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ABSTRACT: Ultrafine particulate matter (UFP; diameter <0.1
μm) concentrations are relatively high on the freeway, and time
spent on freeways can contribute a significant fraction of total
daily UFP exposure. We model real-time size-resolved UFP
concentrations in summer time on-freeway air. Particle
concentrations (32 bins, 5.5 to 600 nm) were measured on
Minnesota freeways during summer 2006 and 2007 (Johnson, J.
P.; Kittelson, D. B.; Watts, W. F. Environ. Sci. Technol. 2009, 43,
5358−5364). Here, we develop and apply two-way stratified
multilinear regressions, using an approach analogous to mobile-
monitoring land-use regression but using real-time meteoro-
logical and traffic data. Our models offer the strongest
predictions in the 10−100 nm size range (adj-R2: 0.79−0.89, average adj-R2: 0.85) and acceptable but weaker predictions in
the 130−200 nm range (adj-R2: 0.41−0.62, average adj-R2: 0.52). The aggregate model for total particle counts performs well
(adj-R2 = 0.77). Bootstrap resampling (n = 1000) indicates that the proposed models are robust to minor perturbations in input
data. The proposed models are based on readily available real-time information (traffic and meteorological parameters) and can
thus be exploited to offer spatiotemporally resolved prediction of UFPs on freeways within similar geographic and meteorological
environments. The approach developed here provides an important step toward modeling population exposure to UFP.

■ INTRODUCTION
The United States Environmental Protection Agency (USEPA)
began regulating ambient PM10 (particulate matter smaller than
10 μm) in 1988 and PM2.5 (particulate matter smaller than 2.5
μm) in 1997. While there are no US regulations for PM0.1
(“ultrafine particles”, UFP; diameter less than 0.1 μm), recent
research raises the concern that these particles may be
especially toxic.1,2 UFP can penetrate deeply into the lung
and can cross the lung lining,3,4 which is ∼0.1−20 μm thick.5

The European Union has proposed to regulate tailpipe number
concentrations as part of Euro 5 and Euro 6 standards for light
passenger and commercial vehicles. In typical ambient and on-
roadway conditions, UFPs have high number concentrations
but low mass concentrations, relative to other particles.6

Vehicles and other combustion sources are important
contributors to urban UFP. UFP concentrations (particle
number per volume of air) can be an order of magnitude higher
on freeways than in background urban air.7−9 Variations in
vehicle speed and density, type and age of vehicles, roadway
topography, meteorology, and particle dynamics create spatially
and temporally heterogeneous distributions of UFPs. Real-time
estimation of UFP concentration on freeways is important for
understanding UFP exposures and for identifying UFP
hotspots.
Several studies have reported UFP concentrations on

roadways. These studies evaluated aspects of UFPs such as

dispersion on freeways,10−12 correlation to vehicle types 13−15

and to other pollutants,8 regional variation,12,16 and aerosol
characteristics.17 Table 1 summarizes the main results of several
extant studies; further details are available in an expanded
version available online (Table S1, Supporting Information).
None of the extant studies using size-resolved concentrations
investigated how to predict on-roadway concentrations at times
or locations other than when and where measurements
occurred; such models are critical for estimating population
exposure to UFP. Our investigation aims to fill this gap by
providing real-time traffic- and weather-based prediction of
UFPs on freeways.
Parameters such as traffic volume and speed are routinely

measured on freeways in many urban areas; the data tend to be
publicly available, often in near-real time, and thus can
potentially be used for estimating concentrations of UFPs or
other traffic-dominated pollutants at large spatial and temporal
scales. The modeling approach developed and applied here is
broadly similar to land-use regression18−20 but builds on prior
research by employing real-time measurements of pollution,
traffic, and meteorological parameters. Our approach could be
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potentially useful for identifying high-risk times and locations,
in prioritizing among options to mitigate air pollution exposure
and in modeling exposures for epidemiology.

■ METHODS
Details of the equipment and data in this study have been
discussed previously.21 Briefly, the University of Minnesota
mobile emissions laboratory (MEL) 11,17 was used to collect
aerosol data while operating on a pre-established, interstate
highway loop around Minneapolis, MN (Figure S1, Supporting
Information). Sample air was drawn into the MEL through a
probe located above the cab at a height of 3.5 m above the
roadway at a flow rate of approximately 1000 L/min. Air was
distributed to the instruments through a sampling manifold.
Size-resolved real-time measurements were made using an
Engine Exhaust Particle Sizer (EEPS) (Model 3090; TSI, Inc.,
Shoreview, MN), which counts 6−500 nm particles. The
instrument has 32 channels (size bins). We consider here the
40 h of on-freeway data collected during June−July 2006 and
June−July 2007 (total: 19 days of sampling). Because
measurements occurred in summer, models generated here
are most applicable for summer conditions (see below).
We obtained publicly available weather22 and on-freeway

traffic23 conditions matched to the time and location of the
MEL. Time resolution of the data was 1 h averages for weather
and 30 s averages for on-freeway traffic conditions. We
employed weather conditions at Minneapolis Airport, which
is within the travel loop. Traffic data provide real-time averaged
speed (km h−1) and vehicular volume (vehicles h−1) for all
lanes in both directions. By design, the measurement vehicle
drove at a more constant speed than surrounding traffic (range
[km h−1]: 85−96 for MEL, 24−105 for surrounding traffic).
Overall, ∼145 000 second-by-second data-points were

collected for each of the 32 EEPS channels. We computed 1
min averages of the concentration data to match with the traffic
data (measured every half minute) and to increase the signal-to-
noise ratio. In generating 1 min averages, we removed 3.6% of
the data because of missing or incomplete concentration values
(requirement: more than 54 s of data per minute). We removed
an additional 4.6% owing to missing traffic data, leaving the
2222, 1-min concentration estimates used here.
A two-way variable-width stratification scheme, based on

traffic speed and volume, was applied to the minute-averaged
data. Strata were selected so as to achieve an approximately
even distribution of data among the strata. To ensure that our
results are not contingent on the stratification scheme, we
conducted several sensitivity analyses to systematically vary the
strata; in total, twenty stratification schemes were evaluated.

