s™) -3.53e-6 -0.179 -0.0010 -13% 0.0315%*  1.02

Land Area (km?) 9.66e-7 0.148 0.00086 12% 0.0295**  1.03

Region (binary) 2.44e-3 0.418 0.0024 42% 0.0120*%*  1.16

Temperature (°C days) 1.06e-6 0.341 0.0020 30% 0.0111**  1.17

Model adjusted R”=0.26 Model p-value = 0.0001 %

fPopulation-weighted 1990 annual average sulfur dioxide concentration (ppm). Dilution Rate is the
1990 annual harmonic mean. Temperature is the 1990 annual heating degree days (base 18.3°C [65 °F]).

!Coefficient standardized to the interquartile range (IQR) of dependent and independent variables. For
example, a standardized coefficient of 0.2 would mean that a 1-IQR increase in the independent variable
is associated with a 0.2-IQR increase in the dependent variable (population-weighted air pollutant
levels).

$Predicted change (or predicted percent change) in population-weighted air pollutant levels associated
with increasing the independent variable across the interquartile range, holding all other variables
constant at arithmetic mean value.

*Statistical significance: * p<0.1; ** p<0.05; *** p<0.01
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Table S14. Stepwise linear regression model results for total suspended particulates (TSP)" (n = 57)

Variable Coefficient Standardized A (ugm™) A (%)per p-value VIF
Coefficient’ per IQRT™  IQRTY

(Intercept) 114 0.849 - - 0.0647* -

Road Density (%) 10.6 0.946 12.7 27% 0.0000%** -

Model adjusted R"=0.51 Model p-value = 0.0000%*

"Population-weighted 1990 annual average TSP concentration (ug m™).

Table S15. Stepwise linear regression model results for long-term air quality index of 8 pollutants’ (n =

12)

Variable Coefficient Standardized A (unitless) A (%) per  p-value VIF
Coefficient’ per IQRTY  IQRTY

(Intercept) 3.25 4.13 - - 0.0000%** -

Land Area (km?) 3.08¢e-4 0.515 0.41 12% 0.0285%* -

Model adjusted R°=0.33 Model p-value = 0.0285%*

'‘Population-weighted index (unitless) of 8 pollutants (CO, lead, NO,, ozone, PM; 5, PM;o, SO,, TSP)

as described in Table S17.

Table S16. Stepwise linear regression model results for long-term air quality index of 2 pollutants’ (n =

97)

Variable Coefficient Standardized A (unitless) A (%)per  p-value VIF
Coefficient’  per IQRT  IQRT*

(Intercept) 0.797 2.11 - - 0.0548* -

Dilution Rate (m”s™) -4.00e-4 -0.332 -0.13 -7.5% 0.0000%** 1.41

Population Centrality -0.0906 -0.295 -0.11 -6.8% 0.0015%** 1.23

(unitless)

Population Density 2.13e-4 0.201 0.076 4.9% 0.0327**  1.50

(persons km'z)

Region (binary) 0.247 0.654 0.25 18% 0.0004*** 1.45

Temperature (°C) 1.46e-2 0.262 0.10 6.5% 0.0687* 1.58

Model adjusted R“=0.29 Model p-value = 0.0000%**

/Population-weighted index (unitless) of 2 pollutants (ozone and PM,s) as described in Table S17.
Dilution Rate is 2000 annual harmonic mean. Temperature is 1990 5-month summer average daily
maximum.

Coefficient standardized to interquartile ranges (IQR) of dependent and independent variables. For
example, a standardized coefficient of 0.2 would mean that a 1-IQR increase in the independent variable
is associated with a 0.2-IQR increase in the dependent variable (population-weighted air pollutant
levels).

$Predicted change (or predicted percent change) in population-weighted air pollutant levels associated
with increasing the independent variable across the interquartile range, holding all other variables
constant at arithmetic mean value.

*Statistical significance: * p<0.1; ** p<0.05; *** p<0.01
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Table S17. Calculation of long-term air quality index (LAQI)*

Pollutant

Calculation

Carbon Monoxide

Lead

Nitrogen Dioxide

Ozone

Particulate Matter
(PM;5)

Particulate Matter
(PM0)

Sulfur Dioxide

Total Suspended
Particulates (TSP)

Divide 1990 5-month winter (November through March) average concentration by
current NAAQSb 8-hour standard (9 ppm)

Divide 1990 annual average concentration by current NAAQS rolling 3-month
standard (0.15 pg m™)

Divide 1990 annual average concentration by current NAAQS annual standard
(0.053 ppm)

Divide 1990 5-month summer (May through September) average of daily 8-hour
maximum concentrations by NAAQS 8-hour maximum standard (0.075 ppm)

Divide 2000 annual average by NAAQS annual standard (15 ug m™)

Divide 1995 annual average concentration by current NAAQS 24-hour standard
(150 pg m™)

Divide 1990 annual average concentration by current NAAQS annual standard
(0.03 ppm)

Divide 1990 annual average concentration by previous NAAQS annual standard
(75 ng m™)

“Long-term air quality index (LAQI) is the population-weighted sum of long-term concentrations
divided by long-term NAAQS (as in Table S17 above). We calculate 2 alternate long-term air quality
indices: (1) index of 2 pollutants: ozone and PM,s, (2) index of 8 pollutants: CO, lead, NO,, ozone,
PM2.5, PM](), SO2, and TSP.

’National Ambient Air Quality Standards (United States Environmental Protection Agency)
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Figure S1. Dependent variable boxplots (minimum, 25t percentile, median, 75t percentile, maximum).
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Number of included monitors per UA Population-weighted concentrations (tertiles)

Ozone

e 16-42ppb
® 42 -48 ppb
® 48 -60 ppb

PM2‘5

x No data
® 58-12 ygm?
®12-15 ugm?
® 15-27 ugm?

Figure S3. Number of included monitors and population-weighted concentrations (tertiles) for ozone (n

= 100) and PM, 5 (n = 107) for each of the 111 UAs evaluated.
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More Dense
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Figure S9. Four urban areas (each with population 180,000 to 270,000 persons in year-1990)
illustrating high- and low- population density and centrality. Maps show the 1990 Census Tract
population density. Higher values of centrality (Bento et al.>") indicate that a greater fraction of

population lives near the Central Business District.
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