For each alternative stratification scheme, we generated
regression models as described below. (The resulting speed
and volume coefficients in the models exhibited low coefficients
of variability among stratification schemes, and model
predictions were highly correlated with each other. Thus, we
did not find evidence that model results are highly sensitive to
stratification scheme.) The most efficient stratification scheme
was selected on the basis of three criteria: model performance
(measured by adj-R2), statistical significance of the model
coefficients, and the percentage of the minute-averaged data set
employed in the model.
The stratification scheme selected had 42 strata (six

categories for traffic volumes and seven categories for traffic
speeds) and used 96% of the valid data obtained (Table S2,
Supporting Information). For each strata, we calculate mean
traffic parameters (speed, volume); mean weather parameters
(temperature, wind speed, relative humidity [RH]); and several
percentiles (10th, 25th, 50th, 75th, and 90th percentiles), mean,
and standard deviation of log-transformed particle counts. (The
10th and 90th percentiles, respectively, can be taken as
representing exposure-relevant estimates of “on-freeway back-
ground” and “on-freeway in-plume” conditions.) Median of log-
transformed particles counts were determined for each of the
32 EEPS channels. Example measurements are shown in Table
S3, Supporting Information, for total PNC.
Linear regressions were performed in Matlab (ver. R2009b,

Mathworks, Inc., Natick, MA) to predict EEPS-derived
concentration measurements (dependent variable) based on
traffic and weather parameters (independent variables).
Regressions were performed with and without the weather
parameters to investigate the effect of weather on the model.
Finally, stepwise regressions were performed to optimally select
predictors from the traffic and weather parameters. Stepwise
regressions allow the insertion and removal of parameters to
improve the fit of the model, keeping only those parameters
that contribute to a significant increase in model performance.
EEPS provides size-resolved measurements (5.5−600 nm) in

32 bins, equi-spaced on a log scale. For size resolved
measurements overall, 96 regressions were carried out, to
estimate central tendencies (median of log-transformed PNC)
for each of the 32 bins, employing three schemes: (1) including
traffic and weather parameters, (2) including only traffic
parameters, and (3) selecting parameters by stepwise
regression. Results for the first and third schemes were similar;
thus, results from only the first (“with weather parameters”)
and second (“excluding weather parameters”) are presented
here.

Table 1. Summarya of Studies of Real-Time on-Road Measurement of Ultrafine Particles (UFPs)

reference sampling year location pollutants measured sampling duration

Bukowiecki 2002a17 1999−2000 Minneapolis, MN; Columbus, IN UFP N/Ab

Bukowiecki 2002b16 2001 Zürich, Switzerland UFP 4 h
Canagratna 200415 2000−2001 New York, NY UFP, PM, NO, NO2, CO, N2O, CH4, SO2, and HCHO ∼24 h
Weijers et al. 200412 1999−2000 Amsterdam, Netherlands UFP, PM 3 days
Kittelson et al. 200411 2000 Minneapolis, MN UFP, CO, CO2, NOx ∼20 h
Westerdahl et al. 20058 2003 Los Angeles, CA BC, NO, PM-PAH, UFP, NO2, CO, CO2, PM2.5 12 h
Pirjola et al. 200610 2003−04 Helsinki, Finland CO, NO, UFP, NOx,PM 384 h
Fruin et al. 200814 2003 Los Angeles, CA BC, NO, PM-PAH, UFP, NO2, CO, CO2, PM2.5 15 h

Johnson et al. 200921 2006−2007 Minneapolis, MN UFP, CO, CO2, NOx 85 h
Int Panis et al. 201013 2009 Belgium UFP, PM2.5, PM10 ∼30 h

aA more detailed version of this table is in Supporting Information (Table S3). bInformation not available.
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We employed bootstrap resampling (n = 1000) to examine
uncertainty and the models’ statistical robustness. Bootstrap
involves generating hypothetical data sets for input to the
regression, based on “random sampling with replacement” from
the original data set; this approach helps quantify the
uncertainty of each estimator. As mentioned above, 20
sensitivity analyses were conducted to explore the impact of
stratification scheme. Additional analyses were performed to
test (1) the effect of wind direction, by stratifying by relative
location (MEL is on the upwind/downwind side of the
highway), and (2) changes over time, by stratifying by
measurement year (2006, 2007).

■ RESULTS AND DISCUSSION
Modeling was performed on log-transformed metrics because
particle number concentrations (PNCs) are log-normal (Figure
1). Weather data are summarized in Figure 2 and in Supporting

Information (Table S4). Linear regressions were performed for
the mean, standard deviation, and several percentiles (10th,
25th, 50th, 75th, 90th) of log PNC (Figure 3). Performance
trends among these seven models are similar with- versus
without-weather parameters included in the model. Specifically,
models with weather parameters perform slightly better than
models without weather parameters (less than 10% mean
difference in performance) for the median, 75th percentile, 90th

percentile and standard deviation. Model performance is similar
between with- and without-weather models (adj-R2: 0.51−0.82)
for 10th percentile, 25th percentile and the mean. Correlations
for observed and predicted PNC using the developed percentile
models are presented in Supporting Information (Figure S2).
R2 values for the correlations range from 0.65 to 0.83.
Coefficients for speed and volume, for size-resolved models,

are in Figure 4. The difference in performance between the
“including weather” and the “excluding weather” models is
greatest for the size range 200−400 nm. Particles in this size
range (“accumulation mode”) are influenced by urban and
regional background concentrations, which are often correlated
with weather parameters; thus, it seems reasonable that
including weather improves model performance for this size
range. For example, a recent study by Riddle et al.24 provides
evidence that ultrafine particles near a freeway can be
accounted for primarily by on-road diesel fuel contribution,
while particles with size >180 nm may reflect contributions
from background secondary organic aerosols. Overall, model

performance is best for 10−100 nm particles (adj-R2:
0.79−0.89, average adj-R2: 0.85).
Additional analysis (not shown) revealed that model

performance (adj-R2) was generally better for high-concen-
tration channels than for low-concentration channels, a finding
that is consistent with Figures 4 and 5. Among the size bins, the
speed coefficient was negative and the volume coefficient was
generally positive (Figure 4), indicating that higher traffic
speeds yield lower PNC while higher traffic volumes generally
yield higher PNC. The latter finding is intuitive: increasing
vehicle volumes generally increases total emissions. The former
finding is likely a result of the increased vehicle spacing (and
therefore dilution) and increased turbulent mixing found at

Figure 1. Cumulative distribution of total particle number counts
(PNCs) for the 40 h of measurement. The plot is nearly a straight line,
indicating that the data are nearly log-normal (geometric mean: 495
000 cm−3, geometric standard deviation: 2.60).

Figure 2. Summary of input data sets for (a) temperature, (b) relative
humidity, and (c) wind speed. Shown are 10th, 25th, 50th, 75th, and
90th percentiles (box plot) and minimum, mean, and maximum values
(asterisks), reflecting conditions during on-highway measurements.

Figure 3. Model performance (adj-R2) for prediction of percentiles,
mean, and standard deviations of log transformed particle number
concentration measurements.
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higher speeds. (At low speeds [∼50 km h−1], the negative
correlation between speed and PNC no longer holds; see
Figure S3, Supporting Information, and the first two rows of
Table S3, Supporting Information.)
A prior study by Kittelson et al.11 reported a positive

correlation between speed and PNC, which is in contrast with
the negative correlation reported here. Several factors may
explain the different findings: temperature and season (warmer
weather/summer [current study] versus colder weather
[November 2000 for the prior study by Kittelson et al.11]);
sampling height above roadway (3.5 m [current study] versus
0.7 m [prior study]); and speed/volume data (speed and
volume for surrounding traffic [current] versus test-vehicle
speed, no volume data [prior]). Particle dynamics (e.g., rates of
physical and chemical processes) may vary with temperature;
engine performance, and the composition of fuels and vehicles,
may differ between summer and winter; and, changing the
sampling height could impact the relative importance of cars
versus diesel trucks. As mentioned above, the relationship
between speed and PNC may differ at slower speeds (see
Figure S3, Supporting Information).
To examine interactions between traffic speed and volume,

observed and predicted median values of PNC for four traffic
conditions are presented in Figure 5 (upper). As expected,
number concentrations are generally higher for smaller particles
than for larger particles. For all particle sizes, “denser, slower”
traffic exhibits the highest particle counts, while “lighter, faster”
traffic exhibits the lowest particle counts. The other two cases
(“denser, faster” and “lighter, slower”) exhibit differing
behavior: for ultrafine particles, the two cases are similar to
each other; for larger particles, concentrations are lower for
“denser, faster” than for “lighter, slower”. For ultrafine particle
concentrations, traffic speed and volume appear to be
comparable in importance; for other particles (greater than
100 nm), traffic speed appears to be more important than

traffic density. A box-plot comparison of observed and model-
predicted PNC distribution is presented in Figure 5 (lower).
For the four traffic conditions shown, modeled UFP
concentrations provide reasonable but not perfect estimates
of within- and between-group variability. The percentiles in the
boxplots represent model predictions from the models we
created for the P10/P25/P50/P75/P90/mean. For example,
consider one specific condition (e.g., denser/slower). We
calculated the mean speed (S*) and volume (V*) among data
in the “denser/slower” strata, as representative of that strata
(Table S3, Supporting Information). Then, the mean S* and
V* were used as inputs to the P10/P25/P50/P75/P90/mean
models; the results are the model-derived prediction box plots
in Figure 5 (lower). Figure S2, Supporting Information,
provides additional model-measurement comparisons as
scatter-plots; Figure S1, Supporting Information, provides
maps of measured and modeled PNC; Figure S4, Supporting
Information, provides maps of traffic speeds and volume along
the test route.
Results in Table 2 include either or both of two meteorology

variables (temperature and RH) in all models except 10th
percentile. RH is generally more important as a predictor than
temperature or wind speed, but results vary by particle size (see
Figures 6 and S1 and Table S5, Supporting Information). In
Figure 6, several coefficients border on statistical significance
(just over or just under). Of the seven models in Table 2, traffic
volume is a predictor in all of the models while traffic speed,
RH, and temperature are a predictor in five of the seven
models.
Tables S6 and S7, Supporting Information, provide results of

the stratified models (stratified by year and by MEL location
relative to wind [e.g., MEL location is upwind of nearby traffic,
MEL location is downwind of nearby traffic]). Model
performance (R2) is generally better for models presented
here than for the “MEL location relative to wind” stratified

Figure 4. Modeling parameters for size-resolved prediction of median particle count measurements: (a) adj-R2, (b) speed coefficients, and (c) traffic
volume coefficients for the 32 models.
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models. Models stratified by year indicate that on-road
concentrations measured in 2007 were lower than those
measured in 2006, because of the reduction in emission factors
(which Johnson et al.21 pointed out) and also because of
differences in traffic conditions during field campaigns (less
congestion, i.e., faster speeds and lower volumes, in 2007 than
in 2006). On-road concentrations were slightly less dependent
on traffic conditions in 2007 than in 2006; this finding is

manifested via (in 2007) a larger constant-term (intercept) in
the model and smaller coefficients (beta values) for traffic
speed and traffic volume (Table S6, Supporting Information).
Bootstrap results (Table S7, Supporting Information)

indicate that standard errors of the coefficients from the
original data set match well with the standard deviation of the
bootstrap results. Low CV values for traffic speed and volume
coefficients (9% to 29%) in bootstrap models indicate the

Figure 5. Ultrafine particle concentrations for four traffic conditions: denser, slower (traffic speed: 64−80 km h−1, traffic volume: >80 veh min−1);
denser, faster (>105 km h−1, 60−70 veh min−1); lighter, slower (24−64 km h−1, <40 veh min−1); lighter, faster (>105 km h−1, <40 veh min−1). Size
distributions (upper plots) present observations (left plot) and model predictions based on median values (right plot). Total particle number
concentration is ∼6× greater for the upper line (denser, slower; PNC: 980 000 cm−3) than for the lower line (lighter, faster; PNC: 171 000 cm−3).
Lower plot compares observed and model-predicted distributions for total particle counts. Box plots show 10th, 25th, 50th, 75th, and 90th
percentiles. Mean values are represented by open circles.

Table 2. Multilinear Regression Models for Prediction of Particle Number Concentration

regression modelb

dependent variablea constant term SP coefficient VOL coefficient TEMP coefficient RH coefficient RMSEc R2 adj-R2 F-statistic

10th percentile 5.25 −0.006 0.008 0.128 0.60 0.57 19.0
25th percentile 6.75 −0.007 0.012 −0.057 0.090 0.84 0.82 43.4

median 7.86 −0.002 0.007 −0.068 −1.55 0.077 0.85 0.83 33.5
mean 7.86 0.007 −0.078 −1.44 0.076 0.82 0.80 37.5

75th percentile 7.31 0.007 −0.047 −1.30 0.080 0.80 0.77 31.8
90th percentile 8.65 0.003 0.006 −0.086 −2.04 0.089 0.78 0.74 20.7

standard deviation 0.57 0.004 −0.003 −0.77 0.037 0.66 0.62 15.6
aDependent variable: particle number concentrations (PNC; units, cm−3). Independent variables: strata average of loop speed (SP; units, km h−1);
total traffic volume (VOL; number of vehicles per minute); urban temperature (TEMP; °C); relative humidity (RH). All coefficients have p < 0.10.
bWithin each strata of traffic speed and volume, 25th percentile, median, mean, and standard deviation were computed for log transformed data set
for PNC. cRMSE = root-mean-square error.
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stability of these two parameters as PNC predictors; the
comparatively high CV for temperature (111%) in the 25th
percentile model suggests that the model coefficients for
temperature are less robust. Relatively low CV values for adj-R2

(10−14%) for the models (exception: the standard deviation
model) suggests general robustness of these models. As
mentioned above, we employed 20 alternative stratification
schemes; results were similar among all 20 schemes, suggesting
that results presented here are robust to the stratification
scheme employed.
This study has several additional uncertainties, especially for

applying results to exposure analysis. Concentrations were
measured at 3.5 m, which may or may not be representative of
concentrations in vehicles25 or at car height (typically, 1−2 m).
Concentrations were measured on-freeway in one urban area
(Minneapolis) during one season (summer) during daytime
only (9 am to 3 pm); results may not apply to other locations
or times. To interpolate rather than extrapolate from
measurements, the model generally should only be applied if
the values for independent variables are inside the range of
values in the input data. (For example, during the 40 h of on-
road measurements, temperature and wind speed were 18−34
°C and 0−37 km h−1, respectively. During summer 2008,
meteorological conditions in Minneapolis were in this range
during 75% of the time.) Additional sampling (e.g., different
times-of-day, seasons, cities, road types) would usefully extend
the applicability of the models. Particle emissions may depend
on characteristics such as altitude, topography, driver character-
istics, and vehicle type. For example, Paatero et al.26 modeled
particle number concentrations (PNC) in five European cities
based on other air-pollution parameters and suggested different
models for each city. Model inputs employed here (e.g., traffic

volume) are based on available real-time data but are not, for
example, subclassified by vehicle type (e.g., heavy duty versus
light duty vehicles).14,21,27,28

On the basis of traffic camera records, heavy duty vehicles
comprised 7% of on-highway traffic during data collection.21,29

We do not expect major shifts in the vehicle mix during the
sampling hours (9 am−3 pm), but the real-time truck counts
needed to test this hypothesis are not available for the times
and locations where concentration measurements occurred. If
real-time data on vehicle type were available, we would be able
to include it in our approach; this issue represents an
opportunity for future model improvement. Johnson29 reported
that particle-number emissions per kg fuel (per minute) are 7×
(44×) greater for heavy- than for light-duty vehicles.
As mentioned above, few studies have investigated size-

resolved models of UFPs based on traffic parameters, but prior
studies have investigated (nonsize-resolved) UFPs on and near
roadways. For example, Fruin et al.14 conducted real-time
measurements of UFP on California freeways and suggested
that truck density (R2 = 0.58) and hour of day (R2 = 0.26) are
good predictors of UFP concentrations. Nanzetta and Hol-
men27 showed that road-side measurements of UFPs in
California were correlated with traffic counts and meteoro-
logical parameters but the observed correlations were not
strong (correlation coefficients in the range of 0.21−0.46).
Similar results, that traffic density and meteorology are
important predictors of UFP, were reported by Voigtlan̈der et
al.30 for a street canyon in Germany (R2 = 0.68). Measurements
in the latter two studies were conducted less than 10 m from
the roadway. Paatero et al.26 used more than 50 explanatory
variables (including traffic related air pollutants and meteoro-
logical parameters) to predict PNCs in five European cities (R2

= 0.58−0.77); our results suggest that more parsimonious
models can also yield reasonable results. In a recent study, Kaur
and Nieuwenhuijsen31 used traffic counts, meteorological
parameters, and mode of transport to model personal UFP
exposure in UK (R2 = 0.62). One study that did consider size-
resolved UFP exposures on-roadway emphasized that concen-
trations may differ between on-roadway and in-vehicle air.25

Our findings are in agreement with some but not all previous
studies. Given the different goals of our study versus previous
studies, direct comparison of model coefficients or model
results is not feasible in most cases. Only one of the studies30

investigated size resolved correlations of PNCs with traffic
counts (passenger cars). Trends of size-resolved prediction are
similar between their and our study: model performance is best
for 10−100 nm particles (ultrafines) and comparatively poorer
for ∼200−500 nm particles. Knibbs and de Dear32 measured
UFP concentrations in four modes (train, bus, ferry,
automobile) in Sydney, Australia, and found wind speed to
be a weak determinant of UFP concentrations. On the other
hand, some prior studies30,31 found that meteorological
parameters (especially wind speed) are important for predicting
PNCs; however, those studies investigated surface streets rather
than on-freeway air. Our result that RH and PNC are inversely
related (Figure 6) is consistent with some27 but not all31 extant
research.
The approach developed here, involving two-way stratified

multilinear regression, could usefully be applied to other
locations, times, or pollutants. Unique features of our approach
include providing a simple model with good prediction of
central tendency (adj-R2 = 0.80 and 0.83 for mean and median,
respectively), based on readily available and already measured

Figure 6. Normalized coefficients of meteorological parameters for
size resolved prediction of median particle count measurements, from
the weather-inclusive models: (a) normalized temperature coefficients,
(b) normalized relative humidity coefficients, and (c) normalized wind
speed coefficients for the 32 models. The error bars represent 95%
confidence intervals. The coefficients and error bars are normalized to
the ratio of the standard deviation of the parameter to the standard
deviation of the particle counts in the size bin. For example, a y-axis
value of +0.5 in the upper plot (temperature) would mean that a 1
standard-deviation increase in temperature would yield a 0.5 standard-
deviation increase in concentration for that size bin.
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parameters. The proposed models are useful for determining
time-, location-, and size-resolved concentrations of fine
particles on freeways, including for identifying concentration
hotspots. This information could be applied to identifying
susceptible subpopulations; for estimating exposures (see ref
25), including as part of large-scale epidemiological studies; for
testing potential control strategies; and eventually for
estimating public health risks from exposure to ultrafine
particles on highways.
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S6, an expanded list of stepwise regression models subdivided
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predicted (based on the mean and median predicted models)
PNC along the test route for a single day and for ten days,
respectively (to contrast short-term versus long-term prediction
results); Figure S2, plots for correlations between predicted and
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median, 75th percentile, 90th percentile, mean, and standard
deviation; Figure S3, correlations for observed PNC values with
average loop speed and traffic loop volume; Figure S4, color-
coded maps for average loop speeds and total loop volumes
along the test route, averaged for the same ten days as in Figure
S1; Figure S5, the non-normalized coefficients of weather
parameters for size resolved predictive models. This material is
available free of charge via the Internet at http://pubs.acs.org.
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This supplement provides a more detailed description of the stratification method, then the 

following tables and figures. Table S1 is an expanded version of Table 1. Table S2 shows the 

stratification scheme used in this work. Table S3 shows speeds, traffic volumes and particle count 

information for the strata included in the study. Table S4 provides summary statistics for the input 

variables (weather; traffic) used in this study. An expanded list of stepwise regression models sub-

divided by wind-direction and measurement year are presented in Table S5 and S6, respectively.  

Table S7 presents the results from bootstrap analyses.  

Figure S1 shows four color-coded maps for measured and predicted (based on the mean and 

median predicted models) PNC along the test route for a single day and for ten days respectively (to 

contrast short-term versus long term prediction results). Figure S2 shows plots for correlations 

between predicted and observed PNC values for 10
th
 percentile, 25

th
 percentile, median, 75

th
 

percentile, 90
th
 percentile, mean and standard deviation. Figure S3 shows correlations for observed 

PNC values with average loop speed and traffic loop volume. Figure S4 shows color coded maps 

for average loop speeds and total loop volumes along the test route, averaged for the same ten days 

as in Figure S1. Figure S5 shows the non-normalized coefficients of weather parameters for size 

resolved predictive models. 



                        

  

 

Stratification Method 

Strata were selected so as to achieve even distribution of data among the strata. To ensure 

that our results are not contingent on the stratification scheme, we experimented with systematically 

varying the strata as a sensitivity analysis; twenty different stratification schemes were evaluated. 

For each alternative stratification scheme, we generated regression models. Speed and volume 

coefficients in the models exhibited low coefficients of variability, and model predictions were 

highly correlated with each other. Thus, we did not find evidence that model results are highly 

sensitive to stratification scheme. The most efficient stratification scheme was selected based on 

three criteria: model performance (measured by adjusted R
2
), statistical significance of the model 

coefficients, and the percentage of minute-averaged data set used. The optimal stratification scheme 

selected had forty-two strata (six categories for traffic volumes and seven categories for traffic 

speeds) and used 96% of the valid data obtained. For each strata, we calculate mean values for 

traffic parameters (speed, volume); weather parameters (temperature, wind speed and relative 

humidity [RH]); and, for the dependent variable (log-transformed particle counts), several 

percentiles (10
th
, 25

th
, 50

th
, 75

th
 and 90

th
 percentiles), mean and standard deviation. Also, median of 

log-transformed particles counts were determined for each of the 32 EEPS channels. Example 

measurements are shown in Table S3 for total PNC. 



                          

 

Table S1: Summary of studies on real time on-road measurement of ultrafine particles (UFPs). 

Reference  
Sampling 

year 
Location Methods Pollutants Instruments 

Number of 

hours 
Key results 

Bukowiecki 2002a 

[17] 
1999-2000 

Minneapolis, 

Minnesota.                 

Columbus, Indiana 

Average surface diameter 

and PAS/DC versus Avg 

surface diameter scatter 

plots,  

UFP 

photoelectric aerosol 

sensor(PAS), 

diffusion charging 

sensor (DC), CPC, 

SMPS. 

 Theoretical conclusions related to aerosols. 

Bukowiecki 2002b 

[13] 
2001 

Zürich 

(Switzerland) 

Design and construction 

of mobile laboratory, 

diurnal variation of 

aerosols. 

UFP CPC*  4 hours 

1. This case study confirms that there is a large 

diurnal and regional variation of ultrafine 

particles for both urban and rural areas.                                                       

2. Neither the UFP nor the total particle number 

concentration is an exclusive indicator of primary 

traffic emissions. 

Canagratna 2004 

[15] 
2000-2001 

New York city,                    

New York. 

Vehicle chase studies, 

chemical composition, 

size distribution 

UFP, PM, NO, 

NO2, CO, N2O, 

CH4, SO2, and 

HCHO. 

Aerodyne, aerosol 

mass spectrometer 

(AMS), CPC, Tunable 

Diode Lasers (TDL), 

LiCOR 

~24 hours 

1. The nonrefractory diesel exhaust PM appears 

to be dominated by lubricating oil and the typical 

measured mass distribution of organic as well as 

sulfate species.                                                                                          

2. Order of PM emissions in diesel operated 

engines : 6V-92 engines> series-50 engines > 

CNG engines 

Weijers et al. 2004 

[12] 
1999-2000 

Amsterdam, 

Netherlands 

Dispersion study, particle 

size distributions, 

regional variability, 

within city variability 

UFP, PM 
CPC and an optical 

aerosol spectrometer 
3 days 

1. Aerosol concentrations decrease exponentially 

with increasing distance from the road.                                                                                       

2. Number concentrations are more sensitive than 

mass concentrations due to dominance of number 

of UFPs.                                                                            

3. Number concentration in city change on scale 

of a hundred meters, correlating with the local 

traffic intensity and driving conditions 



                          

 

Kittleson et al. 2004 

[11]  
2000 

Minneapolis,    

Minnesota 

 Size distributions, fuel-

specific emissions, 

dispersion study. 

UFP, CO, CO2, 

NOx. 

CPC, SMPS, IR CO 

analyzer, IR CO2 

analyzer, 

chemiluminescence 

NOx analyzer. 

~ 20 hours          

1. High UFPs correlated with high speed traffic.                                       

2.  Most of the particles added by the on-road 

fleet were below 50nm in diameter.                                                                                      

3. Number concentrations measured in residential 

areas, 10–20m from the highway, considerably 

lower than on-road concentrations, and much 

lower concentrations for areas 500-700 m from 

the highway. 

Westerdahl et al. 

2005 [8]  
2003 Los Angeles, CA                     

Pollutant concentration 

differences by location, 

pollutant concentration 

correlations, UFP size 

distributions, time series 

plots 

BC, NO, PM-

PAH,UFP, NO2, 

CO, CO2, PM 2.5 

CPC, SMPS, 

Aethalometer, DMA, 

PAH Analyzer, NOx 

analyzer, Q-trak plus 

monitor, TSI DusTrak 

12 hours 

1. Good correlation between UFP concentrations 

and BC, NO and PM-PAHs.                                                                                                                    

2. Freeway concentrations an order of magnitude 

higher than on residential streets for UFP, NO, 

BC and CO.                                                                               

3. Average concentrations of UFP and related 

pollutants varied strongly by location, road type, 

and truck traffic volumes, suggesting a 

relationship between these concentrations and 

truck traffic density. 

Pirjola et al. 2006 

[10] 
2003-04 Helsinki, Finland 

Seasonal (summer vs 

winter analysis).Pollutant 

dispersion measurements 

upto 140 m distance from 

the road side.  Particle 

size distribution analysis 

in the range of 3 nm -10 

um.  

CO, NO, UFP, 

NOx,PM 

CPC, SMPS, CO and 

NOx monitors 
384 hours 

1. Average concentrations 2-3 times higher in 

winter than in summer.                              

2. Concentrations fell to 20-40% as far as only 65 

m away from the road, still more than double the 

background urban concentrations.                        

3. 85% or more particles were smaller than 50 

nm. Observed distribution was multi-modal. 

Fruin et al.  

2008 [17]  
2003 Los Angeles, CA                     

DVD analysis, multiple 

regression, ANOVA 

BC, NO, PM-

PAH,UFP, NO2, 

CO, CO2, PM 2.5 

CPC, SMPS, 

Aethalometer, DMA, 

PAH Analyzer, NOx 

analyzer, Q-trak plus 

monitor, TSI dustrak 

15 hours 

1. Arterial concentrations one-third to freeway 

concentrations.                                                                 

2. Freeways responsible for 33-45% UFP 

exposure in LA               

3. Diesel powered vehicles primary sources of 

UFPs, NO, BC, PM-PAH 



                          

 

Johnson et al. 2009 

[21] 
2006-2007 Minneapolis, MN 

Fuel specific 

apportionment of particle 

number concentration on 

highways, size 

distribution statistics   

UFP, CO, CO2, 

NOx 

CPC, SMPS, EEPS, 

TSI DustTrak, NDIR 

QTrak 

85 hours 
Decrease in fuel sulfur content led to reduced 

particle counts from 2002 to 2007. 

Int Panis et al. 2010 

[13] 
2009 Belgium 

Comparison of fine 

particle exposure to car 

riders and cyclists in 

three Belgian cities  

UFP, PM2.5, PM10 
TSI P-Trak, TSI 

DustTrak 
~30 hours 

Mean bicycle/car ratio for PNC and PM are close 

to 1 and rarely significant.  

*
Other instrumentation to measure gaseous pollutants etc. were also used but the study focuses on only the data collected from the instrument(s) listed here  



                        

  

 

 

Table S2: Two-way stratification scheme, showing strata serial numbers (see Table S2 for data per 

serial number), based on average loop speed and total loop volume  

Average loop speed (km h
-1
) 

Total loop volume      

(veh min
-1
) 24 to 64 64 to 80 80 to 87 87 to 93 93 to 100 100 to 105 > 105 

< 40 1 7 13 19 25 31 37 

40-50 2 8 14 20 26 32 38 

50-60 3 9 15 21 27 33 39 

60-70 4 10 16 22 28 34 40 

70-80 5 11 17 23 29 35 41 

>80 6 12 18 24 30 36 42 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                        

  

 

Table S3. Speed, traffic volumes and particle count information for the strata included in the study  

Strata 

serial 

number
a
 

Number 

of data 

points 

Average loop 

speed
b
 

(km h
-1
) 

Total loop 

volume      

(veh min
-1
) 

PNC
 c
                 

(Median Log ) 

1 20 53 35 5.50 

2 25 53 45 5.60 

9 31 76 55 5.65 

10 52 76 65 5.75 

11 37 76 75 5.77 

12 22 76 88 6.02 

14 44 84 46 5.61 

15 84 84 56 5.78 

16 142 84 65 5.84 

17 81 84 74 5.88 

18 21 84 86 5.86 

20 70 90 46 5.58 

21 213 90 55 5.78 

22 258 90 65 5.83 

23 110 90 74 5.81 

24 29 90 86 5.70 

25 21 96 36 5.31 

26 84 96 46 5.49 

27 181 96 56 5.67 

28 175 96 65 5.73 

29 53 96 74 5.79 

32 42 102 46 5.47 

33 77 102 55 5.46 

34 52 102 65 5.72 

37 20 110 33 5.27 

38 54 110 45 5.35 

39 81 110 55 5.46 

40 43 110 63 5.60 
a 
See Table S1. For example, Strata #1 (first row) refers to times when the loop volume is <40 

veh min
-1
 and traffic speed is 24-64 km h

-1
.  Only the cells with greater than 20 data points 

were included in the analysis. 
b 
Ensemble averages for the cells with same speed range were calculated, because individual 

cell averages for the same speed range were similar.  
c 
Values are the base-10 logarithm of the median. For example, in the first row log median is 

5.50, indicating a particle concentration of 316,000 particles cm
-3
. 

 

 

 



                        

  

 

Table S4: Summary statistics for the independent variables  

 

Statistical 

parameter 

Temperature    

(deg C) 
RH 

Wind speed 

 (km h
-1
) 

Traffic 

speed       

(km h
-1
) 

Traffic 

volume 

(veh min
-1
) 

Mean 25 0.46 16.0 91.3 60.1 

Median 25 0.44 14.8 91.6 60.1 

Std Dev 3.6 0.11 8.3 11.3 11.7 

SE 0.08 0 0.18 0.24 0.25 

CV (%) 14% 23% 52% 12% 19% 

Minimum 17.8 0.28 0 36.7 23.4 

  10
th
 percentile 20.6 0.34 5.6 80.3 44.9 

25
th 
percentile 22.2 0.37 9.3 86.3 52.3 

75
th
 percentile 27.8 0.55 20.4 97.4 67.4 

90
th
 percentile 30 0.61 27.9 104 74 

Maximum 33.9 0.8 37.0 130 101 

 

 

Table S5: Multi-linear regression models for prediction of particle number concentration (PNC) based 

on wind speed classification.  

 

Un-aided stepwise regression
b
   Aided stepwise regression

c
 

Dependent 

variable
a
 
Condition

e
 

Parameter
d
 R

2
 adj-R

2
   Parameter R

2
 

adj-

R
2
 

upwind RH 0.66 0.64   RH, WS 0.70 0.68 

downwind 

Vol, Temp, RH, 

WS 0.73 0.69  Same as un-aided model 

niether RH 0.72 0.71  Same as un-aided model 

 

Speed, Vol, Temp, 

RH 0.85 0.83 

 Vol, Temp, RH 0.83 0.81 

 Vol, RH, WS 0.81 0.78 

 Speed, Vol, RH, WS 0.83 0.81 

Median 

total RH, WS 0.78 0.76 

  Speed, Vol 0.79 0.77 

 Speed, Vol, RH, WS 0.79 0.76 
upwind Vol, RH, WS 0.76 0.73 

 Vol, RH, WS 0.76 0.73 

downwind Vol 0.46 0.44  Vol, Temp, WS 0.66 0.62 

niether Vol, RH 0.73 0.70  Same as un-aided model 

 Speed, Vol, Temp 0.81 0.79 

Mean 

total Speed, Vol 0.79 0.77 
  Vol, Temp, RH 0.82 0.80 

10th upwind Speed, Vol, WS 0.73 0.69  Same as un-aided model 



                        

  

 

downwind Vol, Temp 0.41 0.36  Same as un-aided model 

niether RH 0.36 0.34  Speed, Vol 0.53 0.49 

Percentile 

total Speed, Vol 0.60 0.57   Same as un-aided model 

 Vol, RH, WS 0.69 0.65 
upwind Speed, Vol, WS 0.75 0.72 

 Vol, RH 0.64 0.61 

downwind Vol, Temp 0.60 0.57  Same as un-aided model 

niether RH, WS 0.76 0.74  Speed, Vol 0.78 0.76 

25th 

Percentile 

total 
Speed, Vol, 

Temp 
0.84 0.82 

  Same as un-aided model 

upwind RH 0.55 0.54  RH, WS 0.61 0.58 

downwind RH 0.46 0.44  Temp, RH, WS 0.64 0.59 

niether RH 0.63 0.62  Speed, RH, WS 0.72 0.68 

75th 

Percentile 

total Vol, RH 0.77 0.75   Vol, Temp, RH 0.80 0.77 

upwind RH, WS 0.65 0.62   Vol, RH, WS 0.69 0.65 

 Temp, RH, WS 0.54 0.48 
downwind RH 0.31 0.29 

 Speed, RH 0.38 0.34 

niether Vol 0.46 0.44  RH 0.40 0.38 

 Vol, Temp, RH 0.74 0.71 

 

Speed, Vol, Temp, 

RH 0.78 0.74 

90th 

Percentile 

total Vol 0.66 0.64 

  RH 0.54 0.53 

upwind None   Speed, Temp, RH 0.43 0.36 

 Vol, Temp, WS 0.38 0.30 

 Vol, Temp 0.28 0.22 downwind WS 0.17 0.14 

 Vol, WS 0.28 0.22 

niether Speed 0.41 0.39  Speed, Vol, RH, WS 0.64 0.58 

Standard 

Deviation 

total Speed 0.46 0.44   Speed, Vol, RH 0.66 0.62 
a
Dependent variable: Particle number concentrations (PNC; units: cm

-3
); 

b
Un-aided stepwise 

regression refers to forward stepwise regression starting with a null model. 
c
Aided stepwise regression 

refers to a combination of forward and backward (selective removal starting with a full model) 

stepwise approach. 
d
Independent variables: strata average of loop speed (Speed; units: km h

-1
); total 

traffic volume (Vol; number of vehicles per minute); urban temperature  (TEMP; °C); relative 

humidity (RH); and, wind speed (WS; km h
-1
). All coefficients have p<0.10. Within each strata of 

traffic speed and volume, 25
th
 percentile, median, mean and standard deviation were computed for log 

transformed data set for PNC. 
e
Wind direction condition.  

 

 

 

 

 

 

 



                        

  

 

 

 

 

 

 

 

 

 

Table S6: Multi-linear regression models for prediction of particle number concentration (PNC) based 

on different measurement years. 

 

  median log(PNC) model
a,c
 mean log(PNC) model

a,c
 

  Year 2006 Year 2007 Year 2006 Year 2007 

constant term 5.40 5.42 5.35 5.46 

SP coefficient
b
 -0.009 -0.002 -0.006 -0.003 

VOL 

coefficient
b
 

0.014 0.006 0.012 0.005 

Adj-R
2
 0.73 0.50 0.71 0.50 

a
Dependent variable: Particle number concentrations (PNC; units: cm

-3
); 

b
Independent variables: strata 

average of loop speed (SP; units: km h
-1
); total traffic volume (VOL; number of vehicles per minute); 

c
Within each strata of traffic speed and volume, median and mean were computed for log transformed 

data set for PNC.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                        

  

 

 

 

 

 

 

 

 

 

Table S7: Bootstrap re-sampling results for the particle count dataset used in this study 

 

  Original dataset   Bootstrap datasets
a
 

  Values SE
b
   min Mean max SD

c
 CV

d
 

25
th
 percentile 

log PNC 
        

Constant 2.578 1.324  0.122 4.278 9.195 1.303 30% 

Speed coeff -0.011 0.002  -0.017 -0.011 -0.002 0.002 20% 

Volume coeff 0.010 0.001  0.005 0.010 0.013 0.001 14% 

Temp coeff 0.037 0.017  -0.054 0.015 0.069 0.017 111% 

Adj R
2
 0.823     0.285 0.699 0.885 0.096 14% 

50
th
 

percentile  

log PNC 

          

Constant 5.441 0.128  5.008 5.425 5.809 0.116 2% 

Speed coeff -0.007 0.002  -0.011 -0.006 0.000 0.002 29% 

Volume coeff 0.010 0.001  0.006 0.010 0.014 0.001 12% 

Adj-R
2
 0.771     0.424 0.685 0.878 0.075 11% 

Mean   

log PNC 
          

Constant 5.379 0.118  5.099 5.382 5.678 0.094 2% 

Speed coeff -0.005 0.002  -0.009 -0.005 -0.001 0.001 28% 

Volume coeff 0.009 0.001  0.006 0.009 0.012 0.001 9% 

Adj R
2
 0.769     0.454 0.698 0.858 0.067 10% 

SD  log PNC            

Constant 0.132 0.053  -0.075 0.115 0.351 0.076 66% 

Speed coeff 0.004 0.001  0.001 0.005 0.008 0.001 29% 

Adj R
2
 0.442     -0.033 0.316 0.719 0.159 50% 

a 
Bootstrap sample size: n=1000.

b 
SE is standard error. 

c 
SD is standard deviation of mean. 

d 

CV is the coefficient of variation. 

 

 

 

 



                        

  

 

 

 

 

 

 

 

 

 

 
Figure S1: Particle number concentrations along the test route (a) measured concentrations 

averaged over ten summer days in June 2007 (b) median predicted concentrations averaged over 

ten summer days in June 2007 (c) mean predicted concentrations averaged over ten summer days 

in June 2007 (d) median predicted concentrations along the test route on a representative day (28
th
 

June, 2007; 9:00 AM to 1:30 PM). MN-DoT measured vehicle speeds and volumes were used to 

make predictions using the proposed models. 
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Figure S2: Regression plots for predicted versus observed PNC values for each of 28 strata (as 

shown in Table S3), for 10
th
, 25

th
, 50

th
,75

th
, 90

th
 percentiles; mean and standard deviation. 

 



                        

  

 

 

 

 

 

 

 
 

Figure S3: Correlations for observed PNC values with average loop speed and traffic loop volume 

for each of the 28 strata (as shown in Table S3). 
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Figure S4: Measured values of (a) total traffic volumes, and (b) mean 

loop speeds, averaged over ten summer days in June 2007. These speeds 

and volumes were used to make prediction plots in Figure S1. 
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Figure S5: Coefficients (non-normalized) of meteorological parameters for size resolved prediction of 

median particle count measurements, from the ‘inclusive weather’ models. (a) temperature 

coefficients, (b) relative humidity coefficients, and (c) wind speed coefficients for the thirty-two 

models. The error bars represent 95% confidence intervals.   

 

 


